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1  Abstract—This paper describes a new approach of classification 
using genetic programming. The proposed technique consists of 
genetically coevolving a population of non-linear transformations on 
the input data to be classified, and map them to a new space with a 
reduced dimension, in order to get a maximum inter-classes 
discrimination. The classification of new samples is then performed 
on the transformed data, and so become much easier. Contrary to the 
existing GP-classification techniques, the proposed one use a 
dynamic repartition of the transformed data in separated intervals, the 
efficacy of a given intervals repartition is handled by the fitness 
criterion, with a maximum classes discrimination. Experiments were 
first performed using the Fisher’s Iris dataset, and then, the KDD’99 
Cup dataset was used to study the intrusion detection and 
classification problem. Obtained results demonstrate that the 
proposed genetic approach outperform the existing GP-classification 
methods [1],[2] and [3], and give a very accepted results compared to 
other existing techniques  proposed in [4],[5],[6],[7] and [8]. 

 
    Keywords—Genetic programming, patterns classification, 
intrusion detection 

I. INTRODUCTION 
ATTERN classification concepts are important in the 
design of computerized information processing systems 

for many applications such as remote sensing, medical 
diagnosis, sonar, radar etc. Pattern classification involves the 
development of theory and techniques for the categorization 
of input data into identifiable classes [25]. A pattern class is a 
category determined by some common attributes. A pattern is 
the description of any member of a category representing a 
pattern class. The application determines the measurement of 
features. Classification typically involves the mapping of an 
N-dimensional feature vector to one of multiple classes. The 
N-dimensional feature vector is like a point in the N-
dimensional feature space. The samples belonging to a 
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particular class give rise to a data distribution of that class in 
some region of the feature space. 

It is possible for data distributions of two classes to be 
either overlapping or non-overlapping in the feature space. A 
pattern classifier determines the decision boundaries between 
different classes. The complexity of these boundaries may 
range from linear to non-linear surfaces. The significance of 
decision boundaries lies in the fact that they can usually be 
generated by utilizing representative patterns from each class. 
The pattern classifier uses these decision boundaries and 
determines the class for a new pattern. In the present work, we 
consider the problem of classifying real number vectors form 
RN, where N is the features number of a given pattern. 

The basic problem in pattern classification is to develop 
decision functions that partition the feature space into regions 
each of which contains sample patterns belonging to a class.  

Intrusions in computer networks can be traced and detected 
by collecting information about the traffic in and out of the 
network. From a pattern classification point of view, the 
network intrusion detection problem can be formulated as 
follows: given the information about network connections 
between pairs of hosts, assign each connection to one out of N 
data classes representing normal traffic or different categories 
of intrusions (e.g., Denial of Service, access to root privileges, 
etc.). It is worth noting that various definitions of data classes 
are possible. The term "connection" refers to a sequence of 
data packets related to a particular service, e.g., the transfer of 
an image via the ftp protocol.  

The intrusion detection problem can then be viewed as a 
Multi-category pattern classification problem, when each 
connection features constitute one pattern to be assigned to 
one of the N existing classing (depending on the number of 
intrusions types taken into account).   

In this paper, an attempt is made to show the use of a new 
GP-classification approach to perform network intrusion 
detection. Section 2 gives some theoretic background about 
genetic programming approaches and related works. The 
section 3 explains the method developed in the present work 
with its different elements and parameters. In the section 4, we 
give a description of the two datasets used for experiments 
and the codification of the different data elements.  
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    Section 5 summarizes the different obtained results and 
gives a comparison with the other approaches with 
discussions. Enhancements of the proposed method are 
explained in the section 5. The paper is finally concluded with 
a summary of the most important points and future works. 

II.  THEORY 

A.  Genetic Programming Paradigm  

Genetic programming is an extension of genetic algorithms 
[9]. It is a general search method that uses analogies from 
natural selection and evolution. In contrast to GA, GP encodes 
multi-potential solutions for specific problems as a population 
of programs or functions. The programs can be represented as 
parse trees. Usually, parse trees are composed of internal 
nodes and leaf nodes. Internal nodes are called primitive 
functions, and leaf nodes are called terminals. The terminals 
can be viewed as the inputs to the specific problem. They 
might include the independent variables and the set of 
constants. The primitive functions are combined with the 
terminals or simpler function calls to form more complex 
function calls.  

GP randomly generates an initial population of solutions. 
Then, the initial population is manipulated using various 
genetic operators to produce new populations. These operators 
include reproduction, crossover, mutation, dropping condition, 
etc. The whole process of evolving from one population to the 
next population is called a generation. A high-level description 
of GP algorithm can be divided into a number of sequential 
steps: 

• Create a random population of programs, or rules, using 
the symbolic expressions provided as the initial 
population. 

• Evaluate each program or rule by assigning a fitness value 
according to a predefined fitness function that can 
measure the capability of the rule or program to solve the 
problem. 

• Use reproduction operator to copy existing programs into 
the new generation. 

• Generate the new population with crossover, mutation, or 
other operators from a randomly chosen set of parents. 

• Repeat steps 2 onwards for the new population until a 
predefined termination criterion has been satisfied, or a 
fixed number of generations have been completed. 

• The solution to the problem is the genetic program with 
the best fitness within all the generations. 

In GP, crossover operation is achieved firstly by 
reproduction of two parent trees; two crossover points are then 
randomly selected in the two offspring trees. Exchanging sub-
trees, which are selected according to the crossover point in 
the parent trees, generates the final offspring trees. The 
obtained offspring trees are usually different from their parents 
in size and shape.  

Mutation operation is also considered in GP. A single 
parental tree is firstly reproduced. Then a mutation point is 
randomly selected from the reproduction, which can be either 

a leaf node or a sub-tree. Finally, the leaf node or the sub-tree 
is replaced by a new leaf node or sub-tree generated randomly. 
Fitness functions ensure that the evolution is toward 
optimization by calculating the fitness value for each 
individual in the population. The fitness value evaluates the 
performance of each individual in the population. 

B.  Genetic Programming and Classification Task 

Generally, GP trees can perform classification by returning 
numeric (real) values and then translating these values into 
class labels [10]. For binary classification problems the 
division between negative and non-negative numbers acts as a 
natural boundary for a division between two classes. This 
means that genetic programs can easily represent binary class 
problems. While evaluating the GP expression for an input 
data, if the result of the GP-expression is ≥ 0, the input data is 
assigned to one class; else it is assigned to the other class. 
Thus, the desired output D is +1 for one class and is -1 for the 
other class in the training set. Hence, the output of a GP-
expression is either +1 (indicating that the input data belong to 
that class) or -1 (indicating that the input sample dose not 
belong to that class). During the genetic evolution of 
individuals, the best individual is those who correctly classify 
the maximum of training samples, the positive samples must 
give a value of +1 for the output, and negative samples must 
give -1.   

Given a set of training data DTrain={X1,X2,…..Xp}⊂ RN , a 
binary classifier is a GP-expression T, so that: 

                     T(Xi) ≤ 0  if  Xi   ∈ Class 1  (D=+1) 

                T(Xi) > 0      otherwise        (D=-1)                   (1) 

GP is guided by the fitness function to search for the most 
efficient computer program to solve a given problem. A 
simple measure of fitness has been adopted for the binary 
classification problem: 
 

            (2)    
ngfor traini used samples Num.

correctly classified samples Num.Fitness(T) =  

 
Each genetic expressing evolved map the samples space of 

the Xi’s, to the real numbers set R, and attribute the interval ]-
∞, 0] to the class 1 and the interval ]0,+ ∞ [ to the class 2. This 
mapping is static, but it can achieve good results for 2-
category classification problems. Unfortunately, when more 
than two classes are involved (n-classes problem), finding 
meaningful division points over the set of reals the genetic 
programs return is more difficult. If boundary regions are 
chosen at arbitrary points over the set of reals then genetic 
programs face the problem of not only containing the 
necessary elements to distinguish between classes, but also 
must perform a translation task to provide output in the 
necessary range pre-specified for a given class. Many 
alternatives were proposed by many authors to solve this 
problem. 
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    In [11], if there are n classes in a classification task, these 
classes are sequentially assigned n regions along the numeric 
output value space from some negative numbers to positive 
numbers by  (n-1)*thresholds/boundaries. Class 1 is allocated 
to the region with all numbers less than the first boundary; 
class 2 is allocated to all numbers between the first and the 
second boundaries and class n to the region with all numbers 
greater than the last boundary n-1, as shown in the following: 
 

      (3)   

b )T(Xb  ifn        classe
b )T(Xb  if    1-n classe
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In this equation, n refers to the number of object classes, T 

is the GP-expression evolved, T(Xi) is the output value, and 
b1, b2, bn-1, bn are static, pre-defined classes boundaries. 

An alternative approach to static range selection, where 
ranges are arbitrarily chosen to correspond to class boundaries 
that all programs for the run must adhere to, is to allow each 
program to use a separate set of ranges for class boundaries 
that are dynamically determined for each individual program. 
Given a classification problem with many training examples 
and an individual from a GP population it is possible to use a 
subset of the training examples and record the values that are 
returned when attributes for specific classes are used as inputs. 
Based upon these outputs the effectively infinite range of the 
reals can then be segmented into regions corresponding to 
class boundaries based upon areas the program has returned 
values for each class in the subset of training examples, this 
method was implemented in [11]. 

The GP employed for classification tasks do however have 
a requirement for long training times when compared to many 
other classification methods. It is also often quite difficult to 
extract a meaningful reason as to why a given class was 
chosen. Because of these factors the GP method is seen to be 
applicable to tasks where accuracy is the most important 
factor in classification, and training times and understand 
ability are seen as relatively unimportant. 
The major considerations in applying GP to pattern 
classification are: 
• GP-based techniques are data distribution-free, so no a 

priori knowledge is needed about statistical distribution of 
the data; 

• GP can directly operate on the data in its original form; 
• GP can detect the underlying but unknown relationship 

that exists among data and express it as a mathematical 
expression; 

• GP can discover the most important discriminating 
features of a class during training phase ; 

The generated expression can be easily used in the 
application environment.

    C.  Related Works  
The use of genetic programming to solve the multi-category 

classification and the intrusion detection problems has been 
attempted in many researches in different ways. In [12], 
Loveard et al. proposed five methodologies for multi-category 
classification problems. Of these five methodologies, they 
have shown that dynamic range selection method is more 
suitable for multi-class problems. In this dynamic range 
selection scheme, they record the real valued output returned 
by a classifier (tree or program) for a subset of training 
samples. The range of the recorded values is then segmented 
into regions to represent class boundaries. If the output of the 
classifier for a pattern falls in the region, then the class is 
assigned to. Once the segmentation of the output range has 
been performed, the remaining training samples can then be 
used to determine the fitness of an individual (or classifier). 
Chien et al. [13] used GP to generate discriminator functions 
using arithmetic operations with fuzzy attributes for a 
classification problem. In [14], Mendes et al. used GP to 
evolve a population of fuzzy rule sets and a simple 
evolutionary algorithm to evolve the membership function 
definitions. These two populations are allowed to co-evolve so 
that both rule sets and membership functions can adapt to each 
other. For a C-class problem, the system is run C-times. 
Kishore et al. [3] proposed an interesting method which 
considers a class problem as a set of two-class problems. 
When a GP classifier expression (GPCE) is designed for a 
particular class, that class is viewed as the desired class and 
the remaining classes taken together are treated as a single 
undesired class. So, with GP runs, all GPCEs are evolved and 
can be used together to get the final classifier for the C-class 
problem. They have experimented with different function sets 
and incremental learning. In [15], Durga and Nikhil R. 
proposed a method to design classifiers for a C-class pattern 
classification problem using a single run of GP. For a class 
problem, a multi-tree classifier consisting of C-trees is 
evolved, where each tree represents a classifier for a particular 
class. The performance of a multi-tree classifier depends on 
the performance of its constituent trees. A new concept of 
unfitness of a tree was exploited in order to improve genetic 
evolution. Weak trees having poor performance are given 
more chance to participate in the genetic operations so that 
they get more chance to improve themselves. 

In [10], Mengjie and Will proposed two new approaches to 
ameliorate the performances of genetic classification 
algorithms. Rather than using fixed static thresholds as 
boundaries to distinguish between different classes, this 
approach introduces two methods of classification where the 
boundaries between different classes can be dynamically 
determined during the evolutionary process. The two methods 
are centred dynamic class boundary determination and slotted 
dynamic class boundary determination. Their obtained results 
suggest that, while the static class boundary method works 
well on relatively easy object classification problems, the two 
dynamic classes boundary determination methods outperform 
the static method for more difficult, multiple class object 
classification problems. 
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    The mentioned approaches were tested on different dataset 
publicly available, like the IRIS dataset, the Cancer dataset, 
the Australian Credit Card and the Fisher’s Iris data or the 
Heart Disease datasets, witch are relatively very small and 
limited compared to the intrusion detection problem ones. The 
most important work on GP-classification for intrusion 
detection is the one presented in [1] by Dong Song, where a 
Page-based Linear Genetic Programming is implemented with 
a two-layer Subset Selection scheme to address only the two-
class intrusion detection classification problem, the same 
author introduce and hierarchical RSS-DSS algorithm for 
dynamically filtering large datasets to enhance the system 
performances in [2]. Less important works can be found in 
[16], [17] with the Chimera model, and [18]. 
 

III.  PROPOSED GP-CLASSIFICATION APPROACH  
The present work propose a new approach of a dynamic 

GP-based classifier witch consist of genetically coevolving a 
population of non-linear transformations on the input data to 
be classified, and map them to a new space with a reduced 
dimension (1-D), in order to get a maximum inter-classes 
discrimination. Let DTrain={X1,X2,…..Xp}⊂ RN  be the set of 
training data. Because the proposed approach belongs to the 
supervised learning category, each sample Xi can be labelled 
with its class identifier j and become Xi

j. The set DTrain can 
then be subdivided into n sub-set corresponding to n learned 
classes, such that: 
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The output value for each sample from the each training 

sample is computed using the GP-expression T, this allows to 
compute the transformed map for each sub-set DTrain

j
 , using 

the GP-expression T, T(DTrain
j) given by:      
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The classification approach assign to each class j, the 

region covered by the set T(DTrain
j). When a new sample Y is 

presented to the classifier, the corresponding class is deduced 
according to the following: 
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If the value of T(Y) dose not appears in any set T(DTrain
j), 

we assign Y to the nearest class using the algorithm presented 
below in the Fig. 4.  

We can see that the proposed classification method 
transform the problem from an N-dimensional vectors 
classification to a 1-dimentional values classification one. The 
classification of the transformed vectors becomes much easier, 
but this is assured if a maximum discrimination exist between 
the sets T(DTrain

i). It is role of the genetic programming system 
to assure such criteria, the fitness of each transformation T 
depend on its ability to give a maximum discrimination 
between the T(DTrain

i)’s.  
There is a trade-off between the generality and power of 

this classification approach search. To perform a relatively 
unbiased search and allow the saliencies of the problem to 
emerge the proposed approach has many degrees of freedom 
in its representation of the solution. Rather than evolve the 
class predictors directly and further encumber the genetic 
program, features are evolved which are then passed to a 
simple classifier. This hybrid approach assists the global 
search of the genetic program with the local search of the 
simple classifier. The classifier, with its malleable decision 
boundaries, performs local tuning of the solution to 
compensate for the genetic program’s difficulty with evolving 
constants. In the following, we present the different steps of 
the classification approach: the learning phase, witch consist 
to search for the best transformation of the raining data DTrain , 
and the test phase that classify each test sample from a set of 
new vectors  DTest.  
 

A.  The Learning Phase  

1.  Terminals and Functions  
The GP-transformations are built using a terminal set Tr 

and a function set Fn. The terminals are the fields of the used 
training dataset: Tr={V1,V2,….,VN}, in addition, we also used 
constants as terminals. These constants are randomly 
generated using a uniform distribution. To be consistent with 
the feature terminals, we also set the range of the constants as 
[-100, 100]. The functions set include:   
• Arithmetic operators: +, -, /, *, ^; 
• Non-linear functions: Sin ,Cos ,Ln , Log ,Exp ,Tan;   

The +, - , and * operators have their usual meanings: addition, 
subtraction and multiplication, while / represents “protected” 
division which is the usual division operator except that a 
divide by zero gives a result of zero. Each of these functions 
takes two arguments. The transformations Ti is represented by 
hierarchical S-expressions trees, like proposed in the standard 
Koza implementation.  

2.  The Fitness Function 
For a given training set DTrain⊂ RN, the genetic 

programming system evolves a population of transformations 
T. In order to compute the fitness of each one, we need to 
define a distance between the mapped sets T(DTrain

i).  
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   The value of the fitness must express the inter-classes 
discrimination and separation. During our experiments, we 
have tested many fitness measurements, such as the Maximum 
distance between gravity centres of the mapped classes and 
the inter-classes and intra-classes variance criterion. But 
theses functions assume that the transformed sets T(DTrain

i) 
must be homogeneous and linearly separable, this condition is 
not always easy to achieve, so it can be better to give to the 
classification system the ability to generate separated but 
alternate transformed sets. The Fig. 1 illustrate the two 
situations: (a) represent two pointes sets linearly separable (in 
a one dimensional space), and (b) show two separated pointes 
sets but in an alternated situation.  

For this reason, we have proposed a new fitness function 
formula, witch try to minimize the total intersection between 
point sets, and search for a minimum number of common 
points between the mapped classes. The fitness function is 
inversely proportional to the computed number of common 
points between transformed sets T(DTrain

i). Height values of 
the fitness signify that the transformed sets have a very small 
intersection region, and then the discrimination between each 
set elements become easier. The fitness value is computed by: 
 

                  (7)           
))Card(T(D

))T(DCard(

Fitness(T)
Train

ni

i
TrainI

≤=  

 

 
Fig. 1 The two possible separation situations between two point sets 

 

When the function Card(X) gives the cardinality of a given 
set X. The performed experiments show that this function give 
the best classification rates with respect to other fitness 
function mentioned above.  

3.  Genetic Operators and Parameters  

The standard crossover and mutation operators presented in 
the section 1.1 are used in this implementation. Each 
transformation T is represented by a binary tree and the 
genetic operators produce always valid binary expressions. To 
control the maximum depth of the generated expressions, we 
use a modifiable parameter to control the length of the 
generated expressions. The genetic evolution process stop 
when it reach a given generations count (termination criteria).   

The Table I gives an overview of the parameters used in our 
implementation and the default value used for each one. 

During the evolution process, the result of each transformation 
Ti is bounded in a fixed interval ( [-100,100] by default), to 
avoid to have scatter sets in R.  

The result of the genetic evolution during the training phase 
is the best generated transformation T, with the transformed 
sets T(DTrain

i). This output is used in the test phase to classify 
new samples. 

 
B.  The Test Phase: Classification of Unseen Samples 

Let DTest={Y1,Y2,…,Yk} be a new set of samples to be 
classified. Each vector Yi∈DTest must be assigned to one of the 
n involved classes. To accomplish this task, the classification 
system operates like the following: First, a post-treatment 
algorithm is added to the classification system to compute a 
density array for the points of T(DTrain). This array is used 
with the transformation T during the test phase to deduce the 
class of each elements Yi form DTest. This algorithm is 
presented like the following (Fig. 2):  
 

Let T(DTrain) be the training Set; 
Dens: array of density for T(DTrain) elements; 
For each element p∈ T(DTrain) do  

{For each sample X ∈ DTrain do   
        {For each class i (i form1 to n) do  

  {if  (classe(X)=i)and(T(X)=p)  
         then Dens[p,i]:= Dens[p,i]+1;}  
 } 

                   } 
 

Fig. 2 A Post-treatment algorithm to generate density array, used 
during the testing phase  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Then, for each new sample Yi form DTest, the corresponding 
class is determined using the following algorithm (Fig. 3):  

TABLE I 
 SET OF PARAMETERS USED TO CONTROL THE GENETIC EVOLUTION 

PROCESS 

 Parameter                                      Value 
Generating constant probability      5% 
Generating functions probability     70% 
Crossover rate Pc                                             70% 
Mutation rate Pm                                     10%    
Population size                                100 
Maximum generations count          1000 
Maximum individual’s length        350 
Minimum individual’s length         30 
Selection strategy                           Roulette selection  
Functions set                                 {+, - ,/ ,*, sin, cos,  
                                                          log, ln, tan, exp }  
Terminals set                                 [-100,100]∪  
                                                       {input variables} 
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Let Y be any new sample from DTest; 
Ne: the nearest point from T(DTrain) to T(Y); 
Max: a height random value;  
Class_Y: the deduced class for the sample Y;  
For each element p∈ T(DTrain) do  

                  {d:=Distance (T(Y), p); 
      If d<Max then {Max:=d;  

      Ne:=p;  
              Class_Y:=class(p);  

                  } 
                   else if d=Max then 
                      {If Dens(p,classe(p))>Dens(p,Class_Y)  
                          then {Class_Y:=classe(p); Ne:=p} 

      }        
    }} 

Result := Class_Y; 
 

Fig. 3 The proposed algorithm to deduce the class of new test 
samples Yi, used during the testing phase  

As shown by the experiments, these algorithms combined 
with the fitness function mentioned above, give much better 
results than using classical fitness measurement, this is due to 
the flexibility of the classes distribution accorded to the 
genetic classification system. 

 

IV.  DATASETS AND EXPERIMENTS 

The proposed classification approach is benchmarked using 
two different datasets: the Fisher IRIS [19] dataset and the 
MIT KDD99 dataset [20]. The first one is used just for 
comparison purpose, and to demonstrate the proposed method 
capabilities, it is relatively very small and limited compared to 
the intrusion detection problem datasets. The second one 
concerns our problem of interest: the network intrusion 
detection. The KDD99 dataset is the most used one for 
intrusion detection problems, collected at the Lincoln 
Laboratory of MIT, under DARPA sponsorship, witch consists 
of about 5,000,000 connection records, with 41 data fields. 
The most important work on GP-classification using the 
KDD99 dataset is the one presented in [1, 2] by Dong Song, 
where a Page-based Linear Genetic Programming is 
implemented with a two-layer Subset Selection scheme to 
address only the two-class intrusion detection classification 
problem. 

The first IRIS dataset was divided equally into a training set 
and a test validation set. The specific training sets for Iris 
setosa, versicolor and viginica are derived from the training 
set. To perform the experiments with the KDD99 dataset, the 
’10% KDD’ set was sampled and only 24788 records are used 
to train our system. For the test purposes, we use the whole 
’Corrected (Test)’ used in almost all the implemented 
approaches. The Table II lists the class’s distributions of our 
used sets. 

Attributes  in  the  KDD  datasets  had  all  forms 
:continuous,  discrete,  and  symbolic,  with  significantly 
varying resolution and ranges.  Most pattern classification 
methods  are  not  able  to  process  data  in  such  a  format.  

Hence, pre-processing was required before pattern 
classification models could be built.  Pre-processing  consisted  
of  two  steps:  first  step  involved  mapping  symbolic-valued  
attributes  to  numeric-valued  attributes and second step 
implemented scaling. In the present work, we have used the 
data codification and scaling presented in [21]. All the 
resulting scaled fields belong to the interval [0, 1]. 

 
 
 
 
 
 
 
 
 
 

The Table III summarizes the 41 fields used in the KDD99 
dataset regrouped in three mentioned categories. Each field is 
labelled with a symbolic notation (F1, F2,…, F41) to be used as 
terminals during the genetic process.  

All tests were performed on an Intel-Pentium 4 CPU 
2.66Ghz with 256 Mb Ram size. The performances of 
intrusion detection for the classifier are computed using the 
following expressions: 

   (8.b)      
sconnection normal ofNumber  Total

Positives False FP  rate positive False

(8.a)                          
Attaks ofNumber  Total

number negatives False-1DR   rateDetection 

=

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  TABLE II 
DISTRIBUTION OF THE NORMAL AND ATTACK RECORDS IN THE USED 

TRAINING AND TESTING SETS 
 Training Set Testing Set 

Normal 11673 47.09 % 60593 19.48 % 
DOS 7829 31.58 % 229853 73.90 % 
PBR 4107 16.56 % 4166 1.34  % 
R2L 1119 4.51 % 16347 5.25 % 
U2R 52 0.24 % 70 0.02 % 

 

TABLE III 
THE KDD99 USED FEATURES, GROUPED IN 3 CATEGORIES 

Basic features of individua 
l TCP connections 

Traffic features computed using a 
two-second time window 

duration  
protocol_type  
service  
flag  
src_bytes  
dst_bytes  
land  
wrong_fragment  
urgen 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
 

Count 
srv_count 
serror_rate 
srv_serror_rate 
rerror_rate 
srv_rerror_rate 
same_srv_rate 
diff_srv_rate 
srv_diff_host_rate 
dst_host_count 
dst_h_srv_count 
dst_h_same_srv_rate 
dst_h_diff_srv_rate 
dst_h_s_src_port_rate 
dst_h_srv_diff_h_rate 
dst_h_serror_rate 
dst_h_srv_serror_rate 
dst_h_rerror_rate 
dst_h_srv_rerror_rate 

F23 
F24 
F25 
F26 
F27 
F28 
F29 
F30 
F31 
F32 
F33 
F34 
F35 
F36 
F37 
F38 
F39 
F40 
F41 

Content features suggested by domain knowledge 

hot  
num_failed_logins  
logged_in  
num_compromised  
root_shell  
su_attempted  
num_root  
 

F10 
F11 
F12 
F13 
F14 
F15 
F16 
 

num_file_creations  
num_shells  
num_access_files  
num_outbound_cmds 
is_hot_login  
is_guest_login 

F17 
F18 
F19 
F20 
F21 
F22 
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V. RESULTS AND COMPARISON 
 
This section presents the results of the proposed GP 
classification approach for the 2 n-classes pattern 
classification problems described above, using the set of 
parameters presented in the Table I.  
 

A.  Fisher IRIS Classification Problem  

The dataset was divided equally into a training set and a test 
validation set (75 samples in each set).  

The result of each test is a classification matrix C computed 
by the algorithm presented in Fig.4. 

The classification rate is then computed using the following 
expression: 
 

      (9)         100*
ngfor traini used samples ofNumber 

classified samples ofNumber CR =  

 
Let T(DTest) be the training Set; 
n is the number of classe 
i is the true class of the sample and k is the assigned 
class. 
For i=1 to n do                                               
     For j=1 to n do {  C[i,j]:=0 

         For i=1 to Card(T(DTtest)) do 
    {Apply the classifier and assign 
        class k to input sample; 

                                  C[i,k]:=C[i,k]+1; 
                        }} 
 

  Fig. 4 The algorithm used to compute the classification matrix 
 

Table IV gives the classification matrix obtained using the 
proposed approach.  Tables V and VI give the results of the 
classification process using a maximum likelihood classifier 
and a GP-based classification approach proposed in [3]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The following table (Table VII) give a comparison between 
the detection rate obtained with different classifiers as 
presented in [24, 3], and our proposed classification approach. 
 
 
 
 
 
 
 
 
 
 
 
 

The Fig. 5 show the distribution of the transformed training 
set T(DTrain) obtained with this transformation. 
 

 

 
 
Fig. 5 Distribution of the transformed training set T(DTrain) of the best 

obtained individual 

 

From Table VII, we can see that our proposed approach 
give best classification rate compared to other proposed 
approaches, one sample only from the “Viginica” set is 
misclassified.  

B.   KDD99 Dataset: The Intrusion Detection Problem  

As we see in the Table I, the KDD99 dataset is more 
voluminous than the Iris fisher’s one, and contain more 
classes (5 classes). Discrimination is also very difficult in the 
intrusion detection case because the classes are not clearly 
separable, so the classification task will become harder. To 
evolve the GP classification system, the same parameters set 
presented in the Table I is used. In the Table VIII, we present 
the classification matrix obtained. The Figs. 6 and 7 illustrates 
the transformed training set T(DTrain) repartition, and the 
fitness value evolution during the GP evolution. The best 
individual T is presented by the following expression:  

T: ((((log2(tan(-(F3))))*(cos((tan((F5)+(((log2(tan(-
(F3))))*(((log2(tan(-(F3))))*(F30))+(cos(F5))))*    
((tan(F13))+(F30)))))+((tan(log2(F2)))+(F30)))))*(cos(F5)))*(
(18)+(cos((tan(log2(F13)))+(F30)))))

TABLE IV 
CLASSIFICATION MATRIX FOR GPCE WITH 

INTERLEAVED TRAINING SETS FOR IRIS DATA [3] 
 Setosa Versicolor Viginica 
Setosa 25 0 0 
Versicolor 0 24 1 
Viginica 0 2 23 

 
TABLE V 

OBTAINED CLASSIFICATION MATRIX USING THE 
PROPOSED APPROACH 

 Setosa Versicolor Viginica 
Setosa 25 0 0 
Versicolor 0 25 0 
Viginica 0 1 24 

TABLE VI 
CLASSIFICATION MATRIX FOR IRIS DATA SET WITH 

MAXIMUM LIKELIHOOD CLASSIFIER [3] 
 Setosa Versicolor Viginica 
Setosa 25 0 0 
Versicolor 0 24 1 
Viginica 0 2 23 

TABLE VII 
A SUMMARY OF THE DETECTION RATES OBTAINED USING DIFFERENT 

CLASSIFIERS FOR THE FISHER’S IRIS DATASET 
Method Classification rate 
NN 96 % 
Naive Bayse 96 % 
Bayse Net 94.667 % 
C4.5 94.67 % 
GPCE [3] 96 % 
Maximum likelhood 97.3 % 
Proposed GP-classification 98.6 % 
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Fig. 6 Distribution of the transformed training set T(DTrain) of the best 

individual  
 

The following values of detection rate and the false positive 
rates were computed for the best obtained individual T: 

Detection rate:      DR =  0.925   (92.5 %) 

False positive rate FP  =  0.0135 (1.35 %) 

Classification rate  =  91.7 % 

 
Fig. 7 Evolution of the fitness value during the genetic process 

 
The Table IX summarize and compare the detection rates 

and false positive rates obtained using the approaches 
mentioned above, and some recent results on KDD benchmark 
presented in [7]and [8]. All the mentioned approaches were 
tested using the ’Corrected (Test)’ set of the KDD99 cup 
competition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We can see from the presented results that the proposed 
classification approach give very acceptable results compared 
to the other techniques. The highest detection rate is obtained 
using support vectors machine technique implemented in [7], 
but with a very height false positive rate (10 %) compared to 
1.35% obtained with our proposed GP-classification 
approach.   

It  is  reasonable  to  state  that  the  set  of  pattern 
recognition and machine learning algorithms mentioned above 
offered  an  acceptable  level  of  misuse detection  
performance  for  only  two  attack  categories, namely  
Probing  and  DoS when tested on the KDD  data  sets, and 
failed  to  demonstrate  an acceptable  level  of  detection  
performance  for  the remaining two attack categories, which 
are U2R and R2L. To enhance the detection capabilities of our 
classification system, especially for the two categories R2L 
and U2R, we propose in the following an improvement of the 
proposed classification approach using a multi-transformation 
approaches. The obtained results demonstrate that the 
capabilities can be highly ameliorated compared to the 
standard approach.  
 

V.  GP CLASSIFIER ENHANCEMENT: THE MULTI-
TRANSFORMATIONS CLASSIFICATION 

A.  Method Description   
As explained in the section 2. the classification system use 

a single transformation (the best obtained individual) to 
transform each new sample, and then deduce the 
corresponding class using the algorithm presented in the 
figure 4. The main idea of the multi-transformation system is 
to use a set of multiple transformations TRset 
={T1,T2,….,Tp}obtained genetically (the best ones) on the 
sample to be classified. Each transformation will output a 
corresponding class with a confidence factor for each sample 
Y from the testing dataset computed using the following 
expression:  

Fig.3 of algorithm 
by  the computed luedensity va  theis Class_Y)Dens(Ne, -
Tmation   transfor theof  valuefitness  theis  Fitn(T) -

Class_Y.  tobelongingset   training thefrom    

samples  theofnumber   theis  ))Card(T(D -

Y sample for the class deduced  theis Class_Y -
set; )T(D  thefrompoint  nearest    theis  Ne  -

 :when 

(10)      Fitn(T) * 
))Card(T(D

Class_Y)Dens(Ne,T) (Y, Confidence 

Class_Y
Train

Train

Class_Y
Train

=

 

It is clear from the equation (10) that the confidence factor 
of a given sample in relation to a transformation Ti range in 
the interval [0, 1]. All the mentioned parameters are taken 
from the algorithm of the Fig. 4. The equation (10) was 
introduced in the algorithm like the following (Fig. 8):  

TABLE IX 
COMPARISON OF THE DETECTION PERFORMANCES BETWEEN THE 

PROPOSED APPROACHES AND THE EXISTING TECHNIQUES 
Classification method Detection 

rate 
False Alarm 

rate 
GP-classifier (proposed) 92.5 % 1.35 % 
KDD99 wining entry[5] 91.0 % 0.50 % 
KDD99 second place[6] 91.5 % 0.58 % 
Linear GP classifier [1,2] 90.8 % 3.26 % 
Data-mining techniques [22] 70%-90% 2.00 % 
Support vector machine[7] 98.0 % 10.00 % 
Self organized Maps [8] 89.0 % 4.60 % 
Clustering techniques [7] 93.0 % 10.00 % 
K-nearest neiberhood [7] 91.0 % 8.00 % 
 

TABLE VIII 
CLASSIFICATION MATRIX OBTAINED USING THE PROPOSED APPROACH 

 Normal   Prob   Dos      U2R     R2L % 

Normal 
Probe 
Dos 
U2R 
R2L 

59769      500      112         49      163 
562          3443    113          3       45  
8411        768      220662    0       11 
25            11        6             19       9    
10612      2107    8             2059  1611 

98.64 % 
82.65 % 
96.00 % 
09.82 % 
27.14 % 

% 
Correct 

75.29       50.42     99.89    0.89   87.60 
   %           %          %        %       %   
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Let Y be any new sample from DTest; 
Ne: the nearest point from T(DTrain) to T(Y); 
Max: a height random value;  
Class_Y: the deduced class for the sample Y;  
For each element p∈ T(DTrain) do  
{d:=Distance (T(Y), p); 
  If d<Max then {Max:=d;  

 Ne:=p;  
 Class_Y:=class(p); } 

             Else if d=Max then  
{If 
Dens(p,class(p))>Dens(p,Class_Y)  
     then {Class_Y:=classe(p);  

  Ne:=p} } } 
Confidence(Y, T) :=  

Dens(Ne,Class_Y) /Card(T(Dtrain
class_y) ; 

Ret_Class(Y,T) :=Class_Y ; 
 
Fig. 8 The modified version of the algorithm used to deduce the class 

of new test samples, and compute their confidence factor 
 

This algorithm return for each sample Y, its corresponding 
class Ret_Class(Y, T), with the corresponding confidence 
factor Confidence(Y,T). The new classification system take 
the best individuals collected during the genetic evolution to 
construct a transformations set TRset ={T1,T2,….,Tp}. All this 
transformations are applied on each test sample Y during the 
testing phase to obtain p possible class and p corresponding 
confidence factor. These obtained outputs are combined to 
compute the membership factor of Y to each class c from the 
existing n classes using the following algorithm (Fig. 9): 
 

Membership(Y,c):=0; 
For each transformation Ti from TRset do  
             {If Ret_Class(Y,Ti) = c  then   

   Membership(Y,c):= Membership(Y,c) 
+Confidence(Y,Ti);} 

Membership(Y,c):= Membership(Y,c) / p; 
 

      Fig. 9 The algorithm proposed to compute the membership factor 
of a sample Y to a given class c 

 
It is clear from the formulas used above that the value of the 

membership factor range always in the interval [0, 1]. The 
classification system assigns to Y the class with the highest 
membership factor: 
 

     (11)                  i))(Y,confidence(MAXc)(Y,Confidence
: such  that   cClass(Y)

ni1 ≤≤
=

=
 

This method benefit from the detection capabilities of each 
transformation T from the generated set TRset, it act like a rule 
system that average the obtained decisions to elaborate the 
final one. The following results demonstrate the improvement 
achieved by this technique compared to the single 
transformation one.  

B.  Results and Comparison  

This section summarize the results obtained using the multi-
transformations classification system described above to 
detect and classify the intrusions in the KDD99 dataset. The 
test phase use the KDD99 ’Corrected (Test)’ set. The number 
of transformations p used in this experiment is fixed to 50 
transformations collected during the learning phase realised 
by the genetic process. The following results give the average 
accuracy obtained for 40 GP trials conducted on the input 
training set. The classification rates, detection rates and the 
false positive rates were computed in each GP trial. 

The Fig. 10 show the variations of the detection rate for 
each class with respect to the number of used transformation, 
it is clear that better classification rates are allowed for the two 
classes R2L and U2R. The classification is ameliorated when 
augmenting the number of the used transformations. For the 
classes Normal and Dos, the maximum classification 
performances are reached starting form 6 or 7 transformations. 
By the same way, it can be seen from the Figure 11 that the 
system reaches its maximum performances when the number 
of used transformations is maximum (a higher detection rate 
and a lower false positive rate).  

The Table X illustrates the classification matrix obtained 
with the best GP-trail using the multi-transformation method 
to classify the intrusions of the used KDD99 Test dataset with 
50 collected transformations. 

The performances rates obtained by the obtained solution 
are given by: 

Detection rate  DR =  0.980   (98.0%) 

False positive rate FP  =  7E-4 (0.07%) 

Classification rate  =  99.05 % 

 
 
 
 
 
 
 
 
 
 
 
 
 

In the Table XI, obtained classification rates using the 
multi-transformations classification system are compared to 
the results presented in [23] using multiple classification 
systems such as Multilayer perceptron (MLP), Gaussian 
classifier (GAU), nearest cluster algorithm (NEA), 
incremental  radial  basis  function, K-means  clustering  (K-
M),  C4.5  decision  tree  and many other techniques. The 
results shows that classification rates obtained using the multi-
transformations classification system for the two classes R2L 
and U2R are very satisfactory with respect to the other 
techniques.  

TABLE X 
CLASSIFICATION MATRIX OBTAINED USING THE MULTI-TRANSFORMATIONS 

METHOD WITH 50 TRANSFORMATIONS 
 Normal   Prob   Dos      U2R     R2L % 

Normal 
Probe 
Dos 
U2R 
R2L 

60550      21        10             4         8 
93            4053    15             0        5    
1792        911      227117    15       18   
21            6          2              38       3 
2973        154      21            85    13114 

99.93 % 
97.29 % 
98.81 % 
45.20 % 
80.22 % 

   % Correct  92.54      78.77    99.97    26.7   99.74 
   %           %          %        %       %   
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The false positives detection rate of each attack class is not 
available for the SOM [8] and the linear GP [1, 2] techniques, 
since they are 2-category classifiers (normal and attack), their 
false positive rates can be given only in term of whole attacks 
classification.                     

 

 

 

 

 
       

Fig. 10 Evolution of the detection rate for each attack class with 
respect to the number of applied transformation:                              

(a) Normal, (b) Dos, (c) Prob, (d) R2L and (e) U2R 
 

 
 
 

 
 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE XI 
COMPARISON OF THE CLASSIFICATION RATES OBTAINED WITH DIFFERENT 

TECHNIQUES USING THE 4 ATTACK CLASSES OF THE KDD99 DATASET 
Classification method Dos Prob 

 DR FP DR FP 

KDD cup Winner [4] 0.971 0.003 0.833 0.006 
Agrawal and joshi [26] 0.969 0.001 0.730 8E-5 
GP 1-transformation  0.960 7E-4 0.826 0.010 
multi-transformations  0.988 1E-4 0.972 0.003 
SOM map [8] 0.951 - 0.643 - 
Linear GP [1,2] 0.967 - 0.857 - 
Multilayer perceptron[23] 0.972 0.003 0.887 0.004 
Gaussian classifier[23] 0.824 0.009 0.902 0.113 
K-means  clustering[23] 0.973 0.004 0.876 0.026 
Nearest cluster[23] 0.971 0.003 0.888 0.005 
Radial basis  function [23] 0.730 0.002 0.932 0.188 
Leader algorithm [23] 0.972 0.003 0.838 0.003 
Hypersphere algo.[23] 0.972 0.003 0.848 0.004 
Fuzzy ARTMAP [23] 0.970 0.003 0.808 0.007 
C4.5 decision tree  [23] 0.970 0.003 0.808 0.007 

Classification method R2L U2R 
 DR FP DR FP 
KDD cup Winner [4] 0.084 5E-5 0.123 3E-5 
Agrawal and joshi [26] 0.107 8E-4 0.066 4E-5 
GP 1-transformation  0.271 7E-4 0.100 0.006 
multi-transformations  0.802 1E-4 0.452 3E-4 
SOM map [8] 0.113 - 0.229 - 
Linear GP [1,2] 0.093 - 0.013 - 
Multilayer perceptron[23] 0.056 1E-4 0.132 5E-4 
Gaussian classifier[23] 0.096 0.001 0.228 0.005 
K-means  clustering[23] 0.064 0.001 0.298 0.004 
Nearest cluster[23] 0.034 1E-4 0.022 6E-6 
Radial basis  function [23] 0.059 0.003 0.061 4E-4 
Leader algorithm [23] 0.001 3E-5 0.066 3E-4 
Hypersphere algo.[23] 0.010 5E-5 0.083 9E-5 
Fuzzy ARTMAP [23] 0.037 4E-5 0.061 1E-5 
C4.5 decision tree  [23] 0.046 5E-5 0.018 2E-5 
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In the present work, the multi-transformations classification 
system requires approximately 1 hour and 48 minutes to 
generate a set of 50 optimal transformations, when addressing 
the problem of intrusions classification using the mentioned 
KDD99 dataset. Compared to other existing solutions, the 
proposed classification approach represents the potential to 
achieve best classification performances in shorter training 
time like illustrated in the Table XII. 
 
 
 
 
 
 
 
 
 
 
 

VII. CONCLUSION AND FUTURE WORK 
In this work, a new Genetic Programming classification 

system with a dynamic class’s projection was implemented 
and tested on both Fisher’s Iris dataset and the KDD'99 
benchmark dataset, a problems involving a multi-category 
classification task. To do so, populations of non-linear 
transformations are evolved to transform the input training 
data to be classified to a new one dimensional space with a 
maximum discrimination between the projected classes. The 
classification task become much easier with the transformed 
data and the new testing samples are then transformed with 
the generated transformation and assigned to their 
corresponding class using a simple search algorithm (Figure 
4).  The technique is independent of the dataset and structure 
of GP employed. Moreover, the framework has no specialist 
hardware requirements, making use of the generic classifiers 
design already widely supported in computing systems. The 
proposed system is shown to be capable of learning attack and 
normal behaviour from the training data and make accurate 
predictions on the test data, which also contains new attacks 
that the system was not trained on. 

In order to enhance the classification performances, 
especially for some bad handled categories, a multi-
transformation system was implemented and tested to 
combine the classification decisions of a large transformations 
set. The obtained results show that the proposed system can 
achieve much better classification performances, without 
significant increasing of the learning and detection run time. 
The study of our proposed method shows that higher number 
of combined transformations will enhance significantly the 
system performances.   

In comparison to artificial intelligence approaches currently 
proposed, the approach provides competitive performance 
whilst utilizing a relatively small set of training samples. The 
time complexity of the approach is independent from the 
number of used fields and is very acceptable in relation to the 
other approaches (Table XII).  

The complexity of the generated solution is reduced in 
comparison to the solutions of other techniques. Each 
transformation is represented as a string with 150 characters 

(byte) at maximum, and can be easily transformed to an 
assembly routine and evaluated using a stack base schema, to 
be integrated in a real time detection system.  

In terms of future work, the proposed classification 
approach can be extended to map the classes to a higher 
dimensionality space (especially for the 2D and 3D spaces). 
That is to say, a population of combinations of transformation 
<T1,T2,..,Tp> is evolved for the training dataset to get the 
optimal combination witch project the data to the specified 
space of dimensionality p. For example, in the 2D case, each 
individual is a couple <T1,T2> that project each sample Xi 
from RN to R2 like the following: 
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)(XTy
)(XTy

such that 

(12)                   )y,(y)(XT,T)T(X

2
21

i22

i11

21i21i

ℜ∈
⎩
⎨
⎧

=
=

=>=<

 

 
The same principal can be used for any p-dimensional 

space. Such approach has the potential to reduce the 
information loss due to the transformation operation, since a 
higher dimension can handle more information and 
relationship between the different initial components. Another 
important advantage is the possibility to generate a graphical 
visualisation of the transformed data (in the 2D or 3D case) 
witches allow to have different possible profiles of the 
classes’ distribution, and to give some interpretations like 
inter-classes proximity and intersections. 
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