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Abstract—In this paper, we propose a texture feature-based 

language identification using wavelet-domain BDIP (block difference 
of inverse probabilities) and BVLC (block variance of local 
correlation coefficients) features and FFT (fast Fourier transform) 
feature. In the proposed method, wavelet subbands are first obtained 
by wavelet transform from a test image and denoised by Donoho’s 
soft-thresholding. BDIP and BVLC operators are next applied to the 
wavelet subbands. FFT blocks are also obtained by 2D (two- 
dimensional) FFT from the blocks into which the test image is 
partitioned. Some significant FFT coefficients in each block are 
selected and magnitude operator is applied to them. Moments for each 
subband of BDIP and BVLC and for each magnitude of significant 
FFT coefficients are then computed and fused into a feature vector. In 
classification, a stabilized Bayesian classifier, which adopts variance 
thresholding, searches the training feature vector most similar to the 
test feature vector. Experimental results show that the proposed 
method with the three operations yields excellent language 
identification even with rather low feature dimension. 
 

Keywords—BDIP, BVLC, FFT, language identification, texture 
feature, wavelet transform.  

I. INTRODUCTION 
N recent years, due to the rapid development of computers 
and smart devices we can easily convert paper documents 

into document files and store, manage, and share them for 
paperless office. Among several processes for such tasks, 
character recognition using an OCR (optical character 
recognition) system may be a core one. Most of state-of-the-art 
OCR systems have banks of multi-language OCR engines. 
Prior to inputting a document into an OCR system, the OCR 
engine proper for the document is usually selected by the user. 
With the trend of globalization of the world, we have more 
frequent chances to deal with multi-language documents so that 
the selection of the corresponding OCR engine by language 
identification may be smarter than the user selective one [1].  

For convenience, we hereafter consider that the term 
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“language identification” stands for script and/or language 
identification since script identification accomplishes language 
identification for scripts of a language. Up to now, many 
researches on language identification as a preprocessing of 
character recognition have been published. There are two major 
categories in typical language identification: statistics-based 
approach [2]-[4] and texture feature-based one [5]-[9]. The 
former utilizes the statistics of character pixels in a document 
image based on the fact that the structure of characters differs 
from that of another language. On the other hand, the latter 
considers a block of texts in a document image as a texture 
block so that the problem of language identification may be 
viewed as that of texture classification.  

Hochberg et al. [2] proposed a language identification 
method to distinguish one of 13 languages from the others 
using cluster-based templates. In the method, frequent 
characters or word shapes of each language are clustered, and a 
representative template for each cluster is created. A language 
whose training templates produce the best match with the 
templates extracted from a test image is decided to be the 
identified one. Spits [3] suggested a method to determine one of 
six languages using vertical distributions of upward concavities 
of characters, normalized pixel distributions of binary character 
cells, and frequencies of occurrence of particular word shapes. 
Shijian and Tan [4] tried to identify the language of a document 
image by converting it into a document vector that 
characterizes the shape and frequency of its characters or words 
and finding the best matched vector. It was reported in an 
experiment for six languages that this method yields good 
performances on document images having noise and 
degradation. 

In texture feature-based methods, one of the most important 
procedures is the extraction of texture features that can 
effectively represent the characters of each language. Pearke 
and Tan [5] extracted texture features using GLCM (gray-level 
co-occurrence matrix) and Gabor filters from document 
images. Tan [6] also exploited rotation invariant texture 
features using Gabor filters. Chan and Coghill [7] also adopted 
Gabor filters for extraction of texture features. Busch et al. [8] 
employed texture features of wavelet log co-occurrence. In 
[5]-[8], seven, six, 16, and eight languages are identified, 
respectively. An overview on script and/or language 
identification can be found in [1].  

Lee et al. [9] adopted wavelet-domain BDIP, BVLC, and 
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NRMA (normalized magnitude) features for language 
identification. The authors demonstrated in their experiments 
that these features provide good performances for ten 
languages with very low feature dimension. The BDIP and 
BVLC operators had been proposed for image retrieval [10]. It 
had been shown that they yield very good performances not 
only in image retrieval [10], [11] but also in other areas of 
texture classification [12], face recognition [13], ROI 
determination [14], and language identification. BDIP is a kind 
of nonlinear operator which gives an average of normalized 
local gradients. It is known to effectively represent local bright 
variations. BVLC is a maximum deviation of normalized local 
correlations according to orientations, which is known to 
measure variation of texture smoothness well. 

In texture classification, several texture features are usually 
fused for better performance. Fusion of features gives the 
increase of the dimension of feature vector and so the growth of 
computational loads, which may bring about the curse of 
dimensionality. Accordingly it is more desirable that we 
establish a texture classification method for language 
identification which shows a high identification rate but has a 
lower vector dimension as possible.  

In this paper, we present a texture feature-based language 
identification method using wavelet-domain BDIP and BVLC 
features and FFT feature. In the proposed method, a test 
document image is decomposed into wavelet subbands. The 
noise in detail subbands is then reduced by Donoho’s soft- 
thresholding [15]. The BDIP and BVLC operators are next 
applied to the smooth subband and the denoised detail subbands 
to extract the corresponding BDIP and BVLC subbands. The 
test image is also partitioned into blocks. 2D FFT is 
implemented for each block and some significant coefficients 
in each FFT block are selected. The magnitude operator is then 
applied to each significant coefficient. Moments of BDIP and 
BVLC subbands and those of FFT magnitudes are fused into a 
feature vector, which is finally classified by a stabilized 
Bayesian classifier. 

The remainder of this paper is organized as follows. In 
Section II, we explain GLCM and Haralick features, spatial- 
domain BDIP and BVLC, BDIP and BVLC subbands in the 
wavelet domain, and FFT features. In Section III, we describe 
the proposed language identification method. Section IV 
discusses experimental results and Section V shows the 
conclusion. 

II.  TEXTURE FEATURE-BASED LANGUAGE IDENTIFICATION    
AND TEXTURE FEATURES 

A. Texture Feature-Based Language Identification 
Fig. 1 shows a block diagram of typical texture feature-based 

language identification. Let us assume that there are K language 
groups in the image DB for training, each of which has J 
document images. In training phase, texture features are 
extracted from each image Ik, j, JjKk ,,1,,,1 ==  in the 
image DB and formed as a feature vector f k, j. In a typical 
training scheme, the set of representative feature vectors 

},,1|{ Kkk =f  for all language groups is calculated by 
averaging feature vectors  f k, j. The set of covariance matrix Ck 
of feature vectors is also computed if necessary and the 
statistics are stored in the feature DB. In test phase, a test image 
I for language identification enters the system, which extracts 
its feature vector f. The classifier then searches the 
representative feature vector cf  which is most similar to the test 
feature vector f among the training set },,1|{ Kkk =f  and 
outputs its group index c as 

 

{1, , }
arg min ( , )k
k K

c d
∈

= f f                                  (1) 

 
where d (·)  denotes the distance between two vectors and  c  the 
index of identified language.  
 

 
Fig. 1 Block diagram of a typical texture feature-based language 

identification 

B. GLCM and Haralick Features 
Let us denote the joint probability mass function (PMF) 

between a pair of two pixels, whose gray levels are individually  
i  and  j  and whose distance and angle are  r  and  θ, as  P(i, j; r, 
θ). Then the estimate of the joint PMF ),;,(ˆ θrjiP  is often 

called GLCM or GLCP [16]. The averaged GLCM ),(ˆ jiP  is 

obtained averaging ),;,(ˆ θrjiP  over all possible ),( θr  as 
follows:   

 
)],;,(ˆ[),(ˆ θrjiPEjiP =                            (2) 

 
where ][⋅E  denotes the expectation operator. Haralick et al. 
[16] suggested 28 features such as entropy, variance, moment, 
and correlation etc. and Holmes et al. [17] used the average 
estimate of the joint PMF ),(ˆ jiP  in (2) to extract some of 
Haralick features. 

C. BDIP and BVLC in Spatial Domain 
In order to represent the BDIP in the spatial domain, let us 

denote I p be the brightness of an image I at a pixel p = (x, y) and 
R p a local region centered at p. Then the BDIP for I at p is 
defined as [10] 
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p

p

E I I q R
D

I
+− ∈

=                          (3) 

 
where ]|[ ⋅⋅E  denotes the conditional expectation, and pI  
represents the maximum brightness in ,pR which is expressed 
as  

 

max .
p

p p qq R
I I +∈

=                                    (4) 

 
In (3), the numerator of pD  denotes the average of gradients 

in the local region .pR  So one can see that the BDIP denotes an 

average of normalized local gradients. For stabilization, pI  is 

clipped as  ).,max( Dpp II δ=  
The BVLC for I at p is defined as [10]  
 

max ( ) min ( )p p pd Od O
V d dρ ρ

∈∈
= −                        (5) 

 
where  ρ p(d)  denotes the local correlation coefficient of I  at  p  
according to orientation  d  as follows: 

 

Od
RqIIE

d
pdp

pdp

II

pIqpIqdp
p ∈

∈−−
=

+

+ +++ ,
]|))([(

)(
σσ

μμ
ρ   (6) 

 
where 

pIμ  and 
pIσ  denote the mean and standard deviation of  

I  in a local region .pR  The symbols 
dpI +

μ  and 
dpI +

σ denote the 

mean and standard deviation in a local region dpR +  centered at 
p+d, the notation O the orientation set of ),0,(),0,{( mmO −=  

)}.,0(),,0( mm− From (5) and (6), one can see that the BVLC  
denotes a maximum deviation of normalized local correlations 
according to orientations. The 

dpI +
σ and  

pIσ  are also clipped 

with Vδ  for stabilization 

D. BDIP and BVLC Subbands in Wavelet Domain 
As  for  wavelet  transform,  applying  one-dimensional  

low-pass and high-pass filters separately in horizontal and 
vertical directions to an image  I  produces a set of one smooth 
subband and three detail subbands at the first scale, denoted as 
{W(1,LL), W(1,LH), W(1,HL), W(1,HH)}, which are usually down- 
sampled and shown in Fig. 2. In a similar way, W(1,LL) is further 
decomposed into another set of four subbands at the second 
scale, {W(2,LL), W(2,LH), W(2,HL), W(2,HH)}. Executing these 
procedures up to the Lth scale yields a set of wavelet subbands  

}}.,,{,,,1},{,{ ),(),( HHHLLHbLlWWWI blLLL ∈==  

The BDIP subband  ),( bl
pWD  is defined as [10] 

 

( , ) ( , )
( , )

( , )

[ | ]
,

l b l b
p p q pl b

p l LL
p

E W W q R
WD

W
+− ∈

=  

{ }1, , , , , ,l L b LL LH HL HH= ∈                (7) 

 
where ),( bl

pW  denotes the maximum in a local region .pR  The 

BVLC subband ),( bl
pWV  is also defined as [10] 

 
( , ) ( , ) ( , )max min ( )( ) ,

d Od O

l b l b l b
p p p dWV dρ ρ

∈∈
= −  

{ }1, , , , , ,l L b LL LH HL HH= ∈             (8) 

 
where )(),( dbl

pρ  denotes the local correlation coefficients of 
),( blW  at p  according to orientation .d  It is given as  

 

Od
RqWWE

d
bl

p
bl
dp

bl
p

bl
dp

WW
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bl
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qdpbl

p ∈
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=
+

+
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,
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where ),( bl
pWμ  and ),( bl

pWσ denote the local mean and standard 

deviation of ),( blW  at ,p  respectively. Similarly, ),( bl
dpW +

μ  and 

),( bl
dpW +

σ denote the local mean and standard deviation of ),( blW  at 

,dp + respectively.  
 

 
Fig. 2 Block diagram of wavelet transform up to the first scale 

E. FFT Features 
For 2D FFT computation, an image I is partitioned into 

blocks of B×B size. Let us denote I  (m,
 
n)  be a B×B image block of 

block position (m, n). An FFT block FI 
(m,

 
n) is obtained by 

applying 2D FFT [18] to I 
(m,

 
n). Considering the conjugate 

symmetry property and the frequency distribution of 2D FFT, 
some significant coefficients in FI 

(m,
 
n) are usually selected 

using a zonal selection. The magnitudes of selected FFT 
coefficients averaged over the entire image I are used as 
features, which is represented as follows: 
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( , )

( , )

1 | |m n

m nB
FM FI

N
= ∑                              (10) 

 
where FM denotes a block of the averaged FFT magnitudes and 
N B the number of blocks in the image  I.  

III. PROPOSED TEXTURE FEATURE-BASED LANGUAGE 
IDENTIFICATION 

Fig. 3 shows the block diagram of the proposed texture 
feature-based language identification. When a test image for 
language identification is input, its wavelet subbands are first 
obtained by wavelet transform, and the detail subbands is then 
denoised by Donoho’s soft-thresholding as in [9]. The BDIP 
and BVLC operators are next performed on the smooth 

subband and the denoised detail subbands. The two moments of 
global mean and standard deviation for each BDIP and BVLC 
subband are computed and formed as feature vectors fWD and 
fWV. The test image is also partitioned into blocks, FFT blocks 
for each block are obtained by 2D FFT, and some significant 
coefficients in each FFT block are zonally selected. Magnitude 
operator is applied to the selected FFT coefficients. A moment 
of mean for each FFT magnitude are calculated and formed as 
feature vector fFM. Finally, the three feature vectors are fused 
into a feature vector f = [fWD, fWV, fFM]. In classification, a 
stabilized Bayesian classifier searches the most similar vector 
to the test feature vector, which is stored in the feature DB, and 
outputs the searched index. 

 

 

 
Fig. 3 Block diagram of the proposed texture feature-based language identification 

 

A. Soft-Thresholding in Detail Subbands 
Donoho’s soft-thresholding for a detail subband W(l,b) at p 

can be represented as  
 

( , ) ( , ) ( , )
( , ) sgn( )(| | ), | |

0, otherwise,

l b l b l b
p p pl ll b

p
W W W

W
δ δ⎧⎪

⎨
⎪⎩

− >
=  

1, , , { , , }l L b LH HL HH= ∈                    (11)  
 
where )sgn(⋅  denotes the sign of the quantity and lδ  the 
threshold at the lth level. We denote the set of wavelet subbands 
with the soft-thresholding in (11) as =IW~  

}}.,,{,,,1},~{,{ ),(),( HHHLLHbLlWW blLLL ∈= We decide 
the threshold lδ  proportional to the standard deviation of noise 

nσ̂  estimated from the blank lines of the image I  as 
.ˆ nll σαδ ⋅=  

B. Formation of Feature Vectors 
The feature vector fWD is formed from the two moments, 

global mean ),( blWD
μ  and standard deviation ),( blWD

σ of each 
BDIP subband WD(l,b) as follows: 

 

( , ) 1[ | , , , { , , , }]l bWD WD l L b LL LH HL HH= = ∈f f
(12) 

( , ) ( , ) ( , )[ , ].l b l b l bWD WD WDμ σ=f                       (13) 

 
In a similar way, fWV is also produced by computing the 

global mean ),( blWV
μ  and standard deviation ,),( blWV

σ  by 
gathering the corresponding vector ),( blWV

f  over all l and b’s. In 
this procedure, BVLC is computed in the eight orientations of 

 
.)}0,0(),(},,0,{,|),{( ≠−∈= vummvuvuO          (14) 

 
In order to describe the feature vector of FFT magnitude, let 

us denote FM b be a coefficient in the averaged FFT magnitude 
block FM represented in (10) at a position b = (s, t). The fFM is 
generated by collecting the FM b over all b’s in a selection zone 
as follows: 

 
[ | ]FM bFM b Z= ∈f                            (15) 

 
where Z  denotes a set of positions in the selection zone. Finally, 
the fWD, fWV, fFM are simply fused so that a feature vector f is 
obtained as f = [fWD, fWV, fFM]. 

C. Stabilized Bayesian Classifier 
We adopt a stabilized Bayesian classifier in which the 

distance between the feature vector f of a test image I  and the 
representative feature vector kf  of the kth language in the 
feature DB is defined as [9]  
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1( , ) ( ) ( ) ln | |T
k k k k kd −= − − +f f f f C f f C             (16) 

 
where kC~  denotes the covariance matrix of  kf with variance 
thresholding. Equation (16) can be derived when f has a 
Gaussian distribution. The diagonal elements of kC~  are 
thresholded as  

 
( , ), or ( , )

( , )
, ( , )

k k
k

k

C i j i j C i i
C i j

C i i
δ

δ δ
⎧⎪
⎨
⎪⎩

≠ ≥
=

<
          (17) 

 
where  Ck (i, j)  denotes an element of the covariance matrix  Ck  
and  δ  a threshold. 

IV. EXPERIMENTAL RESULTS 
The performance of our language identification method was 

evaluated on a document image DB written in the ten languages 
of English, Greek, Russian, Hebrew, Persian, Hindi, Thai, 
Chinese, Japanese, and Korean. In establishing the image DB, 
we scanned paper documents to acquire eight mother images 
for each language, each of which includes two font types with 
normal, skewed by 1.5 and 3.0 degrees, and down-scaled by 
0.8:1 and is divided into 50 subimages of 128×128 size. Some 
subimages of each language were used for training images and 
other 200 ones for test images. Fig. 4 shows sample subimages 
of ten languages used in our experiments. 

 

          
Fig. 4 Sample subimages of ten languages: English, Greek, Russian, Hebrew, Persian, Hindi, Thai, Chinese, Japanese, and Korean from left to 

right 
 

 
Fig. 5 Zonal selection of 6×6 FFT coefficients 

 
We compare the performance of our method with those of a 

language identification using Haralick features adopted in [8] 
and that using wavelet-domain BDIP and BVLC features. For 
the extraction of texture features in the wavelet domain, we 
performed the wavelet transform up to the first scale (L = 1) 
with down-sampling using Haar filters. Odd-symmetric 
extension was chosen for image boundary processing. The 
proportional constant α 1 for Donoho’s soft-thresholding was 
experimentally selected as α 1 = 1.75. The size of local region 
for the BDIP and BVLC subbands was chosen as 3×3 and the 
parameter m for the BVLC according to the eight orientations 
as m = 1. We also chose the block size of FFT as 6×6 and 
selected 17 significant FFT coefficients with the zonal selection 
as shown in Fig. 5. For the computation of FFT, we inputted a 
sketch image of an image I whose brightness at a pixel p is 
normalized with the maximum brightness in a local region R p 
as 

 

p
p

p

I
I

I
′ = .                                  (18) 

In addition, we experimentally determined the clipping 
thresholds δD  and δV  for the stabilization of BDIP and BVLC as 
δD  = 2 and ,10 32 −=Vδ  respectively. We decided the threshold δ 
for the stabilized Bayesian classifier as the value which covers 
ε % of feature variances sorted in descending order over all the 
training images. 

 

 
Fig. 6 AIR performances of Haralick features, WD+WV+WN  

features, and the proposed method according to the number of training 
images per language in case of 200 test images per language 

 
The performance of language identification was measured as 

the average identification rate (AIR), which is defined as the 
ratio of the total number of test images to that of correctly 
identified ones. Fig. 6 shows the AIR performances of Haralick 
features and the two fused features according to the number of 
training images per language, where the number of test images 
per language is 200. In this figure, Haralick denotes the eight 
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features of energy, entropy, inertia, contrast, local 
homogeneity, cluster shade, cluster prominence, and 
information measure of correlation using GLCM, where the 
distances include  r = 1 and 2 and the orientations  θ = 0, 45, 90, 
135°. The WD+WV+WN represents the fusion of 
wavelet-domain BDIP, BVLC, and NRMA features proposed 
in [9] and WD+WV+FFT6 the proposed fusion of WD+WV 
and 6×6 block FFT features. The ε for the variance thresholding 
was chosen as 87~100, where the larger the number of training 
images, the larger the value of ε. 

We can see from Fig. 6 that the Haralick and the 
WD+WV+WN demonstrate AIR performances of 70.75%~ 
82.35% and 77.65%~98.35%, respectively. On the contrary, 
the proposed WD+WV+FFT6 gives AIRs of 80.25%~98.90% 

so that its performance improvement over the Haralick and the 
WD+WV+WN are 9.5%~18.05% and 0.15%~5.85%, 
respectively. 

Table I shows the AIR results according to the types of 
texture features in case that the number of training images per 
languages are 200. As shown in Table I, we can see that 
Haralick features yield 82.45% AIR. We can also see that WD, 
WV, WN, FFT6 features give 84.60%, 84.25%, 76.50%, and 
95.85% AIRs, respectively, and the fused features WD+WV 
and WD+WV+WN 94.45% and 98.35%, respectively. It is also 
shown that the feature WD+WV+FFT6 produces 98.90% 
performance so that it is 16.45% and 0.55% better than 
Haralick and WD+WV+WN features, respectively. 

 
TABLE I 

AIRS ACCORDING TO FEATURES IN CASE OF 200 TRAINING IMAGES 
Types of texture feature Haralick WD WV WN FFT6 WD+WV WD+WV+WN WD+WV+FFT6 

Feature dimension 8 8 8 6 17 16 22 33 

AIR [%] 82.45 84.60 84.25 76.50 95.85 94.45 98.35 98.90 
 

Table II shows a confusion matrix for the result of 
WD+WV+FFT6 in Table I. One can see from this table that our 
method yields somewhat low error of 0.5~2.0% for English, 
Greek, Russian, and Chinese and 6.0% for Japanese. However, 
it gives no error for Hebrew, Persian, Hindi, Thai, and Korean. 

 
TABLE II 

CONFUSION MATRIX FOR THE PROPOSED METHOD IN CASE OF 200 TRAINING 
IMAGES, WHERE AL (IL) DENOTES ACTUAL (IDENTIFIED) LANGUAGE 

AL 
IL Eng Gre Rus Heb Per Hin Tha Chn Jap Kor 

Eng 99.0 0.5 1.5 0 0 0 0 0 0 0 
Gre 0.5 99.5 0 0 0 0 0 0 0 0 
Rus 0.5 0 98.5 0 0 0 0 0 0 0 
Heb 0 0 0 100 0 0 0 0 0 0 
Per 0 0 0 0 100 0 0 0 0.5 0 
Hin 0 0 0 0 0 100 0 0 1.0 0 
Tha 0 0 0 0 0 0 100 0 0 0 
Chn 0 0 0 0 0 0 0 98.0 4.5 0 
Jap 0 0 0 0 0 0 0 1.5 94.0 0 
Kor 0 0 0 0 0 0 0 0.5 0 100 

Error 
[%] 1.0 0.5 1.5 0 0 0 0 2.0 6.0 0 

V.   CONCLUSION 
In this paper, a texture feature-based language identification 

method using wavelet-domain BDIP and BVLC features and 
6×6 block FFT features has been proposed. In the propose 
method, the FFT features includes 17 significant FFT 
coefficients. For classification, the stabilized Bayesian 
classifier which includes variance thresholding was adopted. 
Experimental results have revealed that our method AIR 
performance of 80.25%~98.90% for the test document image 
DB so that its performance improves as 0.15%~5.85% 
compared to that of the fusion of wavelet-domain BDIP, BVLC, 
and NRMA so that it yields excellent performance. 
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