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Abstract—This paper is concerned with an improved algorithm 

based on the piecewise-smooth Mumford and Shah (MS) functional 
for an efficient and reliable segmentation. In order to speed up 
convergence, an additional force, at each time step, is introduced 
further to drive the evolution of the curves instead of only driven by 
the extensions of the complementary functions +u and −u . In our 
scheme, furthermore, the piecewise-constant MS functional is 
integrated to generate the extra force based on a temporary image that 
is dynamically created by computing the union of +u and −u during 
segmenting. Therefore, some drawbacks of the original algorithm, 
such as smaller objects generated by noise and local minimal problem 
also are eliminated or improved. The resulting algorithm has been 
implemented in Matlab and Visual C++, and demonstrated efficiently 
by several cases. 
 

Keywords—Active contours, energy minimization, image 
segmentation, level sets.  

I. INTRODUCTION 
ARIATIONAL-based image segmentation method has 
become one of the most important steps in analyzing 

image data. Variational techniques can be divided into three 
groups: diffusion-based techniques, curve evolution techniques 
and techniques based on region models. Diffusion-based 
techniques are based on diffusing information from a pixel to 
its neighbors in the image. This usually results in a smoothing 
image. Curve evolution techniques attempt to evolve a closed 
contour over the image domain. Active contours or “snakes” 
can be used to segment object automatically. This framework 
has been used successfully by Kass et al [2] to extract 
boundaries and edges. One potential problem with this 
approach is that the topology of the region to be segmented 
must be known in advance. An algorithm to overcome these 
difficulties was first introduced by Osher and Sethian [4]. They 
model the propagating curve as a specific level set of a higher 
dimensional surface. However, this method has proved 
erroneous when in particular the image is noisy or its edges are 
not clear. Variational models for image segmentation have had 
great success. One of the most successful and pioneering 
models that adopt this approach is the model of Mumford and 
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Shah (MS) [1]. Based on the MS segmentation technique, Chan 
and Vese [5, 6] proposed an active contour model without edge, 
and the model can detect edges both with and without gradients 
from objects that are smooth or even have discontinuous 
boundaries. However, the MS model in piecewise-constant 
case cannot detect objects successfully from noisy images. To 
overcome the drawback, Chan and Vese [6] showed how the 
piecewise-smooth MS segmentation problem can be solved 
using the level set method, and they have given the 
piecewise-smooth optimal approximations of a given image. 
Although piecewise-smooth MS model works better, however, 
It requires the initial curve to be close to the boundaries, 
otherwise the convergence of the curve to object boundary will 
be too slow, and for highly noisy images, it almost collapses.  In 
this paper, we propose a efficient partial difference equation 
(PDE)-based algorithm for solving the low convergence 
problem of the piecewise-smooth MS segmentation functional. 
The extensions of complementary functions +u and −u don’t 
have to be computed while the segmenting. Instead, the level 
set function is first updated in advance based on an assembled 
image. The assembled image can be regarded as an 
intermediate version of the original image, so the evolution of 
curves can be performed on it to adjust the pose and provide an 
additional drive force to speed up convergence. The 
piecewise-constant MS algorithm is applied as adjust function 
to provide an additional drive force. So, the resulting algorithm 
has some advantages of piecewise-constant MS model, such as 
with faster speed of evolution of curves and better in edge 
preserving properties, the evolution of curves is independent of 
the choice of the initial curve. 

The rest of this paper is organized as follows. The Mumford 
and Shah model is introduced in section 2, and section 3 
describes the proposed algorithm. Some results of numeric 
experiments are given in Section 4, which is followed by 
concluding remarks in Section 5. 

II. MUFORD AND SHAH MODEL  
The Mumford and Shah model is a variational problem for 

approximating a given image by a piecewise smooth image of 
minimal complexity. Let NR∈Ω be a bound domain with 
Lipschitz boundary, modeling the image domain. Let 

Ru →Ω:0  represent a grayscale image. To find the 

segmentation Γ of 0u , Mumford-Shah piecewise smooth 
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segmentation [1] is defined to carry out the following 
minimization: 
 

||

)()|,(inf

2

\

2

00,

Γ+∇+

−=Γ

∫

∫

ΓΩ

Ω
Γ

νμ dxu

dxuuuuE MSu

 (1) 

 
where μ  and ν  are positive parameters, u is the image 

intensity. It allows the segmented “objects” to have smoothly 
varying intensities. Chan-Vese [6] showed how the 
piecewise-smooth MS segmentation problem can be solved 
using the level set method. In their model, two functions 

+u and −u  are introduced, such that: 
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   where )( zH is Heaviside function, In Chan-Vese 
algorithm [5], the authors regularized it as 
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Those two functions +u and −u  are assumed that are 

1C functions on 0≥φ and 0<φ  respectively, and with 
continuous derivatives up to all boundary points, i.e. up to the 
boundary { 0=φ }. Substituting this expression (2) into (1), 
one can obtain: 
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Then with φ  fixed, the equation (4) leads to the two 

Euler-Lagrange equations for +u and −u  can be written as  
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Notice that +u  and −u  act as denosing operators on the 

homogeneous regions only. No smoothing is done across the 
boundary { 0=φ }, which is very important in image analysis. 

Now, keeping +u  and −u  fixed, and minimizing 
)|,,( 0uuuEMS φ−+  with respect to the function φ , one can 

obtain the motion of the zero level set as following: 
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where the delta function is defined as the derivative of the 

Heaviside function: 
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The above equation (6) with some initial guess φ (t=0, x) is 

actually computed at least near a narrow band of the zero level 
set. As a result, computationally, one have to continuously 
extended both +u  and −u from their original domain 

}0{ >±φ to a suitable neighborhood of the zero level 
set }0{ =φ . The extension of +u  and −u  is important to 
curve convolution. Furthermore, +u  and −u  can be easily 
obtained by solving Euler-Lagrange equations (5). However, 
the extensions of both +u  and −u  are very difficult, it requires 
solving the following degenerate elliptic linear equations:  
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Chan and Vese [5] have pointed out three possible ways to 

solve the problem, but all of them are difficult to carry out in 
practice. So in this paper, a new strategy is proposed to attack 
the problem. It will be described in following sections. 

III. DESCRIPTION OF THE PROPOSED ALGORITHM  
In this context, the aim is to speed up the convergence and 

edge preserving. It has been known that, in the 
piecewise-smooth MS problem, the extensions of two functions 

+u  and −u  can be crucial factors for evolution of curves. In 
[6][8], they are given as following: 
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The corresponding −u can be obtained by replacing +u  with 
−u . Since the evolution of the curves coupled with diffusion in 

the piecewise-smooth MS method, the evolution of the curves 
gets very slow as the diffusion progresses. The reason is 
twofold. First of all, it is due to the fact that with the diffusion 
and the noise removed from an image, the regions of the image 
become more and more homogeneous, and their boundaries are 
burred. Secondly, it is the reason that the evolution speed 
strongly depends on the solutions of the two complementary 
functions +u and −u , but they couldn’t be solved accurately and 
efficiently. Although the authors, in [6], suggested three 
different methods to solve +u  and −u , none of them is accurate 
and efficient. Up to now, researchers still haven’t found a better 
way for solutions of +u and −u . 

To attack these problems, one may consider strategies: one is 
re-initialization of the level set function in each time step. The 
other is to seek some new methods for a better solutions of 

+u and −u .  

A. Reinitialization of the Level Set Function for Speeding 
up Convergence 

In the piecewise-smooth MS algorithm, the evolution of 
curves coupled with diffusion, so the image might have become 
very homogeneous in certain iterations. Furthermore, the 
evolution speed of curves is reduced greatly. In order to speed 
up convergence, we can further modify or adjust the location of 
the curves by an additional force during evolution of curves. 
The aim of modification is to update the level set function φ  to 
a better location. For the purpose, a lot of methods for active 
contour, in theory, could be applied.  Note that the advantage of 
the piecewise-constant MS functional is to work better for 
homogeneous regions and, in theory, robust. Therefore, it is 
very appropriate to be used to generate an extra force and 
update φ  efficiently. The input parameters of the algorithm 

include both +u and −u , the current value of φ  and a temporary 
image that will be introduced in following subsection. Then the 
new position of φ , modified by the extra force, is used as 
output of this algorithm. Finally, the updated version ofφ , used 
as initial parameters, is applied to the piecewise-smooth MS 
algorithm again. 

B. Alternative Solutions for Extension of +u and −u  
In this subsection, we introduce a new strategy for the 

solutions of +u and −u . First of all, the major function of +u and 
−u  is de-noising noise. Because Eq. (8) and (9) are difficult to 

be solved by numerical method, extensions of +u and 
−u usually are approximately computed by the equation (10). 

However, it results in some problems such as the lower 
convergence, local minimal problem, and so on. In our scheme, 
to solve the problem, a new strategy is proposed to drive 
directly the evolution of curves by an external force so as to 
avoid solving extensions of +u and −u . To drive the evolution of 
curves to a new location by an additional force, all kinds of 
methods for active contour, in theory, could be applied. 
However, for simple, we wish the extended level set functions 
still were represented by distance function. By now, we still 

haven’t found an efficient method to transform a given 
complex active contours into distance function. Therefore this 
restriction against some active contour methods used in this 
case. In this context, the piecewise constant MS approach is 
chosen. Note that the piecewise-constant MS functional works 
better for homogeneous regions and, in theory, robust, hence it 
is the best appropriate candidate to be used for the purpose. As 
known in previous sections, to keep the evolution of curves, 
both +u  and −u  have to be continuous extended from their 
original domain }0{ >±φ to a suitable neighborhood of the 

zero level set }0{ =φ . Considering that +u  and −u  act as a 
denoising operator on homogeneous regions outside or inside 
the boundaries { 0=φ }, respectively, therefore a smoothing 
diffused image can be obtained by calculating the union of 

+u on { 0>φ } and −u on { 0<φ }. The intention is to 
directly evolve the level set function φ  on the diffused image 

instead of the extensions of +u and −u . As a result, some 
difficulties of the classical algorithms such as elimination of 
some smaller objects which is not corresponding to physical 
objects, solution of global minimal problem and so on can be 
overcome. The reason is that there are little noises in the 
working image, i.e. the temporary image since amount of 
noises have been removed.  

 
Fig. 1 The temporary image composed of the regions of −+ ∪ uu  

 
In addition, the temporary image, shown in Fig. 1, is defined 

based on a set operation of +u and −u , represented as 
−+ ∪ uu , with +u on 0>φ and −u on 0<φ , respectively. 

Such image, in proposed algorithm, is thus used to compute the 
new position ofφ  by the piecewise-constant MS algorithm. In 
other respects, if the diffused image gets too homogeneous or 
the external force is very strong, the updating procedure maybe 
makes φ  away from the desired boundaries, even disappear 
from the image. Thus, for high-noise images, we have to limit 
the extra force at certain ranges. A simple solution for this 
problem can be obtained by limiting the times of iterations. 
Some better results, in our experiment, have been obtained with 
times of iteration less than 10. 

C. Implementation 
It was given that the principal steps of the numerical solution 

for the proposed algorithm, which can be outlined as following: 
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Initialization: define the initial level set function, with n=0. 
For each 0>n  until steady state: 
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0û denotes the temporary image, and )(φH  stands for the 

Heaviside function, with )(φδ  as its derivative. 

IV. NUMERIC EXPERIMENTS  

In this section, some numerical results are given, all 
experiments are performed on Personal Computer and the 
algorithms are implemented with Visual C++ 6.0. For 
comparison we have used the following parameter values with 
the time step ,1.0=Δ t space 
steps ,1=Δ=Δ= yxh  0.1=μ , and 

2255*0305.0=ν  in our experiment, which are the same 
with those of the classical algorithms [6]. 

Fig. 2 shows the segmentation of a blood vessel image of size 
200×200 pixels, the top row shows the proposed algorithm, and 
the corresponding results segmented by the classical algorithm 
also are given at the bottom row. Note that the nonphysical 
components from the noises are decreased in the Proposed 
algorithm, thus in the classical method the considerable 
nonphysical components were introduced.

 
Fig. 2 Segmentation of a blood vessel image by the improved algorithm at top row, and by the standard algorithm at bottom 
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Fig. 3 Segmentation of an image corrupted with Gaussian noise by the improved algorithm at top row, and by the standard algorithm at bottom 

row 
 

Fig. 3 shows how the new algorithm to work on an image 
corrupted with Gaussian noise. The top row shows the 
proposed algorithm, and the corresponding results obtained by 
the classical algorithm are given at the bottom row. Note that 
the classical algorithm did not convergence to segment it. Fig. 4 
shows results of an experiment with a noisy image of size 128
×128 pixels. The image is close to being piecewise constant; 
this makes it relatively easy to be segmented using the proposed 
method. Thus the classical method almost collapses on it. Fig. 5 
demonstrates an advantage of the proposed approach in 
speeding up convergence. Only 162 iterations were necessary 
to segment the artificial image with furry edges, (Fig. 5a) by the 
new algorithm. Fig. 5b shows the results of segmenting the 
same image by original algorithm with 1725 iterations taken to 
reach an essentially state since the path of curve evolution is 
worse. We also compared that the CPU time (in seconds) and 
the iterative times of the two algorithms, the results are given in 
Table I. 

 

 
 
Fig. 4  A noise image segmented by the proposed algorithm 

 
(a) 

 

 
(b) 

Fig. 5 Segmenting an artificial image with furry edges: (a) by the 
proposed algorithm and (b) by the original algorithm 

 
1 2 3
4 5 6
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TABLE I 
COMPARISON OF THE PROPOSED ALGORITHM AND THE CLASSICAL ONE 

Image Method Iterations Time 
Chan-Vese algorithm in the 

piecewise smooth case. 21500 8040sblood vessel 
(Fig. 2) Proposed Method 15440 1320s

Chan-Vese algorithm in the 
piecewise smooth case. 27390 10240

s 
Strong noisy 

image 
(Fig. 3) Proposed algorithm 20235 1730s

image  with 
Gaussian 

noise (Fig. 4) 
Proposed algorithm 19650 1680s

Chan-Vese algorithm in the 
piecewise smooth case. 1725 640s artificial 

image 
(Fig. 5) Proposed algorithm 162 15s 

 

V.  CONCLUSION 
One major advantage of the algorithm proposed in this paper 

is that it can be applied with all kinds of images, in which cases 
it still converges very rapidly. This is duo to the fact that the 
numerical solution for piecewise-constant MS segmentation 
model, which has been integrated to generate the additional 
force, is more efficient and accurate. For some high noise 
images, however, we have to limit the extra force at certain 
ranges. The tuning function, for simple, only is implemented 
based on the piecewise-smooth MS model and controlled by 
number of iterations in this paper. It is possible to find a better 
method for this purpose, which will be researched further.  
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