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Abstract—Nanomaterials have attracted considerable attention 

during the last two decades, due to their unusual electrical, mechanical 
and other physical properties as compared with their bulky 
counterparts. The mechanical properties of nanostructured materials 
show strong size dependency, which has been explained within the 
framework of continuum mechanics by including the effects of surface 
stress. The size-dependent deformations of two-dimensional 
nanosized structures with surface effects are investigated in the paper 
by the finite element method. Truss element is used to evaluate the 
contribution of surface stress to the total potential energy and the 
Gurtin and Murdoch surface stress model is implemented with 
ANSYS through its user programmable features. The proposed 
approach is used to investigate size-dependent stress concentration 
around a nanosized circular hole and the size-dependent effective 
moduli of nanoporous materials. Numerical results are compared with 
available analytical results to validate the proposed modeling 
approach. 
 

Keywords—Nanomaterials, finite element method, size 
dependency, surface stress 

I. INTRODUCTION 
ANOSTRUCTURED materials have been shown to possess 
unusual electrical, mechanical and other physical 

properties as compared with their bulky counterparts. For 
example, Jing et al. [1] recently measured the Young’s modulus 
of silver nanowires by three-point bending test using contact 
force microscopy. The Young’s modulus was shown to have 
strong size dependency, .i.e. the modulus for a nanowire with a 
diameter of 20 nm doubles that with a diameter of 140 nm. The 
size dependency has been attributed to the effects of surface 
elasticity and residual surface stress. In nanostructured 
materials, the effects of surface/interface on their mechanical 
deformation become important as the area of surface/interface 
to bulk volume increases sharply when compared with 
conventional materials. Moreover, since the atoms on the 
surface/interface have different equilibrium configuration from 
the atoms in the bulk, the elastic stiffness of the surface can be 
different from those of the bulk. To address the size-dependent 
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mechanical behaviour of nanosized structures, the contribution 
of the surface/interface free energy to the total free energy of a 
nanosized structure need to be considered. To this end, classical 
continuum mechanics needs to be modified to account for the 
effects of surface/interface on deformation. Gurtin and 
Murdoch [2, 3] proposed a linear surface stress model, where 
the surface stress is a linear function of the surface strain and 
the surface is assumed to have null thickness with different 
elastic modulus from the bulk. The Gurtin and Murdoch 
surface stress model has recently been extensively applied to 
investigate a variety of mechanics problems involving 
nanomaterials and nanostructures. 

Based on the Gurtin and Murdoch surface stress model, 
Miller and Shenoy [4] studied the size-dependent elastic 
stiffness of some basic structural elements such as nanobars, 
nanobeams and nanoplates; Sharma et al. [5,6] studied 
size-dependent elastic state of three-dimensional 
nano-imhomogeneities; Yang [7] studied the deformations of 
an elastic matrix with spherical nanocavities; Wang and Wang 
[8] investigated the deformation around a nanosized elliptical 
hole with surface effect; Tian and Rajapakse [9,10] obtained 
the analytical solutions of the size-dependent elastic field of a 
nanoscale circular and an elliptical imhomogeneities 
respectively. To explore the unconventional mechanical 
properties of nanocomposites and nanoporous materials, Duan 
et al. [11,12] obtained closed-form solutions of elastic state of 
nanosized imhomogeneities with spherical and cylindrical 
shapes, and predicted the effective elastic moduli of 
nanocomposites with uniformly distributed spherical or 
cylindrical reinforcement using the self-consistency method; 
Chen et al. [13] also studied elastic solids containing spherical 
nano-inclusions and derived effective thermal-mechanical 
properties for such system. 

The above mentioned studies are restricted to nanosystems 
with simple geometries, i.e. an infinite isotropic elastic medium 
with imhomogeneities of ideal shape such as cylindrical or 
spherical. For nanostructures with complex geometries, and/or 
more complicated constitutive behaviour, one has to resort to 
numerical methods such as the finite element methods to 
investigate such systems. To this end, Gao et al. [14] developed 
an in-house finite element code to investigate the 
size-dependent mechanical behaviour in nanosytems; Tian and 
Rajapakse [15] also developed a similar program to study 
two-dimensional nanoscale imhomogeneities in an elastic 
matrix. Those in-house codes lack the handy pre-and 
post-processing capabilities and material and geometrical 
nonlinearities as those included in general finite element codes 
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such as ANSYS, ABAQUS, etc., it is ideal to devise an 
alternative approach to model nanoscale materials with surface 
stress effects. This is the objective of the present study. The 
governing equations for a two-dimensional nanoscale structure 
are presented in Section 2; followed by finite element 
formulation and implementation with the finite element code 
ANSYS in Section 3 and numerical results on size-dependent 
elastic state of nanoholes and effective moduli of nanoporous 
materials are presented in Section 4. 

II. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Consider the plane strain deformation of a two-dimensional 
solid containing nanosized holes and imhomogeneities as 
shown in Fig. 1. Both the matrix and the imhomogeneities are 
assumed to be isotropic and linear elastic. For more 
complicated cases involving material and geometrical 
nonlinearities, the equations shown in the sequel sections need 
to be modified accordingly. The equilibrium equation at a 
material point inside the matrix or the imhomogeneity can be 
expressed as, 

( )2,1,0, =    =+ jibijijσ                           (1) 
 

 
Fig. 1 Two dimensional plane with nanoscale holes and 

imhomogeneities 
 

where ijσ  and ib  denote stress and body force, respectively. 
Assuming the surface or the interface is negligibly thin and 
adhering to its neighbouring bulk material without slipping, the 
equilibrium equation of a material point on a surface/interface 
is given by [2,3], 
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where s
αβσ  denotes the surface/interface stress, αβk  the 

curvature of the surface/interface, in  the normal to the 
surface/interface and the bracket ‘[ ]’ refers to the jump of 
quantities across the surface/interface. 

Assuming isotropic and linear elastic, the constitutive 
behaviour for a material point inside the matrix or 
imhomogeneity is, 

                      ( )2,1,2 =    += jiijijkkij μεδλεσ                  (3) 

where ijε  is the strain tensor, λ  and μ  are the Lame’s 

constants and ijδ  denotes the Kronecker delta.With regard to 
the material behaviour for a surface/ interface, Gurtin and 
Murdoch proposed a linear surface stress-surface strain model 
for a general three-dimensional surface/interface [10], 

( ) ( ) ( )2,1,2 000 =    ++−+= βαδετλετμδτσ αβαβαβαβ kk
sss      

(4) 
where αβε  denotes the surface strain, sλ  and sμ  are the 

Lame’s constants of a surface or an interface and 0τ  is the 
residual surface/interface stress at zero strain.For the 
two-dimensional problem considered in the present study, the 
Gurtin and Murdoch surface/interface stress model is further 
reduced to, 
                                         0τεσ += SSs E                                  (5) 
where sσ  and sε  denote the surface stress and surface strain 
in two-dimensional case, respectively, and sE ( 02s sλ μ τ= + − ) 
is the reduced elastic modulus for 2D case. 

For a nanoscale system under infinitesimal deformation, the 
strain tensor αβε  is related to the displacement ( 1,2)uα α = by 

the following kinematic equation, 

                                     , ,
1 ( )
2ij i j j iu uε = +                             (6) 

The boundary conditions for the nanosystem shown in Fig.1 
include displacement and/or traction boundary conditions such 
as, 

                                     on
on

ii u

ij j i t

u u
n tσ
= Γ

= Γ
                            (7) 

where uΓ  and tΓ  denote boundaries with specified 
displacement and traction boundary conditions, respectively. 

III. FINITE ELEMENT FORMULATION AND IMPLEMENTATION 

A complete boundary value problem (BVP) governing the 
deformation of a two-dimensional nanosized structure with 
holes and imhomogeneities is defined in the previous section. 
The analytical solution to the above boundary value problem is 
a nontrivial task, except for an infinite plane with circular or 
elliptical holes or imhomogeneities. In this section, a 
displacement-based finite element approach is proposed to 
numerically solve the BVP with surface stress. To this end, the 
BVP described by partial differential equations is transformed 
into an equivalent energy statement, i.e. by assuming 
admissible displacement field satisfying the kinematic (6) and 
the displacement boundary conditions in (7), the actual 
displacement field to the BVP should minimize the total 
potential energy of the nanosystem. The total potential energy 
of the system ( Π ) can be obtained by the summation of the 
strain energy of the bulk material ( bU ), the strain energy of the 
surface/interface ( sU ) and the work by external force (W) as, 
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 b sU U WΠ = + +                            (8) 
The potential energy of the bulk material is given by, 

                              { } [ ]{ }dVDU
T

V

b εε∫∫=
2
1                         (9) 

where { }ε is the strain vector and [D] is the elasticity matrix of 

the bulk material, which is different for the matrix and the 
inhomogeneity. The potential energy of a surface/interface with 
linear surface stress-strain relationship (5) is given by, 

                     2 01 ( )
2

s s s s

S S
U E dS dSε τ ε= +∫ ∫              (10) 

Since the surface/interface is assumed to be adhering to the 
bulk material without slipping or opening, the surface strain 
can be related to the strain vector of the bulk material through a 
coordinate transformation matrix [T], 

                                         { }[ ]s Tε ε=                                 (11) 

The work done by external body force {b} and surface 
tractions {t} is given by, 

                   { } { } { } { }
t

T T

V
W u b dV u t d

Γ
= − − Γ∫∫ ∫         (12) 

where { }u denotes the displacement vector. 

In displacement-based finite element analysis, the 
displacement field within an element is approximated by 
piece-wise interpolation such as, 

                                         [ ]{ }{ }u N a=                          (13) 

where [N] is the shape function matrix and {a} is the nodal 
displacement vector. The strain vector of the bulk material is 
related to the nodal displacement vector as, 

                                         [ ]{ }{ } B aε =                          (14) 

where [B] is the strain-displacement matrix. 
By substituting the displacement vector, strain vector and the 

surface strain into the total potential energy ( Π ) and invoking 
the stationary condition ( 0=Πδ ), the finite element 
equilibrium equation is finally derived as, 

                                           { } { }[ ]K a f=                      (15) 

where the total stiffness matrix [K] is, 

  [ ] [ ] [ ][ ] [ ] [ ] [ ][ ]T T s

V S
K B D B dV B T E T B dS= +∫∫ ∫        (16) 

and the force vector {f} can be expressed as, 
0{ } [ ] { } [ ] { } [ ] [ ]

t

T T T T

V S
f B b dV B t d B T dSτ

Γ
= + Γ +∫∫ ∫ ∫      

(17) 
It is clearly identified from (16) and (17) such that, due to the 

presence of surface/interface stress, both the stiffness matrix 
and the force vector will change. The elastic stiffness of a 
surface/interface has a contribution on the total stiffness matrix 
while the residual stress/interface stress has an effect on the 
force vector. For a nanosized structure, the effects of 
surface/interface stress on its elastic state can be remarkable 
when compared with those on macroscopic structure. In 
conventional finite element analysis of a macroscopic structure, 
the contribution of surface/interface on deformation is 
negligible. 

In order to calculate the contributions of surface/interface 
stress to the total stiffness matrix and the force vector, Gao et al. 
[14] developed an in-house finite element code with four-node 
quadrilateral element for the bulk and two-node element for the 
surface and Tian and Rajapakse [15] developed an in-house 
code with eight-node isoparametric bulk elements and 
three-node element for the surface. Note that those in-house 
codes lack powerful pre- and post-processors and capabilities 
to handle material and geometrical nonlinearities, it is more 
desirable to investigate the contributions of surface/interface 
stress with general-purpose finite element codes such as 
ANSYS, ABAQUS etc. In this study, a novel approach is 
proposed here to handle surface/interface stress within the 
scope of ANSYS. If the matrix and the imhomogeneity are 
partitionized with 4-node quadrilateral elements, the 
surface/interface is essentially discreetized into two-node 
segements. In such a case, the contribution of each two-node 
surface/interface segment to the total stiffness matrix can be 
evaluated by integrating the second term of (16) and its explicit 
form in the local coordinate system pointing from one node to 
the other is determined as, 

                                1 1
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                    (18) 

where [Ks]e denotes the element stiffness matrix of a two-node 
surface/interface segment, and Le is the distance between the 
two-node. Note that in finite element analysis, the element 
stiffness matrix of a two-node truss element is, 

                                   1 1
[ ]

1 1
e

e

EAK
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−⎡ ⎤
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                  (19) 

where E and A denotes the Young’s modulus and the cross 
sectional area of the truss element, respectively.  

Therefore, the contribution of the surface/interface to the 
total stiffness matrix of a nanosystem can be modeled by 
fictitious truss element provided that SE EA= is satisfied. Note 
that in conventional finite element program, the young’s 
modulus of a truss cannot be negative. However, recently 
studies have shown that the elastic modulus of a surface can be 
positive or negative depending on the surface crystal 
orientation [4]. Therefore, surface having negative modulus 
cannot be simulated using the truss element in conventional 
finite element codes. Fortunately, ANSYS’s user 
programmable features (UPFs) allow one to compile and link 
user subroutines to the ANSYS program [16], resulting in a 
user version finite element program. The details of ANSYS 
user programmable features can be found in Ref. [16]. In order 
to model the linear surface/interface stress model (5), an user 
subroutine called ‘usermat.f’ has been developed in the course 
of the study. Since the conventional truss element ‘LINK1’ in 
ANSYS is not allowed to invoke the user subroutine 
‘usermat.f’, the truss element ‘LINK180’ is employed to model 
the surface/interface. In such a manner, one can model an 
elastic surface/interface with either positive or negative 
modulus. 
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IV. NUMERICAL RESULTS 
In this section, stress concentration around a nanosclae 

circular hole under remote loading and the effective moduli of 
two-dimensional solid containing circular nanovoids are 
investigated to highlight the effects of surface stress. Numerical 
results are obtained using the finite element program ANSYS 
combined with the developed user subroutine ‘usermat.f’. To 
model the effects of surface stress, the elastic moduli of a 
surface are prerequisite. To this end, Miller and Shenoy [4] 
calculated the surface elastic constants of Aluminum using the 
embedded atom method (EAM) and reported that the surface 
elastic constants depend on the material type and the surface 
crystal orientation. For Al [100] surface, sλ =3.4939 N/m, sμ = 

-5.4251 N/m and 0τ =0.5689 N/m and For Al [111] surface, 
sλ =6.8511 N/m, sμ = -0.3760 N/m and 0τ =0.9108 N/m. 

These surface elastic constants are used in the ensuing sections, 
unless otherwise specified. 

A. Stress Concentration Around A Circular Hole 

 
Fig. 2 A nanoscale circular hole in an infinite plane 

 
Consider the plane strain deformation of an infinite material 

plane containing a nanosized circular hole of radius a under 
uniaxial remote traction 0σ  as shown in Fig. 2. The material 
considered here is Aluminum with elastic constants: λ =58.17 
GPa and μ =26.13 GPa. Due to the presence of the circular 
hole, stress concentration occurs around the hole. The 
analytical solution to this problem was given by Tian and 
Rajapakse [9] and the stress concentration factor was obtained 
as, 

               1 2 1 1 2 1

1 1 1 2

( 2 ) 3( 2 )3
2(1 2 ) 1 4cS Λ Λ + Λ Λ Λ + Λ

= − −
+ Λ + Λ + Λ Λ

                

(20) 
where 1 / 4sE aμΛ =  and 2 2 / ( )μ λ μΛ = + .The above 
analytical solution is used to validate the proposed modeling 
approach with ANSYS. Fig. 3 shows the variation of the stress 
concentration factor with the hole radius for both positive and 
negative surface Young’s modulus Es (residual surface stress 

0τ is assumed to be zero).  
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Fig. 3 Variation of the stress concentration factor with the hole radius 

R 
 

As shown in Fig.3, the classical stress intensity factor is 
independent of the hole size, while the stress concentration 
factor for a nanoscale hole is highly size-dependent. For a 
circular hole with positive surface elastic modulus, the stress 
concentration is reduced compared with classical elasticity 
solution and it is increasing with increasing hole size. On the 
contrary, for a hole with negative surface modulus, the stress 
concentration is increased when compared with classical 
solution and it is decreasing with increasing hole size. For 
surface with either positive or negative elastic modulus, the 
stress concentration factor tends to the classical solution when 
the hole radius is greater than 20nm. The present numerical 
results well agree with the analytical solutions and this 
confirms the validity of the proposed approach for modeling 
nanoscale structures with surface effects. 

B. Effective Moduli of Nanoporous Material with Circular 
Voids 

 
Fig. 4 Nanoporous materials with square representative volume 

element (RVE) 
 

Recently there is much interest in the development and 
understanding of nanocomposites and nanoporous materials. 
To design macroscopic structures with nanocomposites and 
nanoporous materials, their effective elastic moduli are 
important parameters. To this end, the effective moduli of a 
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nanocomposite can be predicted by various homogenizing 
procedure such as the self-consistent method, using the 
properties of the matrix, the reinforcement and the interface. 
Similarly, the effective moduli of a nanoporous material can be 
predicted with the properties of the matrix and the surface. 
Consider the case of a two dimensional material plane with 
periodically distributed nanoscale circular voids shown in Fig. 
4. The material for the matrix is Aluminum with elastic 
constants: λ =58.17 GPa and μ =26.13 GPa and surfaces with 
different elastic constants are considered: for Type A surface, 

sλ =3.4939 N/m, sμ = -5.4251 N/m and for Type B surface, 
sλ =6.8511 N/m, sμ = -0.3760 N/m. For both surface types, the 

residual surface stress is assumed to be zero. 
To predict the effective properties of the nanoporous 

material using the finite element method, a representative 
volume element (RVE) is identified first. The effective moduli 
provide a link between the average stress and the average strain 
in the RVE. One commonly used approach to get the effective 
moduli is to apply a displacement field corresponding to 
uniform elastic strains on the boundary of the RVE, apply the 
finite element method to calculate the stress field inside the 
RVE and then get the average stress. Since the average stress is 
equal to the product of an effective elasticity matrix and the 
average strain, the effective mouduli can be thereafter 
identified from the elasticity matrix. Fig. 5 and Fig. 6 show the 
variations of effective bulk and shear moduli of the nanoporous 
material with the radius of the circular void, respectively. The 
present numerical results correspond to a volume fraction of 
0.3, i.e. the ratio of the volume of nanovoids to the total volume 
is 30%. Both the bulk and the shear moduli show 
size-dependency. For nanoporous material with Type A surface, 
whose surface Young’s modulus Es is negative (= -7.9253 
N/m), the bulk and the shear moduli are increasing as the void 
size increases. On the contrary, for Type B surface whose 
Young’s modulus Es is positive (=5.1882 N/m), the effective 
moduli are decreasing with increasing void size. For a 
nanoporous material containing nanovoids with their radii in 
the range of hundred nanometers, its effective mouduli are 
essentially closed to those without the consideration of the 
surface effects. 

V. CONCLUSION 
A finite element approach is proposed in this study to 

investigate the effects of surface/interface stress on nanoscale 
structures. Truss element is used to calculate of the 
contributions of surface/interface to the total potential energy 
of a nanosystem, and the Gurtin and Murdoch surface/interface 
stress model is implemented through a user subroutine called 
‘usermat.f’, which is compiled and linked with the general 
finite element code ANSYS through its User Programmable 
Features (UPF). The size-dependent stress concentration 
around a nanoscale circular hole in an infinite material plane is  
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Fig. 5 Varation of effective bulk modulus with the radius of nanovoid 
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Fig. 6 Varation of effective shear modulus with the radius of nanovoid 

 
investigated. It is noted that if the surface elastic modulus is 
positive, the stress concentration is reduced compared with the 
classical elastic solution, while it is increased for a hole with 
negative surface modulus. The effective elastic moduli of an 
elastic solid containing nanoscale circular voids is shown to be 
size-dependent. Depending on the nature of the surface (i.e. 
with positive or negative surface modulus), the bulk and shear 
moduli of a nanoporous material may increase or decrease 
toward to the convention results without the consideration of 
the surface effects, as the radii of nanovoids within the solid 
increase. The present modeling approach can be readily 
extended to study the mechanical behaviour of nanomaterials 
and nanostructures with the bulk material shows nonlinear 
constitutive behaviour and/or under large deformation. 
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