
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2941

1 Abstract—This paper describes a new approach of classification
using genetic programming. The proposed technique consists of
genetically coevolving a population of non-linear transformations on
the input data to be classified, and map them to a new space with a
reduced dimension, in order to get a maximum inter-classes
discrimination. The classification of new samples is then performed
on the transformed data, and so become much easier. Contrary to the
existing GP-classification techniques, the proposed one use a
dynamic repartition of the transformed data in separated intervals, the
efficacy of a given intervals repartition is handled by the fitness
criterion, with a maximum classes discrimination. Experiments were
first performed using the Fisher’s Iris dataset, and then, the KDD’99
Cup dataset was used to study the intrusion detection and
classification problem. Obtained results demonstrate that the
proposed genetic approach outperform the existing GP-classification
methods [1],[2] and [3], and give a very accepted results compared to
other existing techniques proposed in [4],[5],[6],[7] and [8].

 Keywords—Genetic programming, patterns classification,
intrusion detection

I. INTRODUCTION
ATTERN classification concepts are important in the
design of computerized information processing systems

for many applications such as remote sensing, medical
diagnosis, sonar, radar etc. Pattern classification involves the
development of theory and techniques for the categorization
of input data into identifiable classes [25]. A pattern class is a
category determined by some common attributes. A pattern is
the description of any member of a category representing a
pattern class. The application determines the measurement of
features. Classification typically involves the mapping of an
N-dimensional feature vector to one of multiple classes. The
N-dimensional feature vector is like a point in the N-
dimensional feature space. The samples belonging to a

Manuscript received December 29, 2005.
K.M. Faraoun is with the Evolutionary Engineering and Distributed

Information Systems Laboratory, EEDIS. Djillali Liabbès University. Sidi Bel
Abbès – Algeria (Phone: (+213) 75 32 36 50; Fax: (+213) 48 57 77 50;
e-mail: kamel_mh@yahoo.fr).

A. Boukelif is with the “Laboratoire des télécommunications et du
traitement numérique de signal, équipe de recherche des techniques vidées”.
Djillali Liabès University Sidi Bel Abbès – Algeria (email : aboukelif
@yahoo.fr)

particular class give rise to a data distribution of that class in
some region of the feature space.

It is possible for data distributions of two classes to be
either overlapping or non-overlapping in the feature space. A
pattern classifier determines the decision boundaries between
different classes. The complexity of these boundaries may
range from linear to non-linear surfaces. The significance of
decision boundaries lies in the fact that they can usually be
generated by utilizing representative patterns from each class.
The pattern classifier uses these decision boundaries and
determines the class for a new pattern. In the present work, we
consider the problem of classifying real number vectors form
RN, where N is the features number of a given pattern.

The basic problem in pattern classification is to develop
decision functions that partition the feature space into regions
each of which contains sample patterns belonging to a class.

Intrusions in computer networks can be traced and detected
by collecting information about the traffic in and out of the
network. From a pattern classification point of view, the
network intrusion detection problem can be formulated as
follows: given the information about network connections
between pairs of hosts, assign each connection to one out of N
data classes representing normal traffic or different categories
of intrusions (e.g., Denial of Service, access to root privileges,
etc.). It is worth noting that various definitions of data classes
are possible. The term "connection" refers to a sequence of
data packets related to a particular service, e.g., the transfer of
an image via the ftp protocol.

The intrusion detection problem can then be viewed as a
Multi-category pattern classification problem, when each
connection features constitute one pattern to be assigned to
one of the N existing classing (depending on the number of
intrusions types taken into account).

In this paper, an attempt is made to show the use of a new
GP-classification approach to perform network intrusion
detection. Section 2 gives some theoretic background about
genetic programming approaches and related works. The
section 3 explains the method developed in the present work
with its different elements and parameters. In the section 4, we
give a description of the two datasets used for experiments
and the codification of the different data elements.

Genetic Programming Approach for
Multi-Category Pattern Classification Applied

to Network Intrusions Detection
K.M. Faraoun, and A. Boukelif

P

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2942

 Section 5 summarizes the different obtained results and
gives a comparison with the other approaches with
discussions. Enhancements of the proposed method are
explained in the section 5. The paper is finally concluded with
a summary of the most important points and future works.

II. THEORY

A. Genetic Programming Paradigm

Genetic programming is an extension of genetic algorithms
[9]. It is a general search method that uses analogies from
natural selection and evolution. In contrast to GA, GP encodes
multi-potential solutions for specific problems as a population
of programs or functions. The programs can be represented as
parse trees. Usually, parse trees are composed of internal
nodes and leaf nodes. Internal nodes are called primitive
functions, and leaf nodes are called terminals. The terminals
can be viewed as the inputs to the specific problem. They
might include the independent variables and the set of
constants. The primitive functions are combined with the
terminals or simpler function calls to form more complex
function calls.

GP randomly generates an initial population of solutions.
Then, the initial population is manipulated using various
genetic operators to produce new populations. These operators
include reproduction, crossover, mutation, dropping condition,
etc. The whole process of evolving from one population to the
next population is called a generation. A high-level description
of GP algorithm can be divided into a number of sequential
steps:

• Create a random population of programs, or rules, using
the symbolic expressions provided as the initial
population.

• Evaluate each program or rule by assigning a fitness value
according to a predefined fitness function that can
measure the capability of the rule or program to solve the
problem.

• Use reproduction operator to copy existing programs into
the new generation.

• Generate the new population with crossover, mutation, or
other operators from a randomly chosen set of parents.

• Repeat steps 2 onwards for the new population until a
predefined termination criterion has been satisfied, or a
fixed number of generations have been completed.

• The solution to the problem is the genetic program with
the best fitness within all the generations.

In GP, crossover operation is achieved firstly by
reproduction of two parent trees; two crossover points are then
randomly selected in the two offspring trees. Exchanging sub-
trees, which are selected according to the crossover point in
the parent trees, generates the final offspring trees. The
obtained offspring trees are usually different from their parents
in size and shape.

Mutation operation is also considered in GP. A single
parental tree is firstly reproduced. Then a mutation point is
randomly selected from the reproduction, which can be either

a leaf node or a sub-tree. Finally, the leaf node or the sub-tree
is replaced by a new leaf node or sub-tree generated randomly.
Fitness functions ensure that the evolution is toward
optimization by calculating the fitness value for each
individual in the population. The fitness value evaluates the
performance of each individual in the population.

B. Genetic Programming and Classification Task

Generally, GP trees can perform classification by returning
numeric (real) values and then translating these values into
class labels [10]. For binary classification problems the
division between negative and non-negative numbers acts as a
natural boundary for a division between two classes. This
means that genetic programs can easily represent binary class
problems. While evaluating the GP expression for an input
data, if the result of the GP-expression is ≥ 0, the input data is
assigned to one class; else it is assigned to the other class.
Thus, the desired output D is +1 for one class and is -1 for the
other class in the training set. Hence, the output of a GP-
expression is either +1 (indicating that the input data belong to
that class) or -1 (indicating that the input sample dose not
belong to that class). During the genetic evolution of
individuals, the best individual is those who correctly classify
the maximum of training samples, the positive samples must
give a value of +1 for the output, and negative samples must
give -1.

Given a set of training data DTrain={X1,X2,…..Xp}⊂ RN , a
binary classifier is a GP-expression T, so that:

 T(Xi) ≤ 0 if Xi ∈ Class 1 (D=+1)

 T(Xi) > 0 otherwise (D=-1) (1)

GP is guided by the fitness function to search for the most
efficient computer program to solve a given problem. A
simple measure of fitness has been adopted for the binary
classification problem:

 (2)
ngfor traini used samples Num.

correctly classified samples Num.Fitness(T) =

Each genetic expressing evolved map the samples space of

the Xi’s, to the real numbers set R, and attribute the interval]-
∞, 0] to the class 1 and the interval]0,+ ∞ [to the class 2. This
mapping is static, but it can achieve good results for 2-
category classification problems. Unfortunately, when more
than two classes are involved (n-classes problem), finding
meaningful division points over the set of reals the genetic
programs return is more difficult. If boundary regions are
chosen at arbitrary points over the set of reals then genetic
programs face the problem of not only containing the
necessary elements to distinguish between classes, but also
must perform a translation task to provide output in the
necessary range pre-specified for a given class. Many
alternatives were proposed by many authors to solve this
problem.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2943

 In [11], if there are n classes in a classification task, these
classes are sequentially assigned n regions along the numeric
output value space from some negative numbers to positive
numbers by (n-1)*thresholds/boundaries. Class 1 is allocated
to the region with all numbers less than the first boundary;
class 2 is allocated to all numbers between the first and the
second boundaries and class n to the region with all numbers
greater than the last boundary n-1, as shown in the following:

 (3)

b)T(Xb ifn classe
b)T(Xb if 1-n classe

......
b)T(Xb if 2 classe

b)T(X if 1 classe

)(X Classe

1-ni2-n

2-ni3-n

2i1

1i

i

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤
≤≤

≤≤
≤

=

In this equation, n refers to the number of object classes, T

is the GP-expression evolved, T(Xi) is the output value, and
b1, b2, bn-1, bn are static, pre-defined classes boundaries.

An alternative approach to static range selection, where
ranges are arbitrarily chosen to correspond to class boundaries
that all programs for the run must adhere to, is to allow each
program to use a separate set of ranges for class boundaries
that are dynamically determined for each individual program.
Given a classification problem with many training examples
and an individual from a GP population it is possible to use a
subset of the training examples and record the values that are
returned when attributes for specific classes are used as inputs.
Based upon these outputs the effectively infinite range of the
reals can then be segmented into regions corresponding to
class boundaries based upon areas the program has returned
values for each class in the subset of training examples, this
method was implemented in [11].

The GP employed for classification tasks do however have
a requirement for long training times when compared to many
other classification methods. It is also often quite difficult to
extract a meaningful reason as to why a given class was
chosen. Because of these factors the GP method is seen to be
applicable to tasks where accuracy is the most important
factor in classification, and training times and understand
ability are seen as relatively unimportant.
The major considerations in applying GP to pattern
classification are:
• GP-based techniques are data distribution-free, so no a

priori knowledge is needed about statistical distribution of
the data;

• GP can directly operate on the data in its original form;
• GP can detect the underlying but unknown relationship

that exists among data and express it as a mathematical
expression;

• GP can discover the most important discriminating
features of a class during training phase ;

The generated expression can be easily used in the
application environment.

 C. Related Works
The use of genetic programming to solve the multi-category

classification and the intrusion detection problems has been
attempted in many researches in different ways. In [12],
Loveard et al. proposed five methodologies for multi-category
classification problems. Of these five methodologies, they
have shown that dynamic range selection method is more
suitable for multi-class problems. In this dynamic range
selection scheme, they record the real valued output returned
by a classifier (tree or program) for a subset of training
samples. The range of the recorded values is then segmented
into regions to represent class boundaries. If the output of the
classifier for a pattern falls in the region, then the class is
assigned to. Once the segmentation of the output range has
been performed, the remaining training samples can then be
used to determine the fitness of an individual (or classifier).
Chien et al. [13] used GP to generate discriminator functions
using arithmetic operations with fuzzy attributes for a
classification problem. In [14], Mendes et al. used GP to
evolve a population of fuzzy rule sets and a simple
evolutionary algorithm to evolve the membership function
definitions. These two populations are allowed to co-evolve so
that both rule sets and membership functions can adapt to each
other. For a C-class problem, the system is run C-times.
Kishore et al. [3] proposed an interesting method which
considers a class problem as a set of two-class problems.
When a GP classifier expression (GPCE) is designed for a
particular class, that class is viewed as the desired class and
the remaining classes taken together are treated as a single
undesired class. So, with GP runs, all GPCEs are evolved and
can be used together to get the final classifier for the C-class
problem. They have experimented with different function sets
and incremental learning. In [15], Durga and Nikhil R.
proposed a method to design classifiers for a C-class pattern
classification problem using a single run of GP. For a class
problem, a multi-tree classifier consisting of C-trees is
evolved, where each tree represents a classifier for a particular
class. The performance of a multi-tree classifier depends on
the performance of its constituent trees. A new concept of
unfitness of a tree was exploited in order to improve genetic
evolution. Weak trees having poor performance are given
more chance to participate in the genetic operations so that
they get more chance to improve themselves.

In [10], Mengjie and Will proposed two new approaches to
ameliorate the performances of genetic classification
algorithms. Rather than using fixed static thresholds as
boundaries to distinguish between different classes, this
approach introduces two methods of classification where the
boundaries between different classes can be dynamically
determined during the evolutionary process. The two methods
are centred dynamic class boundary determination and slotted
dynamic class boundary determination. Their obtained results
suggest that, while the static class boundary method works
well on relatively easy object classification problems, the two
dynamic classes boundary determination methods outperform
the static method for more difficult, multiple class object
classification problems.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2944

 The mentioned approaches were tested on different dataset
publicly available, like the IRIS dataset, the Cancer dataset,
the Australian Credit Card and the Fisher’s Iris data or the
Heart Disease datasets, witch are relatively very small and
limited compared to the intrusion detection problem ones. The
most important work on GP-classification for intrusion
detection is the one presented in [1] by Dong Song, where a
Page-based Linear Genetic Programming is implemented with
a two-layer Subset Selection scheme to address only the two-
class intrusion detection classification problem, the same
author introduce and hierarchical RSS-DSS algorithm for
dynamically filtering large datasets to enhance the system
performances in [2]. Less important works can be found in
[16], [17] with the Chimera model, and [18].

III. PROPOSED GP-CLASSIFICATION APPROACH
The present work propose a new approach of a dynamic

GP-based classifier witch consist of genetically coevolving a
population of non-linear transformations on the input data to
be classified, and map them to a new space with a reduced
dimension (1-D), in order to get a maximum inter-classes
discrimination. Let DTrain={X1,X2,…..Xp}⊂ RN be the set of
training data. Because the proposed approach belongs to the
supervised learning category, each sample Xi can be labelled
with its class identifier j and become Xi

j. The set DTrain can
then be subdivided into n sub-set corresponding to n learned
classes, such that:

{ } (4) j)class(X / DXD

 , DD

j
iTrain

j
i

j
Train

n j

j
TrainTrain

=∈=

=
≤
U

The output value for each sample from the each training

sample is computed using the GP-expression T, this allows to
compute the transformed map for each sub-set DTrain

j
 , using

the GP-expression T, T(DTrain
j) given by:

 { } (5) DX /)T(XY)T(D j

Train
j
i

j
i

j
Train ∈==

The classification approach assign to each class j, the

region covered by the set T(DTrain
j). When a new sample Y is

presented to the classifier, the corresponding class is deduced
according to the following:

 (6)

)T(D)T(Y ifn classe

)T(D)T(Y if 1-n classe

......

)T(D)T(Y if 2 classe

)T(D)T(Y if 1 classe

 (Y) Classe

n
Train

1-n
Train

2
Train

1
Train

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

∈

∈

∈

∈

=

If the value of T(Y) dose not appears in any set T(DTrain
j),

we assign Y to the nearest class using the algorithm presented
below in the Fig. 4.

We can see that the proposed classification method
transform the problem from an N-dimensional vectors
classification to a 1-dimentional values classification one. The
classification of the transformed vectors becomes much easier,
but this is assured if a maximum discrimination exist between
the sets T(DTrain

i). It is role of the genetic programming system
to assure such criteria, the fitness of each transformation T
depend on its ability to give a maximum discrimination
between the T(DTrain

i)’s.
There is a trade-off between the generality and power of

this classification approach search. To perform a relatively
unbiased search and allow the saliencies of the problem to
emerge the proposed approach has many degrees of freedom
in its representation of the solution. Rather than evolve the
class predictors directly and further encumber the genetic
program, features are evolved which are then passed to a
simple classifier. This hybrid approach assists the global
search of the genetic program with the local search of the
simple classifier. The classifier, with its malleable decision
boundaries, performs local tuning of the solution to
compensate for the genetic program’s difficulty with evolving
constants. In the following, we present the different steps of
the classification approach: the learning phase, witch consist
to search for the best transformation of the raining data DTrain ,
and the test phase that classify each test sample from a set of
new vectors DTest.

A. The Learning Phase

1. Terminals and Functions
The GP-transformations are built using a terminal set Tr

and a function set Fn. The terminals are the fields of the used
training dataset: Tr={V1,V2,….,VN}, in addition, we also used
constants as terminals. These constants are randomly
generated using a uniform distribution. To be consistent with
the feature terminals, we also set the range of the constants as
[-100, 100]. The functions set include:
• Arithmetic operators: +, -, /, *, ^;
• Non-linear functions: Sin ,Cos ,Ln , Log ,Exp ,Tan;

The +, - , and * operators have their usual meanings: addition,
subtraction and multiplication, while / represents “protected”
division which is the usual division operator except that a
divide by zero gives a result of zero. Each of these functions
takes two arguments. The transformations Ti is represented by
hierarchical S-expressions trees, like proposed in the standard
Koza implementation.

2. The Fitness Function
For a given training set DTrain⊂ RN, the genetic

programming system evolves a population of transformations
T. In order to compute the fitness of each one, we need to
define a distance between the mapped sets T(DTrain

i).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2945

 The value of the fitness must express the inter-classes
discrimination and separation. During our experiments, we
have tested many fitness measurements, such as the Maximum
distance between gravity centres of the mapped classes and
the inter-classes and intra-classes variance criterion. But
theses functions assume that the transformed sets T(DTrain

i)
must be homogeneous and linearly separable, this condition is
not always easy to achieve, so it can be better to give to the
classification system the ability to generate separated but
alternate transformed sets. The Fig. 1 illustrate the two
situations: (a) represent two pointes sets linearly separable (in
a one dimensional space), and (b) show two separated pointes
sets but in an alternated situation.

For this reason, we have proposed a new fitness function
formula, witch try to minimize the total intersection between
point sets, and search for a minimum number of common
points between the mapped classes. The fitness function is
inversely proportional to the computed number of common
points between transformed sets T(DTrain

i). Height values of
the fitness signify that the transformed sets have a very small
intersection region, and then the discrimination between each
set elements become easier. The fitness value is computed by:

 (7)
))Card(T(D

))T(DCard(

Fitness(T)
Train

ni

i
TrainI

≤=

Fig. 1 The two possible separation situations between two point sets

When the function Card(X) gives the cardinality of a given
set X. The performed experiments show that this function give
the best classification rates with respect to other fitness
function mentioned above.

3. Genetic Operators and Parameters

The standard crossover and mutation operators presented in
the section 1.1 are used in this implementation. Each
transformation T is represented by a binary tree and the
genetic operators produce always valid binary expressions. To
control the maximum depth of the generated expressions, we
use a modifiable parameter to control the length of the
generated expressions. The genetic evolution process stop
when it reach a given generations count (termination criteria).

The Table I gives an overview of the parameters used in our
implementation and the default value used for each one.

During the evolution process, the result of each transformation
Ti is bounded in a fixed interval ([-100,100] by default), to
avoid to have scatter sets in R.

The result of the genetic evolution during the training phase
is the best generated transformation T, with the transformed
sets T(DTrain

i). This output is used in the test phase to classify
new samples.

B. The Test Phase: Classification of Unseen Samples

Let DTest={Y1,Y2,…,Yk} be a new set of samples to be
classified. Each vector Yi∈DTest must be assigned to one of the
n involved classes. To accomplish this task, the classification
system operates like the following: First, a post-treatment
algorithm is added to the classification system to compute a
density array for the points of T(DTrain). This array is used
with the transformation T during the test phase to deduce the
class of each elements Yi form DTest. This algorithm is
presented like the following (Fig. 2):

Let T(DTrain) be the training Set;
Dens: array of density for T(DTrain) elements;
For each element p∈ T(DTrain) do

{For each sample X ∈ DTrain do
 {For each class i (i form1 to n) do

 {if (classe(X)=i)and(T(X)=p)
 then Dens[p,i]:= Dens[p,i]+1;}
 }

 }

Fig. 2 A Post-treatment algorithm to generate density array, used
during the testing phase

Then, for each new sample Yi form DTest, the corresponding
class is determined using the following algorithm (Fig. 3):

TABLE I
 SET OF PARAMETERS USED TO CONTROL THE GENETIC EVOLUTION

PROCESS

 Parameter Value
Generating constant probability 5%
Generating functions probability 70%
Crossover rate Pc 70%
Mutation rate Pm 10%
Population size 100
Maximum generations count 1000
Maximum individual’s length 350
Minimum individual’s length 30
Selection strategy Roulette selection
Functions set {+, - ,/ ,*, sin, cos,
 log, ln, tan, exp }
Terminals set [-100,100]∪
 {input variables}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2946

Let Y be any new sample from DTest;
Ne: the nearest point from T(DTrain) to T(Y);
Max: a height random value;
Class_Y: the deduced class for the sample Y;
For each element p∈ T(DTrain) do

 {d:=Distance (T(Y), p);
 If d<Max then {Max:=d;

 Ne:=p;
 Class_Y:=class(p);

 }
 else if d=Max then
 {If Dens(p,classe(p))>Dens(p,Class_Y)
 then {Class_Y:=classe(p); Ne:=p}

 }
 }}

Result := Class_Y;

Fig. 3 The proposed algorithm to deduce the class of new test
samples Yi, used during the testing phase

As shown by the experiments, these algorithms combined
with the fitness function mentioned above, give much better
results than using classical fitness measurement, this is due to
the flexibility of the classes distribution accorded to the
genetic classification system.

IV. DATASETS AND EXPERIMENTS

The proposed classification approach is benchmarked using
two different datasets: the Fisher IRIS [19] dataset and the
MIT KDD99 dataset [20]. The first one is used just for
comparison purpose, and to demonstrate the proposed method
capabilities, it is relatively very small and limited compared to
the intrusion detection problem datasets. The second one
concerns our problem of interest: the network intrusion
detection. The KDD99 dataset is the most used one for
intrusion detection problems, collected at the Lincoln
Laboratory of MIT, under DARPA sponsorship, witch consists
of about 5,000,000 connection records, with 41 data fields.
The most important work on GP-classification using the
KDD99 dataset is the one presented in [1, 2] by Dong Song,
where a Page-based Linear Genetic Programming is
implemented with a two-layer Subset Selection scheme to
address only the two-class intrusion detection classification
problem.

The first IRIS dataset was divided equally into a training set
and a test validation set. The specific training sets for Iris
setosa, versicolor and viginica are derived from the training
set. To perform the experiments with the KDD99 dataset, the
’10% KDD’ set was sampled and only 24788 records are used
to train our system. For the test purposes, we use the whole
’Corrected (Test)’ used in almost all the implemented
approaches. The Table II lists the class’s distributions of our
used sets.

Attributes in the KDD datasets had all forms
:continuous, discrete, and symbolic, with significantly
varying resolution and ranges. Most pattern classification
methods are not able to process data in such a format.

Hence, pre-processing was required before pattern
classification models could be built. Pre-processing consisted
of two steps: first step involved mapping symbolic-valued
attributes to numeric-valued attributes and second step
implemented scaling. In the present work, we have used the
data codification and scaling presented in [21]. All the
resulting scaled fields belong to the interval [0, 1].

The Table III summarizes the 41 fields used in the KDD99
dataset regrouped in three mentioned categories. Each field is
labelled with a symbolic notation (F1, F2,…, F41) to be used as
terminals during the genetic process.

All tests were performed on an Intel-Pentium 4 CPU
2.66Ghz with 256 Mb Ram size. The performances of
intrusion detection for the classifier are computed using the
following expressions:

 (8.b)
sconnection normal ofNumber Total

Positives False FP rate positive False

(8.a)
Attaks ofNumber Total

number negatives False-1DR rateDetection

=

=

 TABLE II
DISTRIBUTION OF THE NORMAL AND ATTACK RECORDS IN THE USED

TRAINING AND TESTING SETS
 Training Set Testing Set

Normal 11673 47.09 % 60593 19.48 %
DOS 7829 31.58 % 229853 73.90 %
PBR 4107 16.56 % 4166 1.34 %
R2L 1119 4.51 % 16347 5.25 %
U2R 52 0.24 % 70 0.02 %

TABLE III
THE KDD99 USED FEATURES, GROUPED IN 3 CATEGORIES

Basic features of individua
l TCP connections

Traffic features computed using a
two-second time window

duration
protocol_type
service
flag
src_bytes
dst_bytes
land
wrong_fragment
urgen

F1
F2
F3
F4
F5
F6
F7
F8
F9

Count
srv_count
serror_rate
srv_serror_rate
rerror_rate
srv_rerror_rate
same_srv_rate
diff_srv_rate
srv_diff_host_rate
dst_host_count
dst_h_srv_count
dst_h_same_srv_rate
dst_h_diff_srv_rate
dst_h_s_src_port_rate
dst_h_srv_diff_h_rate
dst_h_serror_rate
dst_h_srv_serror_rate
dst_h_rerror_rate
dst_h_srv_rerror_rate

F23
F24
F25
F26
F27
F28
F29
F30
F31
F32
F33
F34
F35
F36
F37
F38
F39
F40
F41

Content features suggested by domain knowledge

hot
num_failed_logins
logged_in
num_compromised
root_shell
su_attempted
num_root

F10
F11
F12
F13
F14
F15
F16

num_file_creations
num_shells
num_access_files
num_outbound_cmds
is_hot_login
is_guest_login

F17
F18
F19
F20
F21
F22

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2947

V. RESULTS AND COMPARISON

This section presents the results of the proposed GP
classification approach for the 2 n-classes pattern
classification problems described above, using the set of
parameters presented in the Table I.

A. Fisher IRIS Classification Problem

The dataset was divided equally into a training set and a test
validation set (75 samples in each set).

The result of each test is a classification matrix C computed
by the algorithm presented in Fig.4.

The classification rate is then computed using the following
expression:

 (9) 100*
ngfor traini used samples ofNumber

classified samples ofNumber CR =

Let T(DTest) be the training Set;
n is the number of classe
i is the true class of the sample and k is the assigned
class.
For i=1 to n do
 For j=1 to n do { C[i,j]:=0

 For i=1 to Card(T(DTtest)) do
 {Apply the classifier and assign
 class k to input sample;

 C[i,k]:=C[i,k]+1;
 }}

 Fig. 4 The algorithm used to compute the classification matrix

Table IV gives the classification matrix obtained using the
proposed approach. Tables V and VI give the results of the
classification process using a maximum likelihood classifier
and a GP-based classification approach proposed in [3].

The following table (Table VII) give a comparison between
the detection rate obtained with different classifiers as
presented in [24, 3], and our proposed classification approach.

The Fig. 5 show the distribution of the transformed training
set T(DTrain) obtained with this transformation.

Fig. 5 Distribution of the transformed training set T(DTrain) of the best

obtained individual

From Table VII, we can see that our proposed approach
give best classification rate compared to other proposed
approaches, one sample only from the “Viginica” set is
misclassified.

B. KDD99 Dataset: The Intrusion Detection Problem

As we see in the Table I, the KDD99 dataset is more
voluminous than the Iris fisher’s one, and contain more
classes (5 classes). Discrimination is also very difficult in the
intrusion detection case because the classes are not clearly
separable, so the classification task will become harder. To
evolve the GP classification system, the same parameters set
presented in the Table I is used. In the Table VIII, we present
the classification matrix obtained. The Figs. 6 and 7 illustrates
the transformed training set T(DTrain) repartition, and the
fitness value evolution during the GP evolution. The best
individual T is presented by the following expression:

T: ((((log2(tan(-(F3))))*(cos((tan((F5)+(((log2(tan(-
(F3))))*(((log2(tan(-(F3))))*(F30))+(cos(F5))))*
((tan(F13))+(F30)))))+((tan(log2(F2)))+(F30)))))*(cos(F5)))*(
(18)+(cos((tan(log2(F13)))+(F30)))))

TABLE IV
CLASSIFICATION MATRIX FOR GPCE WITH

INTERLEAVED TRAINING SETS FOR IRIS DATA [3]
 Setosa Versicolor Viginica
Setosa 25 0 0
Versicolor 0 24 1
Viginica 0 2 23

TABLE V

OBTAINED CLASSIFICATION MATRIX USING THE
PROPOSED APPROACH

 Setosa Versicolor Viginica
Setosa 25 0 0
Versicolor 0 25 0
Viginica 0 1 24

TABLE VI
CLASSIFICATION MATRIX FOR IRIS DATA SET WITH

MAXIMUM LIKELIHOOD CLASSIFIER [3]
 Setosa Versicolor Viginica
Setosa 25 0 0
Versicolor 0 24 1
Viginica 0 2 23

TABLE VII
A SUMMARY OF THE DETECTION RATES OBTAINED USING DIFFERENT

CLASSIFIERS FOR THE FISHER’S IRIS DATASET
Method Classification rate
NN 96 %
Naive Bayse 96 %
Bayse Net 94.667 %
C4.5 94.67 %
GPCE [3] 96 %
Maximum likelhood 97.3 %
Proposed GP-classification 98.6 %

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2948

Fig. 6 Distribution of the transformed training set T(DTrain) of the best

individual

The following values of detection rate and the false positive
rates were computed for the best obtained individual T:

Detection rate: DR = 0.925 (92.5 %)

False positive rate FP = 0.0135 (1.35 %)

Classification rate = 91.7 %

Fig. 7 Evolution of the fitness value during the genetic process

The Table IX summarize and compare the detection rates

and false positive rates obtained using the approaches
mentioned above, and some recent results on KDD benchmark
presented in [7]and [8]. All the mentioned approaches were
tested using the ’Corrected (Test)’ set of the KDD99 cup
competition.

We can see from the presented results that the proposed
classification approach give very acceptable results compared
to the other techniques. The highest detection rate is obtained
using support vectors machine technique implemented in [7],
but with a very height false positive rate (10 %) compared to
1.35% obtained with our proposed GP-classification
approach.

It is reasonable to state that the set of pattern
recognition and machine learning algorithms mentioned above
offered an acceptable level of misuse detection
performance for only two attack categories, namely
Probing and DoS when tested on the KDD data sets, and
failed to demonstrate an acceptable level of detection
performance for the remaining two attack categories, which
are U2R and R2L. To enhance the detection capabilities of our
classification system, especially for the two categories R2L
and U2R, we propose in the following an improvement of the
proposed classification approach using a multi-transformation
approaches. The obtained results demonstrate that the
capabilities can be highly ameliorated compared to the
standard approach.

V. GP CLASSIFIER ENHANCEMENT: THE MULTI-
TRANSFORMATIONS CLASSIFICATION

A. Method Description
As explained in the section 2. the classification system use

a single transformation (the best obtained individual) to
transform each new sample, and then deduce the
corresponding class using the algorithm presented in the
figure 4. The main idea of the multi-transformation system is
to use a set of multiple transformations TRset
={T1,T2,….,Tp}obtained genetically (the best ones) on the
sample to be classified. Each transformation will output a
corresponding class with a confidence factor for each sample
Y from the testing dataset computed using the following
expression:

Fig.3 of algorithm
by the computed luedensity va theis Class_Y)Dens(Ne, -
Tmation transfor theof valuefitness theis Fitn(T) -

Class_Y. tobelongingset training thefrom

samples theofnumber theis))Card(T(D -

Y sample for the class deduced theis Class_Y -
set;)T(D thefrompoint nearest theis Ne -

 :when

(10) Fitn(T) *
))Card(T(D

Class_Y)Dens(Ne,T) (Y, Confidence

Class_Y
Train

Train

Class_Y
Train

=

It is clear from the equation (10) that the confidence factor
of a given sample in relation to a transformation Ti range in
the interval [0, 1]. All the mentioned parameters are taken
from the algorithm of the Fig. 4. The equation (10) was
introduced in the algorithm like the following (Fig. 8):

TABLE IX
COMPARISON OF THE DETECTION PERFORMANCES BETWEEN THE

PROPOSED APPROACHES AND THE EXISTING TECHNIQUES
Classification method Detection

rate
False Alarm

rate
GP-classifier (proposed) 92.5 % 1.35 %
KDD99 wining entry[5] 91.0 % 0.50 %
KDD99 second place[6] 91.5 % 0.58 %
Linear GP classifier [1,2] 90.8 % 3.26 %
Data-mining techniques [22] 70%-90% 2.00 %
Support vector machine[7] 98.0 % 10.00 %
Self organized Maps [8] 89.0 % 4.60 %
Clustering techniques [7] 93.0 % 10.00 %
K-nearest neiberhood [7] 91.0 % 8.00 %

TABLE VIII
CLASSIFICATION MATRIX OBTAINED USING THE PROPOSED APPROACH

 Normal Prob Dos U2R R2L %

Normal
Probe
Dos
U2R
R2L

59769 500 112 49 163
562 3443 113 3 45
8411 768 220662 0 11
25 11 6 19 9
10612 2107 8 2059 1611

98.64 %
82.65 %
96.00 %
09.82 %
27.14 %

%
Correct

75.29 50.42 99.89 0.89 87.60
 % % % % %

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2949

Let Y be any new sample from DTest;
Ne: the nearest point from T(DTrain) to T(Y);
Max: a height random value;
Class_Y: the deduced class for the sample Y;
For each element p∈ T(DTrain) do
{d:=Distance (T(Y), p);
 If d<Max then {Max:=d;

 Ne:=p;
 Class_Y:=class(p); }

 Else if d=Max then
{If
Dens(p,class(p))>Dens(p,Class_Y)
 then {Class_Y:=classe(p);

 Ne:=p} } }
Confidence(Y, T) :=

Dens(Ne,Class_Y) /Card(T(Dtrain
class_y) ;

Ret_Class(Y,T) :=Class_Y ;

Fig. 8 The modified version of the algorithm used to deduce the class

of new test samples, and compute their confidence factor

This algorithm return for each sample Y, its corresponding
class Ret_Class(Y, T), with the corresponding confidence
factor Confidence(Y,T). The new classification system take
the best individuals collected during the genetic evolution to
construct a transformations set TRset ={T1,T2,….,Tp}. All this
transformations are applied on each test sample Y during the
testing phase to obtain p possible class and p corresponding
confidence factor. These obtained outputs are combined to
compute the membership factor of Y to each class c from the
existing n classes using the following algorithm (Fig. 9):

Membership(Y,c):=0;
For each transformation Ti from TRset do
 {If Ret_Class(Y,Ti) = c then

 Membership(Y,c):= Membership(Y,c)
+Confidence(Y,Ti);}

Membership(Y,c):= Membership(Y,c) / p;

 Fig. 9 The algorithm proposed to compute the membership factor
of a sample Y to a given class c

It is clear from the formulas used above that the value of the

membership factor range always in the interval [0, 1]. The
classification system assigns to Y the class with the highest
membership factor:

 (11) i))(Y,confidence(MAXc)(Y,Confidence
: such that cClass(Y)

ni1 ≤≤
=

=

This method benefit from the detection capabilities of each
transformation T from the generated set TRset, it act like a rule
system that average the obtained decisions to elaborate the
final one. The following results demonstrate the improvement
achieved by this technique compared to the single
transformation one.

B. Results and Comparison

This section summarize the results obtained using the multi-
transformations classification system described above to
detect and classify the intrusions in the KDD99 dataset. The
test phase use the KDD99 ’Corrected (Test)’ set. The number
of transformations p used in this experiment is fixed to 50
transformations collected during the learning phase realised
by the genetic process. The following results give the average
accuracy obtained for 40 GP trials conducted on the input
training set. The classification rates, detection rates and the
false positive rates were computed in each GP trial.

The Fig. 10 show the variations of the detection rate for
each class with respect to the number of used transformation,
it is clear that better classification rates are allowed for the two
classes R2L and U2R. The classification is ameliorated when
augmenting the number of the used transformations. For the
classes Normal and Dos, the maximum classification
performances are reached starting form 6 or 7 transformations.
By the same way, it can be seen from the Figure 11 that the
system reaches its maximum performances when the number
of used transformations is maximum (a higher detection rate
and a lower false positive rate).

The Table X illustrates the classification matrix obtained
with the best GP-trail using the multi-transformation method
to classify the intrusions of the used KDD99 Test dataset with
50 collected transformations.

The performances rates obtained by the obtained solution
are given by:

Detection rate DR = 0.980 (98.0%)

False positive rate FP = 7E-4 (0.07%)

Classification rate = 99.05 %

In the Table XI, obtained classification rates using the
multi-transformations classification system are compared to
the results presented in [23] using multiple classification
systems such as Multilayer perceptron (MLP), Gaussian
classifier (GAU), nearest cluster algorithm (NEA),
incremental radial basis function, K-means clustering (K-
M), C4.5 decision tree and many other techniques. The
results shows that classification rates obtained using the multi-
transformations classification system for the two classes R2L
and U2R are very satisfactory with respect to the other
techniques.

TABLE X
CLASSIFICATION MATRIX OBTAINED USING THE MULTI-TRANSFORMATIONS

METHOD WITH 50 TRANSFORMATIONS
 Normal Prob Dos U2R R2L %

Normal
Probe
Dos
U2R
R2L

60550 21 10 4 8
93 4053 15 0 5
1792 911 227117 15 18
21 6 2 38 3
2973 154 21 85 13114

99.93 %
97.29 %
98.81 %
45.20 %
80.22 %

 % Correct 92.54 78.77 99.97 26.7 99.74
 % % % % %

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2950

The false positives detection rate of each attack class is not
available for the SOM [8] and the linear GP [1, 2] techniques,
since they are 2-category classifiers (normal and attack), their
false positive rates can be given only in term of whole attacks
classification.

Fig. 10 Evolution of the detection rate for each attack class with
respect to the number of applied transformation:

(a) Normal, (b) Dos, (c) Prob, (d) R2L and (e) U2R

TABLE XI
COMPARISON OF THE CLASSIFICATION RATES OBTAINED WITH DIFFERENT

TECHNIQUES USING THE 4 ATTACK CLASSES OF THE KDD99 DATASET
Classification method Dos Prob

 DR FP DR FP

KDD cup Winner [4] 0.971 0.003 0.833 0.006
Agrawal and joshi [26] 0.969 0.001 0.730 8E-5
GP 1-transformation 0.960 7E-4 0.826 0.010
multi-transformations 0.988 1E-4 0.972 0.003
SOM map [8] 0.951 - 0.643 -
Linear GP [1,2] 0.967 - 0.857 -
Multilayer perceptron[23] 0.972 0.003 0.887 0.004
Gaussian classifier[23] 0.824 0.009 0.902 0.113
K-means clustering[23] 0.973 0.004 0.876 0.026
Nearest cluster[23] 0.971 0.003 0.888 0.005
Radial basis function [23] 0.730 0.002 0.932 0.188
Leader algorithm [23] 0.972 0.003 0.838 0.003
Hypersphere algo.[23] 0.972 0.003 0.848 0.004
Fuzzy ARTMAP [23] 0.970 0.003 0.808 0.007
C4.5 decision tree [23] 0.970 0.003 0.808 0.007

Classification method R2L U2R
 DR FP DR FP
KDD cup Winner [4] 0.084 5E-5 0.123 3E-5
Agrawal and joshi [26] 0.107 8E-4 0.066 4E-5
GP 1-transformation 0.271 7E-4 0.100 0.006
multi-transformations 0.802 1E-4 0.452 3E-4
SOM map [8] 0.113 - 0.229 -
Linear GP [1,2] 0.093 - 0.013 -
Multilayer perceptron[23] 0.056 1E-4 0.132 5E-4
Gaussian classifier[23] 0.096 0.001 0.228 0.005
K-means clustering[23] 0.064 0.001 0.298 0.004
Nearest cluster[23] 0.034 1E-4 0.022 6E-6
Radial basis function [23] 0.059 0.003 0.061 4E-4
Leader algorithm [23] 0.001 3E-5 0.066 3E-4
Hypersphere algo.[23] 0.010 5E-5 0.083 9E-5
Fuzzy ARTMAP [23] 0.037 4E-5 0.061 1E-5
C4.5 decision tree [23] 0.046 5E-5 0.018 2E-5

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2951

In the present work, the multi-transformations classification
system requires approximately 1 hour and 48 minutes to
generate a set of 50 optimal transformations, when addressing
the problem of intrusions classification using the mentioned
KDD99 dataset. Compared to other existing solutions, the
proposed classification approach represents the potential to
achieve best classification performances in shorter training
time like illustrated in the Table XII.

VII. CONCLUSION AND FUTURE WORK
In this work, a new Genetic Programming classification

system with a dynamic class’s projection was implemented
and tested on both Fisher’s Iris dataset and the KDD'99
benchmark dataset, a problems involving a multi-category
classification task. To do so, populations of non-linear
transformations are evolved to transform the input training
data to be classified to a new one dimensional space with a
maximum discrimination between the projected classes. The
classification task become much easier with the transformed
data and the new testing samples are then transformed with
the generated transformation and assigned to their
corresponding class using a simple search algorithm (Figure
4). The technique is independent of the dataset and structure
of GP employed. Moreover, the framework has no specialist
hardware requirements, making use of the generic classifiers
design already widely supported in computing systems. The
proposed system is shown to be capable of learning attack and
normal behaviour from the training data and make accurate
predictions on the test data, which also contains new attacks
that the system was not trained on.

In order to enhance the classification performances,
especially for some bad handled categories, a multi-
transformation system was implemented and tested to
combine the classification decisions of a large transformations
set. The obtained results show that the proposed system can
achieve much better classification performances, without
significant increasing of the learning and detection run time.
The study of our proposed method shows that higher number
of combined transformations will enhance significantly the
system performances.

In comparison to artificial intelligence approaches currently
proposed, the approach provides competitive performance
whilst utilizing a relatively small set of training samples. The
time complexity of the approach is independent from the
number of used fields and is very acceptable in relation to the
other approaches (Table XII).

The complexity of the generated solution is reduced in
comparison to the solutions of other techniques. Each
transformation is represented as a string with 150 characters

(byte) at maximum, and can be easily transformed to an
assembly routine and evaluated using a stack base schema, to
be integrated in a real time detection system.

In terms of future work, the proposed classification
approach can be extended to map the classes to a higher
dimensionality space (especially for the 2D and 3D spaces).
That is to say, a population of combinations of transformation
<T1,T2,..,Tp> is evolved for the training dataset to get the
optimal combination witch project the data to the specified
space of dimensionality p. For example, in the 2D case, each
individual is a couple <T1,T2> that project each sample Xi
from RN to R2 like the following:

)y,(y ,

)(XTy
)(XTy

such that

(12))y,(y)(XT,T)T(X

2
21

i22

i11

21i21i

ℜ∈
⎩
⎨
⎧

=
=

=>=<

The same principal can be used for any p-dimensional

space. Such approach has the potential to reduce the
information loss due to the transformation operation, since a
higher dimension can handle more information and
relationship between the different initial components. Another
important advantage is the possibility to generate a graphical
visualisation of the transformed data (in the 2D or 3D case)
witches allow to have different possible profiles of the
classes’ distribution, and to give some interpretations like
inter-classes proximity and intersections.

REFERENCES

[1] Dong Song, Malcolm I. Heywood, and A. Nur Zincir-Heywood.
"Training Genetic Programming on Half a Million Patterns: An Example
from Anomaly Detection", IEEE Transactions on Evolutionary
Computation, 9(3), pp 225-240, 2005

[2] Dong Song, Malcolm I. Heywood, and A. Nur Zincir-Heywood. “A
Linear Genetic Programming Approach to Intrusion Detection ». E.
Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2724, pp. 2325–2336,
2003. © Springer-Verlag Berlin Heidelberg 2003

[3] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal, “Application
of genetic programming for multicategory pattern classification,” IEEE
Trans. Evol. Comput., vol. 4, pp. 242–258, Sept. 2000.

[4] Pfahringer B.: Winning the KDD99 Classification Cup: Bagged
Boosting. SIGKDD Explorations. ACM SIGKDD. 1(2) (2000) 65- 66

[5] Levin I.: KDD-99 Classifier Learning Contest LLSoft’s Results
Overview. SIGKDD Explorations. ACM SIGKDD. 1(2) (2000) 67- 75

[6] Vladimir M., Alexei V., Ivan S.: The MP13 Approach to the KDD'99
Classifier Learning Contest. SIGKDD Explorations. ACM SIGKDD.
1(2) (2000) 76-77

[7] Eskin E., Arnold A., Prerau M., Portnoy L., and Stolfo S. A Geometric
Framework for Unsupervised Anomaly Detection: Detecting intrusions
in unlabeled data. In D. Barbara and S. Jajodia, editors, Applications of
Data Mining in Computer Security. Kluwer, 2002. ISBN 1-4020-7054-
3, 2002.

[8] Kayacik G., Zincir-Heywood N., and Heywood M. On the Capability of
an SOM based Intrusion Detection System. In Proceedings of
International Joint Conference on Neural Networks, 2003.

[9] Koza, J. R. 1994. Genetic Programming II: Automatic Discovery of
Reusable Programs. The MIT Press.

[10] Mengjie Zhang and Victor Ciesielski. Genetic programming for multiple
class object detection. In Norman Foo (editor), Proceedings of the 12th
Australian Joint Conference on Artificial Intelligence, Volume 1747,
Lecture Notes in Artificial Intelligence, pages 180–191. Springer,
Heidelberg, Dec 1999.

TABLE XII
COMPARISON OF THE TIME AND SOLUTION COMPLEXITY OF DIFFERENT

CLASSIFICATION METHODS
Classification

method
Training time Solution complexity

KDD best entry ≈ 24 Hours 500 decision tree
KDD 2nd place ≈ 22 Hours 755 decision tree
Linear GP [2] ≈ 7 Hours and

30 m
A linear program with 86
instruction in 2 address format

GP with Multi-
transformation

≈ 1 Hours and
48m

50 transformation with an average
length of 150 character

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

2952

[11] Mengjie Zhang, Will Smart. “Multiclass Object Classification Using
Genetic Programming“. Technical Report CS-TR-04/2, Feb 2004,
School of Mathematical and Computing Sciences, Victoria University.

[12] Loveard, T. & Ciesielski, V. Representing classification problems in
genetic programming, in 'Proceedings of the Congress on Evolutionary
Computation', Vol. 2, IEEE Press, COEX, World Trade Center, 159
Samseongdong, Gangnam-gu, Seoul, Korea, pp. 1070—1077 (2001).
http://goanna.cs.rmit.edu.au/toml/cec2001.ps

[13] B.-C. Chien, J. Y. Lin, and T.-P. Hong, “Learning discriminant functions
with fuzzy attributes for classification using genetic programming,”
Expert Syst. Applicat., vol. 23, pp. 31–37, 2002.

[14] R. R. F. Mendes, F. B.Voznika, A. A. Freitas, and J. C. Nievola,
“Discovering fuzzy classification rules with genetic programming and
co-evolution,” in Lecture Notes in Artificial Intelligence, vol. 2168,
Proc. 5th Eur. Conf. PKDD, 2001, pp. 314–325.

[15] Durga Prasad Muni, Nikhil R. Pal, Senior Member, IEEE, and Jyotirmoy
Das, “A Novel Approach to Design Classifiers Using Genetic
Programming », ieee transactions on evolutionary computation, vol. 8,
no. 2, pp. 183-196. April 2004.

[16] Crosbie, Mark and Spafford, Gene, Applying Genetic Programming
Techniques to Intrusion Detection, In Proceedings of the AAAI 1995
Fall Symposium, November 1995.

[17] Bob Adolf . New Paradigms for Intrusion Detection Using Genetic
Programming. Technical report January 2004.

[18] Cosbie M. Gene Spafford. Applying genetic programming to intrusion
detection October 1998. In procedding of the 18 th NISSC Conference
October 1998.

[19] R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Ann. Eugenics, pt. II, vol. 7, pp. 179–188, 1936.

[20] KDD data set, 1999; http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html, cited April 2003

[21] C. Elkan, “Results of the KDD’99 Classifier Learning”, SIGKDD
Explorations, ACM SIGKDD, Jan 2000.

[22] Lee W. and Stolfo S. A Framework for Constructing Features and
Models for Intrusion Detection Systems. Information and System
Security, 3(4):227–261, 2000.

[23] Application of Machine Learning Algorithms to KDD Intrusion
Detection Dataset within Misuse Detection Context, Maheshkumar
Sabhnani, Gursel Serpen, Proceedings of the International Conference
on Machine Learning, Models, Technologies and Applications
(MLMTA 2003), Las Vegas, NV, June 2003, pages 209-215.

[24] Ayse Küçükyılmaz; Pattern Classification: A Survey and Comparison.
Department of Computer Engineering, Bilkent University, 06800,
Ankara, Turkey. http://www.cs.bilkent.edu.tr/~guvenir/ courses/cs550/
Workshop/Ayse_Kucukyilmaz.pdf . April 7, 2005

[25] Anil K. Jain, Robert P.W. Duin, and Jianchang Mao, Statistical pattern
recognition: a review, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 22. No. 1, pp. 4-37, January 2000.

[26] R. Agarwal, and M. V. Joshi, “PNrule: A New Framework for
Learning Classifier Models in Data Mining”, Technical Report TR
00-015, Department of Computer Science, University of Minnesota,
2000.

K.M. Faraoun was born in Sidi Bel abbes, Algeria, in
February 23, 1978. He received his master’s degree in
computer science at the computer science department of
Djilali Liabbes University- Sidi-Bel-abbes – Algeria in
2002. His current research areas include computer safety
systems; genetic algorithms, fractal images compression
evolutionary programming and grammatical inferences
and physical materials structures modeling.

He is currently a teacher at the computer sciences Institute of Djilali Liabess
University, he teaches operational researches and human-machine interaction,
and is actually preparing his Ph.D thesis in the field of computer security
using artificial intelligence systems. He has published several papers in
international journals: Genetic Fractal images compression (Multidimensional
Systems and Signal Processing, Springer Science 2005).
Dr. Faraoun is a member of the Evolutionary Engineering and Distributed
Information Systems Laboratory, EEDIS.

A. Boukelif received a bachelor of science in electrical
engineering from the University of Pittsburgh and a Ph.D.
honours degree in electrical engineering, image processing
option. He is currently an assistant professor at the
University of Sidi Bel Abbes and head of a research team
dealing with information and communication technologies
applied to distant learning. His main research areas
include digital television , digital image compression,
satellite communications information and communication
technologies (ICTs).

He is the author of many publications, including HDTV (Centre National
des Etudes en Telecommunications, Paris, 1994), Digital Television
Techniques (Masson and Paris, 1997), and Image Compression Techniques
(Algiers, 2004).

Prof. Boukelif is a member of the Telecommunication and digital signal
processing laboratory at the Sidi bel abbes university.

