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Abstract—The innovative intelligent fuzzy weighted input 

estimation method (FWIEM) can be applied to the inverse heat 
transfer conduction problem (IHCP) to estimate the unknown 
time-varying heat flux of the multilayer materials as presented in this 
paper. The feasibility of this method can be verified by adopting the 
temperature measurement experiment. The experiment modular may 
be designed by using the copper sample which is stacked up 4 
aluminum samples with different thicknesses. Furthermore, the 
bottoms of copper samples are heated by applying the standard heat 
source, and the temperatures on the tops of aluminum are measured by 
using the thermocouples. The temperature measurements are then 
regarded as the inputs into the presented method to estimate the heat 
flux in the bottoms of copper samples. The influence on the estimation 
caused by the temperature measurement of the sample with different 
thickness, the processing noise covariance Q, the weighting factor γ , 
the sampling time interval tΔ , and the space discrete interval xΔ , 
will be investigated by utilizing the experiment verification. The 
results show that this method is efficient and robust to estimate the 
unknown time-varying heat input of the multilayer materials. 
 

Keywords—Multilayer Materials, Input Estimation Method, 
IHCP, Heat Flux.  

I. INTRODUCTION 
HE multilayer materials are composed of two or more 
different kind of materials and have all the characteristic 

advantages owned by each material. The applications of 
multilayer materials are widespread as in the electrical, 
aviation, automobile, ship-building, and physical exercise 
machine industries. For example, some super conduction 
materials composed of the multilayer materials have the 
zero-resistance property at a certain temperature and are widely 
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used. For some electronic chips, such as the central processing 
units (CPU) or the video cards, often produce heat during the 
working process. To resolve this situation, the heat-dissipating 
fins that are made of some kind of multilayer material are then 
used. However, to prevent the temperature from rising is an 
important matter to prolong the lifespan and to enhance the 
stability during the course of development of semiconductor 
and other electronic devices. In the literature, Yu [1] in 2004 
used the fast lagrangian analysis of continua (FLAC) to analyze 
the heat conduction mechanism under the fixed temperature 
boundary condition. Hon [2] in 2006 analyzed it by using the 
fixed flux control instead of the fixed temperature boundary 
condition, and showed the precision in measuring the physical 
condition of multilayer materials. The method to deal with the 
inverse heat conduction problem is called regularization 
method, which is divided into the universe regularization 
method (Scott and Beck [3] in 1989) and the conjugate gradient 
iteration method (Alifanov [4] in 1978 and Mikhailov [5] in 
1983). Although the universe regularization method is 
relatively simpler, it produces higher computational load due to 
the longer solving time and the increasing number of matrix 
dimensions. The conjugate gradient iteration method adopts the 
optimal control concept to solve the inverse heat conduction 
problem and has the computational structure with higher 
efficiency. This method was adopted by many researchers such 
as Huang [6] and Li [7]. Both algorithms are the batch type of 
off-line processes, which are not very efficient. In the practical 
use, the parameters should be determined in real time. 
Therefore, Tuan in 1996 proposed the on-line input estimation 
algorithm [8] which is compose of the Kalman filter and the 
recursive least square algorithm. The Kalman filter produces a 
residual renewal array. The array is then applied to the least 
square algorithm to estimate the parameters. Since each 
estimate only requires the output and measurement of the last 
moment, it will greatly reduce the computational memory load. 
This method is an on-line recursive input estimation algorithm. 
It can effectively and precisely estimate the time-varying 
unknown inputs [9]. Chen in 2008 used an intelligent fuzzy 
weighting factor to take the place of the weighting function 
used in the recursive least square algorithm and construct an 
intelligent fuzzy weighted estimator [10]. This is a inverse 
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algorithm which has the properties of fast tracking and low 
affection due to the noise. From the improvements done by 
Tuan and Chen, such as the on-line input estimation method 
(IEM), the adaptive input estimation method (AIEM), and the 
fuzzy weighted input estimation method (FWIEM), to the 
irregular shaped inverse heat conduction problem [11], the 
temperature and heat flux estimation of electronic devices 
[12],the applications of the ballistic estimation, the shooting 
condition estimation of tank barrels [13], and the load 
estimation of bridges [14], most of those researches were using 
numerical simulation with assumed known conditions. This 
paper will verify the availability of this theorem by using 4 
different multilayer material samples, which are compose of 
one copper sample and one aluminum sample with different 
thickness. These samples are heated by using the standard heat 
source from the bottoms. The thermocouples are equipped on 
the tops of samples to obtain the temperature measurements. 
The temperature data are then adopted by the intelligent fuzzy 
weighted input estimation method to estimate the heat flux at 
the bottoms of the samples. Besides, the influence due to the 
modeling error variance Q, the weighting factor γ , and the 
sampling interval xΔ  is investigated to show the robustness 
and efficiency of this algorithm.  

II. EXPERIMENT EQUIPMENT  
The entire experiment modular includes the signal source, 

the test samples, the sensors, the data acquisition device, and 
the computer module. The purpose of experiment is to 
inversely estimate the temperature and heat flux of the sample 
by using the temperature measurements of the multilayer 
material samples surface. Therefore, the multilayer material 
samples are heated by adopting the standard heat source, and 
the thermocouples (K type) are equipped on the multilayer 
material samples surface. Moreover, the data acquisition device 
is linked with the thermocouples to measure the temperature 
data. The experiment devices and the samples used are 
illustrated as follows: 

 
A.  The Signal Source 
The standard heat source generator with the maximum 

output power of 200W is compatible with an alternating/direct 
current power source of 110 volt. The 30VDC power is series 
connected and can supply stable power to the heater. The 
standard heat source generator provides heat from its bottom 
layer. The inner wall and top of this device is insulated. It is a 
critical technique to perform the experiment in the insulated 
condition for the direct heat conduction problem. In addition, 5 
holes with the diameter of 2mm have been punched on the top 
of the generator for the thermocouples to measure the surface 
temperatures of the test samples.  

 
B.  The Test Samples 
The copper sample is stacked up 4 aluminum samples with 

different thicknesses. The thickness of copper sample is 5mm. 
The following thermal properties of the copper are used in the 

calculation. k =391.1 /W m k⋅ , ρ=8940 3/kg m , and 

pc =386 /J kg k⋅ . 4 aluminum samples with different 
thicknesses of 2mm, 3mm, 4mm, and 5mm are used. The 
following thermal properties of the aluminum are used in the 
calculation. k =187 /W m k⋅ , ρ =2710 3/kg m , 

pc =872 /J kg k⋅ . 

C.  Sensors 
The thermocouples (K type) are used in this experiment.  
 
D. The Temperature Data Acquisition Device 
The device with the type of NI-9211 and the interface of 4 

data transmission (NI USB-9162) is manufactured by the 
National Instruments Company and can be used to implement 
the signal acquisition, procedure and transformation. It is 
composed of the high performance measurement and control 
card, the signal process modular, the filter amplifier, and the 
electric charge amplifier.  

E.  The Computer Module (Including the Software 
Programs) 

 Intel processor 1.6G computer, the signal express 
software, and the Matlab programming language can be used to 
process the signal data. 

 The SIGNAL EXPRESS acquisition software: The 
software in coordination with the data acquisition system 
developed by the National Instruments Company can collect 
data from the subject system in real time. The sampling rate, the 
temperature range, the sampling time, the sensor type, the 
compensation of the cold junction, the frequency channel, and 
the record style to record the real-time signal of the system can 
be configured. 

 The presented method can be programmed by using the 
Matlab programming language. The temperature measurements 
are then regarded as the inputs into the method, which is to 
estimate the heat flux in the bottoms of samples. 

III. MATHEMATICAL FORMULATION  
Two different kind of multilayer material samples are 

adopted. The thickness of sample is represented by L . The 1A  
(copper) sample has the thickness of 1L , the heat conduction 
coefficient of 1k , the density of 1ρ , and the specific heat of 1c . 
The 2B  (aluminum) sample has the thickness of 2L , the heat 
conduction coefficient of 2k , the density of 2ρ , and the 
specific heat of 2c . The heat conduction interface is assumed to 
be ideal. This means the heat flux and the temperature at the 
surface of 1x L=  are the same. The standard heat source with 
flux of ( )q t  is applied at 0x = . The boundary condition of 
x L=  is insulated. By equipping the thermocouple sensor at 
the position, x L= , and measuring the surface temperature of 
the multilayer materials, the heat-conducting model is formed 
as shown in Fig. 1.  
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Fig. 1 Heat Transfer Model 

The 1-D heat-conducting governing equations are as 
follows: 
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where ( ),T x t  represents that the temperature is a function 

of time, t , and the position, x . LT  is the x L=  temperature. 

( )z t  is the temperature measurement ( )v t  is the measurement 
noise, which is assumed to be the Gaussian white noise with 
zero mean. 0T  is the initial temperature. The equations (1)~(6) 
are the heat-conducting governing equations of the multilayer 
materials. The equation (7) is the measured equation.  

The multilayer material sample is separated into N-1 equal 
portions with the length of  xΔ . “ 1=i ” is marked at x=0. The 
temperature is 1T . “ i m= ” is marked at 1x L= . The 
temperature is mT . “ i N= ” is marked at x L= . The 
temperature is NT . By using the D`Souza [15] central 
differential method to substitute Equation (1) in the space 
derivative and the boundary condition equations (2-5), the 
heat-conducting governing equations can be transferred as 
following differential equation. The deduced process can be 
shown as follows:  
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2
2 1 01 1 1 1

1 2 2
1 1 1 1

2
( )

T T TT k T kT t
t c cx xρ ρ

• − +∂ ∂
= = =

∂ ∂ Δ
                         (9) 

From the boundary condition in equation (2), it is clear that 
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By substituting equation (10) to (9) can be rearranged as 
follows: 

1 2 1
1 2

1 11 1
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= +

ΔΔ
                                                  (11) 

when 2 3, , , 2i , i, m= −… …  can be obtained as the following 
equation. 

1 11
2

1 1

2( ) ( )i i i
i

T T TkT t
c xρ

•
+ −− +

=
Δ

                                             (12) 

The contact point of the two materials, m is the ideal 
interface of the heat-conduction, then,   
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when 1i m= − , the equation (12) can be rearranged as 
follows: 
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when i m= , the equation (12) can be rearranged as follows: 
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when 1i m= + , the equation (12) can be rearranged as 
follows: 
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when 2 1i m N= + −" , the equation (12) can be rearranged 
as follows: 

2
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when Ni = , the equation (12) can be rearranged as 
follows: 

  2
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From the boundary condition in equation (5), it is clear that  
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By substituting equation (21) to (19) can be rearranged as 

follows:  
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From the equations (11, 12, 15-18, 22) and the fictitious 
process noise input, the one-dimensional continuous-time state 
equation can be obtained as the following:  

 ( ) ( ) ( ) ( ) ( )T t AT t Bq t G t w t= + +�                                      (23) 

{ }1 2( ) ( ), ( ), , ( ),...., ( ) T
m NT t T t T t T t T t= …                       (24) 

1 1

2

0
0

0

x c

B

ρ
⎡ ⎤
⎢ ⎥Δ⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#
#

                                                                     (25)  

Let 1
1 2

1 1

k
c x

α
ρ

=
Δ

, 2
2 2

2 2

k
c x

α
ρ

=
Δ

, then, the state matrix, A is 

shown as follows:  
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where A is the state matrix, B and C are the input matrices. 
( )w t is assumed to be the Gaussian white noise with zero 

mean, and it represents the modeling error. The 
continuous-time state equation (23), can be discretized with the 

sampling time, tΔ . The discrete-time state equation and its 
relative equations are shown as follows.  

( 1) [( 1) , ] ( ) ( 1) ( ) ( 1)T k Φ k t k t T k k q k w k+ = + Δ Δ + Γ + + +  (27) 
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In the equations above, ( )w k  is the processing error input 
vector, which is assumed to be the Gaussian white noise with 
zero mean and with the variance, { ( ) ( )} QT

kjE w k w j δ= . kjδ  is 
the Dirac delta function. The discrete-time measurement 
equation is shown below.  

( ) ( ) ( )z k HT k v k= +                                                         (28) 
where Z( )k  is the observation vector at the kth sampling 

time. The measurement matrix, [ ]0 0.......1H = . ( )v k  is the 
measurement error vector, which is assumed to be the Gaussian 
white noise with zero mean and with the variance, 

{ ( ) ( )}T
kjE v k v j Rδ= . 

IV. THE INTELLIGENT FUZZY WEIGHTED RLSE INPUT 
ESTIMATION APPROACH 

The conventional input estimation approach has two parts: 
one is the Kalman filter without the input term, and the other is 
the fuzzy weighted recursive least square estimator. The system 
input is the unknown time-varying heat flux. The Kalman filter 
is operating under the setting of the processing error variance, 
Q , and the measurement error variance, R . It is to use the 
difference between the measurements and the estimated values 
of the system temperature as the functional index. Furthermore, 
by using the fuzzy weighted recursive least square algorithm, 
the heat flux can be precisely estimated. The detailed 
formulation of this technique can be found in Ref [16].  

A. The equations of the Kalman filter are shown as follows:  
( ) ( )/ 1 1/ 1X k k X k k− = Φ − −                                          (29) 

( / 1) ( 1/ 1) TP k k P k k Q− = Φ − − Φ +                                    (30) 

( ) ( / 1) Ts k HP k k H R= − +                                               (31) 
1( ) ( / 1) ( )TK k P k k H s k−= −                                              (32) 

( )( / ) [ ] ( / 1)P k k I K k H P k k= − −                                       (33) 

( ) ( ) ( / 1)Z k Z k HX k k= − −                                               (34) 

( / ) ( / 1) ( ) ( )X k k X k k K k Z k= − +                                      (35) 
B. The recursive least square algorithm: 

( ) [ ( 1) ]B k H M k I= Φ − + Γ                                               (36) 
( ) [ ( ) ][ ( 1) ]M k I K k H M k I= − Φ − +                                    (37) 

11 1( ) ( 1) ( ) ( ) ( 1) ( ) ( )T T
b b bK k P k B k B k P k B k s kγ γ

−− −⎡ ⎤= − − +⎣ ⎦ (38) 

[ ] 1( ) ( ) ( ) ( 1)b b bP k I K k B k P kγ −= − −                                     (39) 
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ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1)bq k q k K k Z k B k q k⎡ ⎤= − + − −⎣ ⎦                       (40) 
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( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ/ / 1 / 1X k k X k k K k Z k HX k k⎡ ⎤= − + − −⎣ ⎦   (42) 

)(ˆ kq  is the estimated input vector. ( )bP k  is the error 
covariance of the estimated input vector. γ  is the weighting 
constant or weighting factor. B(k) and M(k) are the sensitivity 
matrices. ( )bK k  is the correction gain. ( )Z k  is the bias 
innovation produced by the measurement noise and the input 
disturbance. )(ks  is the covariance of the residual. P  is the 
filter’s error covariance matrix.  

C. The construction of the intelligent fuzzy weighting factor: 
The fuzzy weighting factor is proposed based on the fuzzy 

logic inference system. It can be operated at each step based on 
the innovation from the Kalman filter. It performs as a tunable 
parameter which not only controls the bandwidth and 
magnitude of the RLSE gain, but also influences the lag in the 
time domain. To directly synthesize the Kalman filter with the 
estimator, this work presents an efficient robust forgetting 
zone, which is capable of providing a reasonable compromise 
between the tacking capability and the flexibility against 
noises. In the recursive least square algorithm, ( )kγ is the 
weighting factor in the range between 0 and 1. The weighting 
factor ( )kγ  is employed to compromise between the upgrade 
of tracking capability and the loss of estimation precision. The 
relation has already been derived as follows ([17]):  

1 ( )

( )
( )

( )

Z k

k
Z k

Z k

σ

γ σ σ

⎧ ≤
⎪⎪= ⎨ >⎪
⎪⎩

                                         (43) 

The weighting factor, ( )kγ , as shown in Equation (43) is 
adjusted according to the measurement noise and input bias. In 
the industrial applications, the standard deviation σ  is set as a 
constant value. The magnitude of weighting factor is 
determined according to the modulus of bias innovation, 

( )Z k . The unknown input prompt variation will cause the 

large modulus of bias innovation. In the meantime, the smaller 
weighting factor is obtained when the modulus of bias 
innovation is larger. Therefore, the estimator accelerates the 
tracking speed and produces larger vibration in the estimation 
process. On the contrary, the smaller variation of unknown 
input causes the smaller modulus of bias innovation. In the 
meantime, the larger weighting factor is obtained according to 
the small modulus of bias innovation. The estimator is unable 
to estimate the unknown input effectively. For this reason, the 
intelligent fuzzy weighting factor for the inverse estimation 
method which efficiently and robustly estimates the 
time-varying unknown input will be constructed in this 
research.  

The intelligent fuzzy weighted input estimation method is 
derived following as:  

The range of fuzzy logic system input, ( )kθ , may be chosen 

in the interval, [ ]0,1 . The input variable is defined as:  

( )
22

( )
( )

( )
( ) f

Z k
Z k

k
Z k t

tZ k

θ

Δ

⎛ ⎞⎛ ⎞Δ Δ
⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

=

+

                                           (44)                   

where ( ) ( ) ( 1)Z k Z k Z kΔ = − − . t+  is the sampling 
interval. ft  is the measure total time. The proposed intelligent 

fuzzy weighting factor uses the input variable ( )kθ  to 

self-adjust the factor ( )kγ  of the recursive least squares 
estimator. Therefore, the fuzzy logic system consists of one 
input and one output variables. The range of input, ( )kθ , may 

be chosen in the interval, [ ]0,1 , and the range of output, ( )kγ , 

may also be in the interval, [ ]0,1 . The fuzzy sets for ( )kθ  and 

( )kγ  are labeled in the linguistic terms of EP (extremely large 
positive), VP (very large positive), LP (large positive), MP 
(medium positive), SP (small positive), VS (very small 
positive), and ZE (zero). The specific membership is defined by 
using the Gaussian functions.  

A fuzzy rule base is a collection of fuzzy IF-THEN rules:  
IF ( )kθ  is zero (ZE), THEN ( )kγ  is an extremely large 

positive (EP); 
IF ( )kθ  is a very small positive (VS), THEN ( )kγ  is a 

very large positive (VP); 
IF ( )kθ  is a small positive (SP), THEN ( )kγ  is a large 

positive (LP); 
IF ( )kθ  is a medium positive (MP), THEN ( )kγ  is a 

medium positive (MP); 
IF ( )kθ  is a large positive (LP), THEN ( )kγ  is a small 

positive (SP); 
IF ( )kθ  is a very large positive (VP) THEN ( )kγ  is a very 

small positive (VS); 
IF ( )kθ  is an extremely large positive (EP) THEN ( )kγ  is 

zero (ZE), 
where ( )k Uθ ∈  and ( )k V Rγ ∈ ⊂  are the input and 

output of the fuzzy logic system, respectively. Therefore, the 
nonsingleton fuzzier can be expressed as the following 
equation: 

( )( )
( )( )

( )

2

2exp
2

l
i

A
l
i

k x
k

θ
θ

σ
μ

⎛ ⎞−⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎝ ⎠

=                                    (45)                   

( )( )A kθμ  decreases from 1 as ( )kθ  moves away from l
ix . 

( )2l
iσ  is a parameter characterizing the shape of ( )( )A kθμ .  
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The Mamdani maximum-minimum inference engine was 
used in this paper. The max-min-operation rule of fuzzy 
implication is shown below: 

( )( ) ( )( ) ( ) ( )( ){ }1 1max min , ,j j j
i i

c d
B j i A A Bk k k kμ γ μ θ μ θ γ= = →

⎡ ⎤=
⎣ ⎦       (46) 

where c is the fuzzy rule, and d is the dimension of input 
variables. 

The defuzzier maps a fuzzy set B in V to a crisp point Vγ ∈ . 
The fuzzy logic system with the center of gravity is defined 
below: 

( )( )
( )( )

* 1

1

( )

n l l
Bl

n l
Bl

y k
k

k

μ γ
γ

μ γ
=

=

=
∑
∑

                                             (47)                                 

n  is the number of outputs. ly  is the value of the lth  

output. ( )( )l
B kμ γ  represents the membership of ( )l kγ  in the 

fuzzy set B . Substituting ( )* kγ  of Equation (47) in 
Equations (38) and (39) allows us to configure an adaptive 
fuzzy weighting function of the recursive least square estimator 
(RLSE). A flow chart of the computation for the application of 
the intelligent fuzzy weighted input estimation method is 
shown in Fig. 2. 

  

 
Fig. 2 A flow chart of the computation for the application of the 

intelligent fuzzy weighted input estimation method 

V. DISCUSSION OF THE EXPERIMENTAL MEASUREMENT AND 
ESTIMATION RESULTS  

To verify the estimated performance of the proposed 
method, an inverse heat conduction problem of the multilayer 
materials is considered. The heat flux in the bottom and 
temperature are estimated inversely by measuring the 
temperature on the top. The test sample is heated by the 
standard heat source with the fixed power. The copper test 
sample is heated in the bottom; moreover, an aluminum test 
sample is put on the top of the copper test sample. Two 
materials are combined with each other tightly. Therefore, the 
contact point of the two materials is the ideal interface of the 
heat-conduction. The inner wall and the top of the environment 
are insulated. The temperature of different thickness (copper 
fixed 1 5L mm=  and aluminum is 2 2,3,4,5L mm= ) test 
samples are measured by the thermocouples. The total time 
period, 250ft = sec. The sampling interval, 0.5tΔ = sec. The 
measurement temperature curves of different test samples are 
shown in Fig. 3. 

The temperature measurement from the Fig. 3, it shows that 
the measurement error of the thermocouple is approximately 
±0.01% (with the measurement noise covariance, R = 410− ). 
The space interval, /sx x NΔ =  ( N =30). The process noise 

covariance matrix, 310Q = . The temperatures are measured on 
the tops of different samples with different thicknesses (L=7, 8, 
9 and 10mm). Fig. 4 shows that the heat flux, q̂  in the bottom 
is estimated inversely by substituting the temperature data into 
the presented method. The estimation results demonstrate that 
the penetration delay of temperature may exist in the estimation 
process. Since the standard heat source is not in an absolutely 
insulated condition in the measurement process, in order to 
reduce the influence of the penetration delay of temperature, 
100 data are averaged to ensure the accuracy of the heat flux 
estimation. The data are selected from the smoothest curve 
(50sec) of Figs. 4a~4d. The average value of the estimated heat 

flux, 
100

1

ˆ ˆ( ) /100ave i
i

q q
=

= ∑ , where the average value of the 

measured data (150~200sec) from the 7mm test sample, 
1ˆ( )aveq =4139.307 2/W m , the average value of the measured 

data (190~240sec) from the 8mm test sample, 
2ˆ( )aveq =4008.050 2/W m , the average value of the measured 

data (195~245sec) from the 9mm test sample, 
3ˆ( )aveq =4044.381 2/W m , and the average value of the 

measured data (200~250sec) from the 10mm test sample, 
4ˆ( )aveq =4153.028 2/W m . The total average value was 

estimated by the average value of all test samples: 
4

1
_

ˆ( )
ˆ

4

ave i
i

t ave

q
q ==

∑
=4086.192 2/W m                               (48) 

The total average value of the heat flux is regarded as the 
heat source in the bottoms of the test samples. In this paper, the 
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percentage error (PE) is used to verify the precision of the 
estimation model. The definition of the PE is described in 
Equation (49).  

_

_

ˆ ˆ( )
(%) 100%

ˆ
t ave ave i

t ave

q q
PE

q

⎡ ⎤−⎣ ⎦= ×                                 (49) 

where _ˆt aveq  is the total average value of the heat flux. ˆ( )ave iq  
is the average value of the ith test sample’s heat flux. 

1 2 3 4, , ,i S S S S= , which represent 4 test samples with different 

thicknesses ( 7,8,9,10L mm= ). The verified comparisons of 
estimated results are shown as the Table I.  

Table I shows that the errors are all small. This means the 
estimation method can precisely estimate the heat flux for 

different samples. Besides, the data of the 9L mm=  sample 
are regarded as a reference for adjusting the values of 
parameters in the estimation method. 

TABLE I  
THE VERIFIED COMPARISONS OF ESTIMATED HEAT FLUXES

 7L mm=  8L mm=  9L mm=  10L mm=  
The average value of 
the estimated heat flux  4139.307 2/W m  4008.050 2/W m  4044.381 2/W m  4153.028 2/W m  

The percentage error 1.29%PE =  1.91%PE =  1.02%PE =  1.63%PE =  
 
The Kalman filter is operating under the setting of the 

processing error variance, Q, and the measurement error 
variance, R. It regards the renewal values produced by using the 
difference between the temperature estimates and the 
temperature measurements as the functional index, and utilizes 
the real-time least square algorithm to precisely estimate the 
heat flux. The measurement error variance of the thermocouple 
is assumed as a given value, 410R −= . The processing error 
variance, Q is adjusted between 110− to 910 . The temperature 
measurements are then regarded as the inputs into the presented 
method, which estimates the heat flux (195~245sec) in the 
bottom of multilayer materials sample, 9L mm=  (copper 
sample is 5mm and aluminum sample is 4mm). The relative 
root mean square error (RRMSE) of the estimated result can be 
calculated and chosen as the optimal estimation parameters. 
The definition of the RRMSE is described in Equation (50).  

2
_ _

1

ˆ ˆ ˆ[( ) / ]
n

t ave s t ave
s

q q q
RRMSE

n
=

−
=

∑
                                   (50) 

where n  is the total number of time steps. _ˆt aveq  is the actual 

heat flux. ˆsq  is the estimated heat flux. The RRMSE values of 
the estimation results can be plotted as shown in Fig. 5. It 
indicates that when the process noise variance, Q increases, it 
will accelerate the estimation speed and produce the better 
estimation result. On the other hand, when the process noise 
variance, Q  decreases, the error covariance matrix will 
decrease, and the Kalman gain ( ).K k  will therefore decrease. 
The main reason is that the correction need is decreasing, and 
only the smaller Kalman gain ( )K k  is needed to offer that 
correction. On the other hand, as the process noise variance Q 
increases, the error covariance matrix will increase, which 
causes the Kalman gain ( )K k  to increase. The main reason is 
that the correction need is increasing, and therefore the larger 
Kalman gain ( )K k  is needed to offer that correction. As a 
result, the Kalman filter will have faster correction performance 
but have larger oscillation in the estimation process. 

Fig. 5 shows the increasing modeling error when  

 
1 310 ~ 10Q −= . This makes the new measurements significant 

for the correction of estimation. The RRMSE is then reduced. 
However, if the modeling error is too large ( 4 910 ~ 10Q = ), the 
Kalman filter will produce larger oscillations, which cause the 
increase of the RRMSE value. As a result, the relatively smaller 
value of RRMSE is making the parameter 310Q =  the best 

choice. 110Q −= , 310 , and 610  in Fig. 6a are used to show that 
when the error is larger, the result with the larger oscillation 
and faster response will be produced. 110Q −=  in Fig. 6b 
shows that the temperature curve cannot be estimated precisely. 

The estimation results of the heat flux using the constant 
weighting factors ( γ = 0.125, 0.525, 0.925) and the intelligent 
fuzzy weighting function are plotted in Fig. 7. The intelligent 
fuzzy weighting factor ( )kγ  plays the role of the controller, 
which is employed to compromise between the tracking 
capability and the loss of estimation precision. When the 
constant weighting factor ( γ = 0.125) is adopted, the estimation 
convergence is fairly rapid. The only issue is that the 
oscillations are also produced. When the constant weighting 
factor ( γ = 0.925) is adopted, the estimation convergence is 
fairly slow. However, the oscillation issue in this case is 
relatively small. As a result, the value of constant weighting 
factor should be appropriately chosen to obtain better 
estimation performance, and it will not be easy. The simulation 
results demonstrate that the fuzzy weighted input estimation 
inverse methodology can resolve this issue and produce better 
results in tracking the heat flux.  

Considering the influence caused by the sampling interval, N 
is set to be 18, 30, 45, 90, and 270 to investigate the estimation 
results. When set 410R −=  and 310Q = , the result is shown in 
Fig. 8. When xΔ  is smaller, the computational load is higher, 
but the result is more precise. On the other hand, when xΔ  is 
larger, the result is less precise. 
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Fig. 3 The curves of temperature measurements.（ 7L mm= , 8mm , 

9mm  and 10mm ） 
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Fig. 4a The estimated heat flux ( 7L mm= )    
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Fig. 4b The estimated heat flux ( 8L mm= ) 
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Fig. 4c The estimated heat flux ( 10L mm= )  
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Fig. 4d The estimated heat flux ( 9L mm= ) 

 

 

Fig. 5 The RRMSE vs. The different values of Q, ( R = 410− ) 
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Fig. 6a The estimation results of the heat flux.（ -110Q = , 310 , and 
610 ） 
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Fig. 6b Comparison of temperature estimates when the values of error 

variance are different 
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Fig. 7 The estimation results of the heat flux ( γ =0.125, 0.525, 0.925 

and the fuzzy weighting function) 
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Fig. 8 The estimation results of the heat flux ( xΔ =18, 30, 45, 90 

and 270) 

VI. CONCLUSION 
In this paper, the bottoms of the multilayer material test 

samples with different thicknesses are heated by applying the 
standard heat source, and the temperatures on the top are 
measured by using the thermocouples. The FWIEM is utilizing 
the measured temperature data to estimate the heat flux in the 
bottoms of samples. The influence on the estimation caused by 
the processing noise covariance Q, the weighting factor γ , the 
space interval xΔ , will be investigated by utilizing the 
experiment verification. The results reveal that if the process 

noise variance Q  increases and the smaller weighting factor is 
adopted, the faster estimation convergence and larger 
oscillations will be produced. The adoption of fuzzy weighting 
factor can enhance the speed of tracking and reduce the 
influence due to the noise. With smaller sampling interval xΔ , 
the computational load will be higher, but the result will be 
more precise. The experiment verification shows that the 
FWIEM has the properties of better targat tracking capability 
and more effective noise reduction, and that it is an efficient, 
adaptive, and robust inverse estimation method for the 
estimation of the unknown heat flux of the multilayer material. 
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