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Abstract—The majority of existing predictors for time series are 

model-dependent and therefore require some prior knowledge for the 
identification of complex systems, usually involving system 
identification, extensive training, or online adaptation in the case of 
time-varying systems. Additionally, since a time series is usually 
generated by complex processes such as the stock market or other 
chaotic systems, identification, modeling or the online updating of 
parameters can be problematic. In this paper a model-free predictor 
(MFP) for a time series produced by an unknown nonlinear system or 
process is derived using tracking theory. An identical derivation of the 
MFP using the property of the Newton form of the interpolating 
polynomial is also presented. The MFP is able to accurately predict 
future values of a time series, is stable, has few tuning parameters and 
is desirable for engineering applications due to its simplicity, fast 
prediction speed and extremely low computational load.  The 
performance of the proposed MFP is demonstrated using the 
prediction of the Dow Jones Industrial Average stock index.  . 
 

Keywords—Forecast, model-free predictor, prediction, time series  

I. INTRODUCTION 
IME-SERIES prediction is becoming increasingly more 
important due to the needs for predicting the future 

behavior of control engineering [1-4], biological, 
physiological, economical, sociological and other systems and 
applications. The salient characteristic of most existing 
prediction approaches is model-dependence, which means first 
modeling the dynamic system which produces the time series 
and then making predictions based on the dynamic system 
model. Model-dependent approaches can in general be 
classified into two categories: 1) Model identification or 
parameter estimation and 2) Function approximation.   
    In the first category, traditional autoregressive integrated 
moving average (ARIMA) models  provide reasonable results 
for linear or nearly linear dynamic systems [4], but might result 
in  poor performance in cases where the dynamics of  systems 
are highly nonlinear or disturbed [5]. Discrete-time adaptive 
predictors and controllers have also been studied for linear 
systems with a set of unknown parameters and systems with 
known nonlinearities [6]. Prediction models are constructed 
from observed data using various criteria, such as least squares, 
maximum likelihood [7], gradient methods, Gaussian filtering, 
Hidden Markov Models [8], Kalman filtering, Adaptive 
polynomial filters [9], etc. Many of these approaches are in fact 
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related to curve-fitting schemes and make predictions based on 
established curve models, also referred to as local model 
prediction schemes.   
    In the second category, as viable alternatives to traditionally 
statistical regression models, global function approximation 
approaches have been presented. In this type of approach, some 
suitable parameterized nonlinearities, such as fuzzy systems 
and neural networks, are tuned adaptively to approximate 
unknown portions of plant dynamics during training and 
application. Neural networks [10], Fuzzy systems [11] and 
neural-fuzzy paradigms [12] have been employed in prediction 
with promising results, but the achievable accuracy depends on 
the size and the form of constructed approximations and global 
training from long data series.  
    Varadan, et al. [13] have developed a Least Squares Genetic 
Programming (LS-GP) approach to reconstruct nonlinear 
dynamic systems to model a power-pool time series. An 
improved prediction approach termed the Markov–Fourier 
Gray Model (MFGM) was proposed by Su et al. [14]. The 
MFGM integrates a local approach, using recent data, and a 
global approach, using all available information. Comparisons 
were made with both global and local approaches. It was 
demonstrated that the MFGM outperformed many existing 
prediction schemes on the prediction of Taiwan and Dow Jones 
Industrial Average stocks over two years. 
    The dynamic modelling of a time series is based on the 
assumption that the time series is a product of an underlying 
dynamical system. Obtaining this underlying model is in itself a 
very complex issue involving the simultaneous use of many 
different criteria. As mentioned before, these model-dependent 
approaches in general need very complex mathematical 
structures, prior knowledge, long training cycles, are 
computationally intensive and in the case of time-varying 
systems use online adaptation. Additionally, since time series, 
such as stocks, chaos or highly non-linear engineering systems, 
are possibly generated by numerous sub-systems, obtaining 
valid models are problematic and computationally intensive.    
    Therefore, a model-free approach is both innovative and 
necessary. Here, the word ‘free’ implies that the potentially 
complicated modelling process to obtain a model for the 
dynamic system that produced the time series is avoided.  It 
also implies that the predictor is independent of the model of 
the nonlinear system (the predictor however has its own model 
and structure). A model-free controller for nonlinear 
continuous systems has been proposed by the authors [15, 16]. 
This controller is independent of the models of the controlled 
system. Stability, convergence and robustness of the 
closed-loop system have been investigated and the proposed 
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model-free controller has successfully controlled various 
uncertain chaotic systems and high order nonlinear systems. 
Similar to the proposed predictor, there is no need to obtain a 
model of the system being controlled. Very recently, we also 
proposed a model-free continuous observer for a nonlinear 
system [17, 18] which is very effective to estimate the states of 
a system without knowing the model.  

 Motivated by the model free controller and observer, a 
model-free predictor (MFP) is proposed for time series 
produced by nonlinear systems, such as stock markets and 
hyperchaos. The MFP is based on ideas from tracking theory. It 
has two adjustable parameters related to the precision 
requirement of prediction. It is theoretically demonstrated that 
the predictor is instantly stable. When it is utilized in practical 
applications, the MFP has the following desirable properties: 
simplicity, fast prediction speed and extremely low 
computational load.  This paper is organized as follows. The 
problem being solved is described in section 2. The model-free 
predictor (MFP) is proposed in section 3 using tracking theory. 
Section 4 investigates the state-steady error of the MFP. 
Section 5 introduces the Newton form of interpolating 
polynomial. An alternative derivation of the MFP is proposed 
by using the property of Newton form of interpolating 
polynomial in section 6. Section 7 analyzes the similarity 
between the two derivations. Two numerical applications are 
discussed to verify the effectiveness of the proposed MFP in 
section 8. Section 9 concludes the paper. 

II. PROBLEM STATEMENT 
Assume that the most recent source data in a time series 

whose underlying dynamics are unknown, is given by 

   
T

1 2 T

( ) [ ( 1), ( 2), , ( )]
         [ , , , 1] ( ),n n

Y k y k n y k n y k
z z y k− + − +

= − + − +

=

L

L
                      (1)  

where 1z−  denotes the delay operator, ( )y k  represents the 

source datum, 1 k N≤ ≤ , N  is the length of the data, and n  is 
the information window which can be determined using the 
embedding dimension [19, 20]. The unknown future sequence 
of data which needs to be predicted is 

     
T

2 T

( ) [ ( 1), ( 2), , ( )]
               [ , , , ] ( ).m

Y k m y k y k y k m
z z z y k

+ = + + +

=

L

L
                 (2) 

Here, m  is the prediction step, termed the prediction window, 
m n< , and 1 k N≤ ≤ . Consider a data sequence   

     
T

2 T

ˆ ˆ ˆ ˆ( ) [ ( 1), ( 2), , ( )]
ˆ                [ , , , ] ( ),m

Y k m y k y k y k m
z z z y k

+ = + + +

=

L

L
                 (3)  

where ˆ( )y k  is the predictive signal of ( )y k .  

    Prediction is to obtain the vector ˆ( )Y k m+  as an estimate of 
( )Y k m+  based on ( )Y k .  
    In the existing literature some researchers have often utilized 

recent data to reconstruct a dynamic model of the form 
( ) ( , ( 1), ( 2), , ( )) ( )y k c y k y k y k n e kϕ= − − − +L ,           (4) 

where, ϕ  is some nonlinear function, c  is a parameter vector of the 
function, and ( )e k is the noise or the disturbance. Complete 

reconstruction of the dynamic model involves the estimation of ϕ , c , 
and n .Various techniques and complex mathematical structures have 
been proposed to solve the inverse problem of constructing a smooth 
map  

        1: nR Rϕ →                                                                (5) 
in terms of the time-series values ( )y k . Generally, one needs to 

firstly find an approximate solution or a best fitting model using finite 
time-series data, and then use the obtained model to predict future 
values of the time series. 

III. MODEL-FREE PREDICTOR  

A new scheme for prediction termed model-free prediction 
(MFP) is proposed, which does not require the derivation of a 
model to fit the source data. By incorporating a zero tracking 
method into the prediction, we directly establish a dynamic 
relationship between the prediction and the given information. 
The predictor is independent of the model which produces the 
given data.  

    The MFP dynamic model between ˆ( )y k m+  and the most 
recent data ( )Y k  is usually expressed as  

                           ˆ( ) ( ( ))y k m f Y k+ = ,                                            (6) 

where f  should be such that ˆ( )y k m+  accurately predicts 
( )y k m+  based on ( )Y k .  

    Observation 1: If a prediction ˆ( )y k m+  is obtained from the 

MFP, prediction data ˆ ˆ ˆ( 1), , ( 2), ( 1)y k m y k y k+ − + +L  are a 

delayed sequence of the prediction ˆ( )y k m+ , and were available 

before ˆ( )y k m+ . 

    Observation 2:  ˆ( )y k m+  predicting ( )y k m+  is not a 
common tracking because it is implemented based on the m-step 
backward sequence ( )Y k  but not present sequence ( )Y k m+ . 

The schematic diagram of the proposed MFP.  
    From eq. (6), we get 
                               ˆ( ) ( ( ))y k m f Y k+ = .                                       (7)  
Function ( )f ⋅  can be either nonlinear or linear. For the sake of 

simplicity in establishing and analyzing ( )f ⋅ , we choose it as a linear 
function having the form  

      0 1 1( ( )) ( ) ( 1) ( 1)
              ( ) ( ).

nf Y k f y k f y k f y k n
f z y k

−= + − + + − +
=

L
 (8) 

where   
                     1 ( 1)

0 1 1( ) n
nf z f f z f z− − −

−= + + +L .                      (9) 
Then we have  
                               ˆ( ) ( ) ( )y k m f z y k+ = .                                  (10)   

The prediction error between )( mky +  and )(ˆ mky +  is 
described as 

     ˆ( ) ( ) ( ) ( ) ( )me k m y k m y k m z f z y k⎡ ⎤+ = + − + = −⎣ ⎦     (11) 

Taking the z-transform on both sides, we obtain  

      ( )ˆ( ) ( ) ( ) ( ) ( )m m mz E z z Y z Y z z f z Y z⎡ ⎤= − = −⎣ ⎦              (12) 

resulting in the error transfer function,  
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1

( ) ( )
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n m n

n m

E z z z f z
Y z

z z f z
z

−

+ − −

+ −

⎡ ⎤= −⎣ ⎦

−
=

                            (13) 

also known as a linear Prediction Error Filter (PEF), where 
1 ( )nz f z−  is function in z.  

Note that this PEF transfer function has the following properties:  
1) There are 1n m+ −  multiple poles of system at the origin, 

which means the predictive system designed is stable and output 
ˆ( )y k  instantly predict the given input ( )y k . 

2) It is monic polynomial. 
3) The coefficients of 2 , ,m n nz z+ − L  are zeros. 
In order to make the steady-state error of the MFP be zero, we 

design the PEF transfer function as 

                              1

( ) ( 1) ( )
( )

n

n m

E z z g z
Y z z + −

−
= .                                  (14) 

For (14)  to satisfy the PEF properties above, )(zg  is a monic 
polynomial with degree 1m − in z: 

                          1 2
1 1( ) .m m

mg z z a z a− −
−= + + +L                   (15) 

Comparing eq. (13) and (14), we have 
                         1 1 ( ) ( 1) ( )n m n nz z f z z g z+ − −− = −                    (16) 

( )f z  is obtained as 

             

1
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0

1
1 1
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1

1

( ) ( 1) ( )

         ( 1)
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n n m n m i

i
i

n m
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i k
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i

f z z z z a z
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F z

−
− − + − − −
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−
− − −

= =
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−

=
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⎝ ⎠
⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟
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=

∑

∑ ∑

∑

          (17)  

where 1

0

( 1)
i

i k i k
i k n

k

F a C− − −

=

= −∑ , 1, , 1,i n m= + −L  with 

0, when ,  
0,  when .

i k
n

k

C i k n
a k m

−⎧ = − >⎪
⎨

= ≥⎪⎩
                                                                                         

From property 3), we have m  following simultaneous equations 

             1

0

( 1) 0, 1, , 1.
i

i k i k
i k n

k

F a C i m− − −

=

= − = = −∑ L           (18) 

From (18), ia  is recursively derived as follows  

          
1

1

0

( 1) , 1, , 1.
k

k j k j
k j n

j

a a C k m
−

− − −

=

= − = −∑ L                    (19) 

From (17) and (18), we have  

                   

1

1

0
1

1

0 0
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         ( 1) ,

n m
m i
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i m
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i
i m

i
n i m
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k n

i k

f z F z
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+
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                 (20) 

with 0i m k
nC + − =  when ,  i m k n+ − > and 0ka =  when 

k m≥ .  Using (10) and (20), the MFP is given by 
             ˆ( ) ( ) ( ),y k m f z y k+ =                                                 (21)   

1
1

0 0

where ( ) ( 1) ,
n i m

i m k i m k i
k n

i k

f z a C z
− +

+ − − + − −

= =

= −∑∑ with 0i m k
nC + − =  

when ,  i m k n+ − > and 0ka =  when k m≥ .                  
The MFP only has two parameters termed the predictive step m  

and the information window n . The latter can be easily determined by 
the FNN technique [17] based on the analysis of the given data.  For 
convenience of application of (21), the following two special cases are 
given. 

    Case 1: One-step prediction, i.e. 1m = . From (21), we have  

                         1 1

1

ˆ( 1) ( 1) ( )
n

i i i
n

i

y k C z y k− − +

=

⎛ ⎞+ = −⎜ ⎟
⎝ ⎠
∑ .            (22)    

    Case 2: Two-step prediction, i.e. 2m = . From (21), we have 
     

1 2 1 1 1

2 1

( 2) ( 1) ( 1) ( )
n n

i i i i i i
n n n

i i

y k C z C C z y k− − + − − +

= =

⎛ ⎞+ = − + −⎜ ⎟
⎝ ⎠
∑ ∑ (23)  

IV.  MFP STEADY STATE ERROR 
As is well known, both the type of PEF transfer function and the 

property of the input signal determine the accuracy of the steady-state 
error. Therefore, a general conclusion about steady-state errors is 
difficult to obtain due to the dependence upon the input signal.  For 
example, the z-transforms of input signals 1( )kT , kT , 2( )kT , 

sin( )kTω , etc. are ( 1)z z − , 2( 1)Tz z −  and  
2 2 3( 1) ( 1)T z z z+ − , 2sin( ) ( 2 cos( ) 1)z T z z Tω ω− + , etc. 

respectively. In practice, input signals are usually a combination of 
such typical signals. Despite these difficulties, we can still maintain 
predictive precision by adjusting the predictive step and information 
window based on a given input. Consider )(ty to be the original 

continuous function of the sampled data )(ky , expanded in a Taylor 
series 

  1 1

1

( )2

1

1 1( ) (0) (0) (0) (0) ( )
2! !

n n
ny t y y t y t y t R t

n
= + + + + +& && L (24)  

Assumption 1: 
1
( )nR t  in eq. (24) can be ignored.  

    In fact, Assumption 1 is reasonable in engineering processes. For 
signals, such as sine and cosine functions, the magnitudes of the higher 
derivatives approach zero. 

   The z-transform of the term 1nt  of which corresponding discrete 
form is 1( )nkT  has the form 

     [ ]
1

1

1 1 10

( )( ) lim( 1)
( 1)

n
n

n naTa

d z h TzZ y kT
z eda z - +−→

⎡ ⎤= − =⎢ ⎥−⎣ ⎦
,        (25)  

where ( )h ⋅  is a polynomial function of Tz , T  is the sample time. 
From (24) and (25), the z-transform of ( )y k  under Assumption 1 can 
be written as  

                                
1 1

( )( )
( 1)n

TzY z
z
φ

+=
−

,                                        (26) 

 where ( )Tzφ  is a polynomial of Tz , and the highest order of 

denominator of ( )Y z  is 1 1n + .  
    From (14), we have the steady-state error transform of the MFP 

as   

             1

( 1) ( )ˆ( ) ( ) ( ) ( )
n

n m

z g zE z Y z Y z Y z
z + −

−
= − = .                (27) 
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Setting 1n n> , under Assumption 1, from (26) and (27), and using 
the final value theorem, we obtain  

  
1

1
11 1

( 1)( ) lim(1 ) ( ) lim ( ) ( ) 0
n n

n mz z

ze z E z g z Tz
z

φ
−

−
+ −→ →

−
∞ = − = = .(28) 

It implies that the predictive sequence ˆ( )Y k m+  based on ( )Y k  
is able to approximately predict the real signal sequence ( )Y k  with 
zero error. Since ( )E z  has multiple poles at the origin, the 
approximating process becomes instant process, i.e.  

                   ˆ( ) ( ) ( ) 0e k y k y k= − =  or ( ) 0E z =                     (29) 
or 
         ˆ( ) ( ) ( ) 0e k m y k m y k m+ = + − + =  or ( ) 0mz E z = (30) 
From (16) and  (27), we have 
             1 1 ( ) ( 1) ( ) 0n m n nz z f z z g z+ − −− = − =                         (31) 

    Lemma 1 (Weierstrass Approximation Theorem): If )(ty is 
continuous on a finite interval [ , ]a b , then given 0ε > , there exists 

1n  depending on ε  and a polynomial 
1
( )nP t  such that 

1
( ) ( )ny t P t ε− ≤  for all [ , ]t a b∈ . 

    The z-transform of sampling polynomial 
1
( )nP kT  of degree 1n  

corresponding 
1
( )nP t has the same form of eq. (25). Therefore, we 

have that 1) if ( )y k  is produced by a polynomial model 
1
( )nP kT of 

order 1n n< , then the proposed MFP instantly results in zero 
prediction error; 2) if ( )y k is a non-polynomial nonlinear continuous 
signal, the MPF has prediction error ( )e k ε≤  for any given 0ε >  
by adjusting n . 

Theorem 1: The proposed model-free linear predictor with a 
dynamic model as in (21) is independent of the model of the original 
nonlinear system producing the given sequence )(kY . The MFP is 
stable. The MFP under Assumption 1 makes the predictive sequence 
ˆ( )Y k m+  instantly predict the real signal sequence ( )Y k m+  with 

prediction error ( )e k m ε+ ≤  for given 0ε >  by adjusting n . In 
the sequel we will show that one can also derive Theorem 1 by 
utilizing the Newton form of interpolating polynomial property.  

V. INTRODUCTION OF NEWTON FORM OF INTERPOLATING 
POLYNOMIAL [23] 

The Newton polynomial is sometimes called Newton's 
divided differences interpolation polynomial because the 
coefficients of the polynomial are calculated using divided 
differences.  
    Given a set of 1n +  data points 
( )(0), (0)), , ( ( ), ( )x y x n y nL , where no two ( )x j  are the 
same, the Newton form of the first order interpolating 
polynomial 1( )P x  is depicted as  

         ( )1 0( ) ( ) [ (0), (1)] (0)P x P x y y x x= + Δ − ,                    (32) 

where initial 0
0 ( ) (0) [ (0)]P x y y= = Δ , and 

(1) (0)[ (0), (1)]
(1) (0)

y yy y
x x

−
Δ =

−
  called the first order divided 

difference. The second order 2 ( )P x  is  

   

( ) ( )
( )

( ) ( )

2
2 1

0

2

( ) ( ) [ (0), (1), (2)] (0) (1)

         [ (0)] [ (0), (1)] (1)

            [ (0), (1), (2)] (0) (1) ,

P x P x y y y x x x x

y y y y y

y y y x x x x

= + Δ − −

= Δ + Δ −

+ Δ − −

(33) 

where 2 [ (1), (2)] [ (0), (1)][ (0), (1), (2)]
(2) (0)

y y y yy y y
x x

Δ − Δ
Δ =

−
  is 

the second order divided difference. Recursively, the thn  order 
polynomial is  

          ( )
1

0 0

( ) [ (0), , ( )] ( )
n i

i
n

i j

P x y y i x x j
−

= =

= Δ −∑ ∏L ,                  (34) 

with defining ( )1

0
( ) 1

j
x x j−

=
− =∏  and where 

1 1[ (1), , ( )] [ (0), , ( 1)][ (0), , ( )]
( ) (0)

i i
i y y i y y iy y i

x i x

− −Δ − Δ −
Δ =

−
L L

L (35)                    

called the thi  order divided difference.  
   
Formula (34) is known as the Newton form of the interpolating 
polynomial. Formula (35) allows us to generate all the divided 
difference needed for the Newton formula in a simple manner 
by using a divided difference table, rather than using formula. 
A table for the case 3n =  is illustrated below. 

 
 

TABLE 1 DIVIDED DIFFERENCE TABLE 

( )x k   ( )y k        [ ]Δ                  2 [ , ]Δ                  ],,[3Δ          
(0)x   (0)y  

                     [ (0), (1)]y yΔ         

(1)x   (1)y                              )]2(),1(),0([2 yyyΔ  

                      [ (1), (2)]y yΔ                3[ (0), (1), (2), (3)]y y y yΔ  

(2)x   (2)y                             )]3(),2(),1([2 yyyΔ                       
                      [ (2), (3)]y yΔ                                            

(3)x   (3)y                                  

   
Some important properties of divided differences are [23]:  
 

1) Divided differences are invariant under permutations 
of 0 1 2, , ,x x x L . 

2) If ( )y k  is from a polynomial of order 1n and 1n n> , 
then the n -th divided difference of ( )y k  vanish 
identically. 

3) If ( )y k  is from a polynomial of order 1n n+ , then  the 
n -th divided difference is a polynomial in x of order 

1n . 
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VI. MODEL-FREE PREDICTOR DERIVED FROM NEWTON FORM OF 
INTERPOLATING POLYNOMIAL PROPERTY 

   Consider the special case where ( )x k kT= and T  is the 
sample period, and ( 1), , ( ), ( 1)y k n y k y k− + +L  a given 
sequence. The divided difference table of the Newton form of 
the polynomial is depicted as in Table 2. 
 

TABLE II DIVIDED DIFFERENCE TABLE FOR NUMBER SEQUENCE 

     k          ( )y k          ][Δ       …  [ ( 1 ), , ( 1)]n y k n y kΔ − + +L  
( 1)

( 1)

( 2)

( 2)

( 3)

( 1)   ( )
                                       ( 1) ( )
( 2)   ( )                              
                                      ( 1) ( )
( 3) ( )

n

n

n

n

n

k n T z y k
z z y k

k n T z y k
z z y k

k n T z y k

− −

− −

− −

− −

− −

− +

−

− +

−

− +
( 1)

1

1

 

                                                                  ( 1) ( )
!

( 1)         ( )
                                      ( 1) ( )

                ( )                   

n
nz z y k

n
k T z y k

z z y k
kT y k

− −

−

−

−

−

−

M L

                 
                                     ( 1) ( )
( 1)        ( )

z y k
k T zy k

−
+

 
Assumption 2: )(ky  is generated from 1n -th order Newton 

form of interpolating polynomial.   
From property 2) of Newton form of interpolating 

polynomial, when 1nn > , we have  

    ( 1)1[ ( 1 ), , ( 1)] ( 1) 0
!

n n ny k n y k z z
n

− −Δ − + + = − =L ,      (36) 

i.e. 

          1 ( 1)

1

( 1) 0
n

i i i
n

i

z C z− − −

=

− − =∑ .                                      (37) 

Therefore,  

      1 ( 1)( 1) ( 1) ( )
n

i i i
n

i j

y k C z y k− − −

=

⎛ ⎞
+ = −⎜ ⎟

⎝ ⎠
∑ ,                         (38) 

is a one-step predictor based on the known information 
( 1), , ( )y k n y k− + L  which is exactly the same as the (22). 
For a sequence ( 1), , ( ), ( 1), ( 2)y k n y k y k y k− + + +L , we 

have 
1 ( 1) 1[ ( 1 ), , ( 2)] ( 1) 0n n ny k n y k z z+ − − +Δ − + + = − =L      (39) 

and  

    

( 1) 1

2 1 2 1 1 1

2 1

( 1)

( 1) ( 1)

n n

n n
i i i i i i

n n n
i i

z z

z C z C C z

− − +

− − + − − +

= =

−

= − − − −∑ ∑
            (40)                               

Therefore,  

1 1 1 1 2

1 2

( 2) ( 1) ( 1) ( )
n n

i i i i i i
n n n

i i

y k C C z C z y k− − + − − +

= =

⎛ ⎞+ = − + −⎜ ⎟
⎝ ⎠

∑ ∑  (41) 

is a two-step predictor based on information ( 1), , ( )y k n y k− + L . 
Similarly, for a sequence ( 1), , ( ), , ( )y k n y k y k m− + +L L , 
the final form m-step predictor is expected to be 

                    1( ) 0mz f z−− = ,                                                  (42) 

where 1 1 ( 1)
0 1 1( ) n

nf z f f z f z− − − −
−= + + +L , and 

, 0, , 1if i n= −L  are underdetermined coefficients. 
Set ( )g z  a monic polynomial of z , with order 1m − . By 

multiplying [ ( 1 ), , ( 1)]n y k n y kΔ − + +L  by ( )g z , from (36), 
we have  

      ( 1) ( 1) ( ) 0n nz z g z− − − = .                                                        (43) 
From (42) and (43), we have 

        ( 1) 1( 1) ( ) ( ) 0n n mz z g z z f z− − −− = − = .                           (44) 
That is 
    1 1 1( 1) ( ) ( ) 0n n m nz g z z z f z+ − − −− = − = ,                              (45) 
which is exactly same as (16). So from property 2) of 

Newton form of interpolating polynomial, we arrived at the 
same model-free predictor (21) which satisfy theorem 1.  

VII.  SIMULATION 
Example: For our simulation, the daily closing values of the Dow 

10 from 2005-6-2 to 2007-5-31, were used. The Dow 10 is a market 
index constructed as a subset of the Dow Jones Industrial Average. 
The stock market series consists of 500 daily closing prices obtained 
from the Dow Jones web site, and is shown in Fig. 1. Note that there 
are no trading on Saturday and Sunday. 

Su, et al. [14] proposed a prediction approach termed the 
Markov–Fourier Gray Model (MFGM). In this paper we compare the 
MFGM approach with the MFP approach. The MFGM can provide 
improved performance when compared to the existing prediction 
schemes, such as neural networks, neural fuzzy networks, and first 
order polynomial fitting. The MFGM has been demonstrated by 
predicting the Dow Jones Industrial Average stocks during the period 
1999 to 2001. 1000 data points were used, in which, the first 700 were 
used as the training data set and the last 300 are the test data set. The 
influence window size was 5. Since the stock index is very noisy, 
pre-processing using a 5-day average (a kind of LP filtering) of the 
series was conducted. Both the mean square error (MSE) and the 
absolute mean error (MAE) were computed and recorded as 

  ( )2 3

1

1 ˆMSE ( 1) ( 1) 3.18 10
N

k

y k y k
N =

= + − + = ×∑ ,                       (46) 

   
1

1 ˆASE ( 1) ( 1) 42.63
N

k

y k y k
N =

= + − + =∑ ,                                 (47) 

where, N  is the number of test data used for prediction. 
For the proposed MFP approach, we pre-processed the data by 

filtering the data using a combination of lower pass Butterworth IIR 
digital forward-backward filtering which is implemented by first 
filtering in the forward direction, then reversing the filtered sequence 
and running it back through the filter [21, 22]. The resulting sequence 
has zero-phase distortion and double the filter order.  The order of the 
filter was chosen as 2 and the normalized frequency as wn=0.35.  

To determine the information window, we used the False Nearest 
Neighbor (FNN) method [20], one of the most popular techniques to 
find an optimal value for n. The optimal value for n is where the 
number of these FNNs reduces to 0. To ensure that the FNN converge, 
we used 2252 daily original stock data samples from 1999/12/31 to 
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2007/12/10. The embedding-dimension convergence diagram is 
shown in Fig. 2 for the stock time series. As can be seen from the 
figure, the FNN reduced to 0 beyond information window of 4, and 
hence we chose n=4.   
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Fig. 2. The FNN plot of Dow 10 indexes for 2252 daily stock data 

from 1999/12/31 to 2007/12/10. 
 
After pre-processing the stock data and the determining the 

information window, we used the proposed MFP (22) with 4n =  to 
produce a one-step prediction of the stock.  The MFP performed 
excellently as shown in Fig. 3. The costs, MSE=5.6263 and 
MAE=1.8444, are small compared with eqs. (46) and (47) using the 
MFGM, indicating superior prediction precision.  

To be shown more clearly, the zoom between day 100 to day 200 is 
shown in Fig. 4.  As can be seen from Figs. 3 and 4, the time series of 
the index looks quite irregular, with the indexes exhibiting sudden 
peaks.  The proposed MFP does not only achieve good prediction of 
the stock time series but also accurately predicts the peaks in the 
stocks. The efficient prediction of such peaks is important for 
investors. The lack of adequate tools to predict stock indices, 
especially peaks, might result in economic loss.  

In this method, 1) the MFP is independent of the model of the stock 
time series; 2) the dynamic model of the MFP is constant once the 
predictive step m  and the embedding dimension n are fixed, and the 
prediction changes as newly available data change; 3) the model 
training process is avoided. Without model identification or fitting, the 
whole 500 daily stock values were used as the test set. 4) it does not 
need to online adapt to changing parameters or nonlinearities and 5) it 
has two parameters and simple calculation using eq. (21) therefore 
having a low computational cost. It is very convenient to apply to 
practical applications since only the prediction step m and information 
window n need to be determined. 

We also performed two-day prediction with 2m =  and 4n =  by 
applying (23). The performance achieved is shown in Fig. 5 with the 
costs  

( )2

1

1 ˆMSE ( 2) ( 2) 20.2150
N

k

y k y k
N =

= + − + =∑ , 

1

1 ˆASE ( 2) ( 2) 3.5193
N

k

y k y k
N =

= + − + =∑ , 

indicating good performance. 
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Fig. 3. The comparison of Dow 10 indexes and their one-day 

predictions through the MFP for 500 days from 2005-6-2 to 
2007-5-31. 
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Fig. 4.  The comparison of Dow 10 indexes and their one-day 

predictions through the MFP for 100 days. 
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Fig. 5.  The comparisons of Dow 10 indexes and their two-day 

predictions through the MFP for 100 days. 
 
Example 2: The Mackey–Glass [24] differential delay equation 

               10

( ) 0.2 ( )0.1 ( )
1 ( )

dx t x tx t
dt x t

− Δ
= − +

+ − Δ
                           (48) 
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is a classic model to test model reconstruction and prediction [14, 
25]. Here, we used 17Δ = , initial conditions (0) 0.9x = , and 
sample time 1T = , Lyapunov dimension 2.1D =  and Lyapunov 
exponents 1 2 30.0086, 0.001, 0.0395,l l l= = = −  4 0.0504l = −  
[22].  

During the last two decades, many forecasting algorithms have 
been developed to predict chaotic time series based on the theory of 
dynamical reconstruction from scalar time series [25]. These 
algorithms for predicating chaotic time series are almost all based on 
reconstructed attractors [26]. Recently, adaptive second-order 
Volterra filters have successfully been used to predict some low 
dimensional chaotic time series [27]. More recently, an adaptive 
higher-order nonlinear finite impulse response (HONFIR) based on 
the high-order Volterra expansions was proposed to predict high 
dimensional hyper-chaotic time series [25]. As is well-known, 
hyper-chaos is a chaotic behaviour in which more than one positive 
Lyapunov exponents exist in the high dimensional system; the 
systematic dynamics is more complex and more sensitively dependent 
on initial conditions than chaotic ones. However, we must point out 
that although the hyperchaos or the chaos is very disordered, it is 
pseudo-noise, since it is derived from a determinative dynamic 
function as opposed to a stochastic one like noise or stock, etc. The 
values of the positive Lyapunov exponents determine the degree of 
disorder of chaos or hyperchaos.  

We predicted the Mackey–Glass equation using the proposed MFP. 
Since the two positive Lyapunov exponents of the hyperchaotic signal 
are very small, the hyperchaos is not extremely noise like, as shown in 
Fig. 6. Therefore, it is not necessary to filter the sequence as we’ve 
done for the stocks, i.e. pre-processing the sequence was ignored. The 
proposed MFP (21) was used to obtain one-step and four-step 
predictions, respectively. The MFP performed excellently as shown in 
Fig. 6 where MSE=2.1434 × 10-6 (one-step) and MSE=1.1 × 10-3 
(four-step), respectively. Moreover, since noise-free data for the 
Mackey-Glass equation is unrealistic, we have also added noise to the 
data set as was done in [14]. A normal distribution with zero mean and 
1% standard deviation was used as the noise distribution function. 
With additional noise added, we pre-processed the data using the 
‘Butterworth’ filter with order n=2, normalized frequency wn=0.35, 
and zero-phase filter. The MSE=5.1844×10-4 obtained is almost the 
same as the MSE=6.724×10-4 in [14], but the proposed MFP is much 
easier and simpler to implement than the MFGM [14].  

Zhang and Xiao [25] also conducted the example without adding 
any noise using the adaptive HONFIR and compared with other 
methods such as the fuzzy neural networks, the conventional neural 
networks using the root-mean-square-error  

      
( )

( )

1/ 22

1/ 2
1

ˆ( ) ( )1
( )

N

rms
k

y k m y k m
E

N y k m=

+ − +
=

+
∑ .                     (49) 

Table 3 lists the simulation results for one-step, two-step and 
four-step predictions [25]. It is obvious that the adaptive HONFIR 
filter provides better prediction performance than the rest, excluding 
the MFP.  

The proposed MFP results are listed in the last row in table 3. 
Clearly, the proposed MFP demonstrates a superior prediction 
performance to the methods in the table. 
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(a) one-step prediction 

0 200 400 600 800 1000
0.2

1

1.6

Prediction time t

x(
t) 

an
d 

its
 o

ne
-s

te
p 

pr
ed

ic
tio

n '+' original x(t)

dot '.' one -step prediction of
x(t)

(a)

 
 (b) four-step prediction 
Fig. 6.  The comparison between Mackey-Glass data and their 

prediction. To show clearly the prediction for making future 
predictions of chaotic series, only one is plotted for each four points 
compared with the actual values. 

 
TABLE III PERFORMANCES OF VARIOUS PREDICTION SCHEMES FOR 

MACKEY-GLASS SERIES 
Prediction 

scheme 
Erms (1-tep) Erms(2-step) Erms(4-step)

Conventional 
Neural network 

1.0×10-2 1.9×10-2 4.9×10-2 

Fuzzy neural 
network 

9×10-3 1.8×10-2 4.7×10-2 

HONFIR 8.5285×10-5 2.9410×10-4 1.4×10-3 
MFP 1.12×10-6 5.4624×10-6 1.9933×10-5

VIII. CONCLUSIONS 
In this paper, a model-free predictor for nonlinear time series was 

introduced based on a zero tracking error methodology. An identical 
derivation of the MFP using the Newton form of the interpolating 
polynomial was also proposed to verify the reasoning and the 
reliability of the MFP. The underlying model-free prediction approach 
is very different from existing methodologies. The MFP performed 
well as was demonstrated using an example. It is desirable in 
engineering applications due to its simplicity, linearity, few adjustable 
parameters and low computational load. More theoretical analysis and 
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more application verifications such as control, image motion 
prediction, oil price and weather forecasting, etc. will be conducted.   
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