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Automatic Iterative Methods for the Multivariate
Solution of Nonlinear Algebraic Equations
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Abstract—Most real world systems express themselves formally
as a set of nonlinear algebraic equations. As applications grow, the
size and complexity of these equations also increase. In this work, we
highlight the key concepts in using the homotopy analysis method
as a methodology used to construct efficient iteration formulas for
nonlinear equations solving. The proposed method is experimentally
characterized according to a set of determined parameters which
affect the systems. The experimental results show the potential and
limitations of the new method and imply directions for future work.
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I. INTRODUCTION

AProblem encountered frequently in virtually any field

of science, engineering, or applied mathematics is the

solution of systems of nonlinear algebraic equations (SNAE).

Moreover, SNAE are ubiquitous in the many applications

requiring numerical simulation, and more robust and efficient

methods for solving SNAE are continuously being sought.

Many powerful methods have been presented for the solu-

tions of SNAE. So far, almost all iterative techniques require

the prior one or more initial guesses for the desired root

and may fail to converge when the initial guess in far from

the required solution. Achieving convergence in an efficient

manner in these situations has become a real challenge.

The Homotopy Analysis Method (HAM) is based on the

classic homotopy theory and it is a general method for

solving nonlinear problems. Liao proposed the method in 1992

and successively refined it [6-9]. A comprehensive treatment

appears in [3-5]. Liao introduces a nonzero auxiliary parameter

� to construct a new kind of homotopy:

Ĥ(v; q, �) = (1− q)L[v(t; q, �)− v0(t)]− q�A[v(t; q, �)].

Also, similar to the classical homotopy case, as q increases

from 0 to 1, v(t; q, �) varies from the initial approximation

v0(t) to the exact solution v(t) of the original nonlinear

model. However, in case of HAM, the solution v(t; q, �) of the

equation Ĥ[v(t; q, �)] = 0 depends not only on the embedding

parameter q, but also on the auxiliary parameter � and the

linear operator L. This provides us with a family of homotopy

approximation series whose convergence region depends on

the auxiliary parameter �.
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The HAM method has demonstrated promise in the arena

of analytical solutions of equations. Abbasbandy and et al.

[1] have been successfully extended HAM to the iterative

numerical solution of algebraic equations. Indeed the inherent

flexibility and generality of the HAM method makes this a

challenging task. The successful theoretical development of

this methodology forms a core accomplishment of the work

by Awawdeh [2]. Awawdeh developed the methodology for the

iterative numeric solution of multivariate system of nonlinear

algebraic equations.

In this work, we present HAM as a methodology used

to construct efficient iterative numerical algorithms for the

solutions of SNAE. Some problems were selected to illustrate

the performance of our algorithms in solving SNAE.

II. MULTIVARIATE SOLUTION OF NONLINEAR ALGEBRAIC

EQUATIONS

Consider the system of nonlinear algebraic equations

F (x) = 0, (1)

where F (x) = (f1(x), f2(x), · · · , fn(x))
T , x =

(x(1), x(2), · · · , x(n))T and fi : R
n → R is a nonlinear

function. Assume that F has continuous second order partial

derivatives on a convex set D ⊆ R
n, and that it has a locally

unique simple root α ∈ D. Furthermore, assume that the

Jacobian matrix J [F (x)] is invertible in a neighborhood of

α.

By using the truncated Taylor’s expansion near x

F (x− β) = F (x)− J [F (x)]β +
1

2
Hβ [F (x)], (2)

where β = [β1, β2, · · · , βn]
T , βi = xi − αi and

Hβ [F (x)]

= [βTH1[F (x)]β, βTH2[F (x)]β, . . . , βTHn[F (x)]β].

Here Hi[F (x)] is the Hessian matrix of fi

Hi[F (x)] =

⎡
⎢⎢⎢⎢⎢⎣

∂2fi
∂x2

1

∂2fi
∂x1∂x2

· · · ∂2fi
∂x1∂xn

∂2fi
∂x2∂x1

∂2fi
∂x2

2
· · · ∂2fi

∂x2∂xn

...
...

. . .
...

∂2fi
∂xn∂x1

∂2fi
∂xn∂x2

· · · ∂2fi
∂x2

n

⎤
⎥⎥⎥⎥⎥⎦
.

We seek β such that F (x− β) ≈ 0 and thus (2) gives

β = J−1[F (x)]F (x) +
1

2
J−1[F (x)]Hβ [F (x)]. (3)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:3, 2013

331

Equation (3) is a nonlinear algebraic equation in β and can

be decomposed into its linear and nonlinear constituents as

follows

A(β) = L(β) +N (β) = c, (4)

where L(β) = β represent the linear component, c =
J−1[F (x)]F (x) and

N (β) = −1

2
J−1[F (x)]Hβ [F (x)]

represents the nonlinear component.

We will apply the HAM to solve Equation (4) for β.
Following the steps used in the previous section we have the

series solution

β = v(1) �
N∑

m=0

βm (5)

with the zero-order deformation equation

(1− q)L[v(q)− β0] = q�(A[v(q)]− c). (6)

We will calculate the Nth−order approximation of β for

various values of N in Equation (5).

Setting β0 = J−1[F (x)]F (x) and taking the zeroth-order

approximation (N = 0) of β in (5), we obtain

α = x− β � x− β0 = x− J−1[F (x)]F (x). (7)

We can write the iteration form of (7) as follows

xn+1 = xn − J−1[F (xn)]F (xn),

which is the Newton-Raphson method.

Using first-order approximation (N = 1) of β in (5), we

get

β = β0 + β1.

Note that β1 can be obtained by differentiating (6) w.r.t q and

keeping q = 0 to obtain the first order deformation equation

− L[v(0)− β0] + (1− q)[β1] (8)

= �{v(q)− 1

2
J−1[F (x)]Hβ0

[F (x)]− J−1[F (x)]F (x)},
where

Hβ0 [F (x)]

= [βT
0 H1[F (x)]β0, β

T
0 H2[F (x)]β0, . . . , β

T
0 Hn[F (x)]β0].

Plain calculations show that (8) reduces to

β1 = −�

2
J−1[F (x)]Hβ0

[F (x)]

and so

α = x− β � x− β0 = x− J−1[F (x)]F (x)+

�

2
J−1[F (x)]Hβ0 [F (x)].

The iteration form of (8) can be given as follows

xn+1 = xn−J−1[F (xn)]F (xn)+
�

2
J−1[F (xn)]Hβ0 [F (xn)].

(9)

Awawdeh [2] showed that Iteration (9) can be written in

operator form as follows: Given x0 ∈ D, compute yn, xn+1

from

0 = F (xn) + F ′(xn)(yn − xn), (10)

0 = F (xn) + F ′(xn)(xn+1 − xn)− �

2
F ′′(xn)(yn − xn)

2,

n = 0, 1, 2, . . . .

Notice that for � = −1, HAM method (10) gives rise to

Chebyshev’s method.

In actual computations the nth step of (10) proceeds as

follows:

1st Stage: Compute a LR-decomposition of F ′(xn) by

Gaussian elimination.

2nd Stage: Solve the linear system

F ′(xn)an = −F (xn).

3rd Stage: Solve the linear system

F ′(xn)bn = −�

2
F ′′(xn)a

2
n.

4th Stage: Set xn+1 = xn + bn.
In the case N = 2, we have

β = β0 + β1 + β2.

Differentiate (6) twice w.r.t q and set q = 0 to obtain the

second order deformation equation

2(β2 − β1) = 2�{β1 − 1

2
J−1[F (x)]Ha[F (x)]− (11)

1

2
J−1[F (x)]Hb[F (x)]}

where

Ha[F (x)]

= [βT
1 H1[F (x)]β0, β

T
1 H2[F (x)]β0, . . . , β

T
1 Hn[F (x)]β0]

and

Hb[F (x)]

= [βT
0 H1[F (x)]β1, β

T
0 H2[F (x)]β1, . . . , β

T
0 Hn[F (x)]β1].

Note that Ha[F (x)] = Hb[F (x)] since the Hessian matrix is

symmetrical. Equation (11) therefore reduces to

β2 = β1 + �{β1 − J−1[F (x)]Ha[F (x)]}
and we get

α = x− β � x− J−1[F (x)]F (x)+ (12)

(2 + �)
�

2
J−1[F (x)]Hβ0

[F (x)] + �J−1[F (x)]Ha[F (x)].

The iteration form of (12) can be given as follows

xn+1 = xn − J−1[F (xn)]F (xn)+

(2 + �)
�

2
J−1[F (xn)]Hβ0

[F (xn)]+

�J−1[F (xn)]Ha[F (xn)]. (13)
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III. APPLICATIONS

In this section, we have selected some examples which

will show the simplicity and effectiveness of the proposed

algorithms. The calculations were done using MATLAB 7.

Our comparison of the methods is based upon the number

of iterations. We use the following stopping criterion for our

computer programs:

|xk+1 − xk| < ε,

where ε = 2.22× 10−16 is a MATLAB constant.

Example 1: Consider the system of equations

0 = x2 − 10x+ y2 + 8,

0 = xy2 + x− 10y + 8,

which has the roots α1 = (1, 1) and α2 = (2.193, 3.020).
The maximum number of iterations using (13) in the range of

� = (−1, 1), where � is varied uniformly in this range with a

step size of 0.002 and x0 = (−2, 2), is 6.

Example 2: Consider the system of three nonlinear equa-

tions in three unknowns:

0 = 3x− cos(yz)− 0.5,

0 = x2 − 81(y + 0.1)2 + sin z + 1.06,

0 = e−xy + 20z +
10π − 3

3
.

This has a zero

α � (0.49814468,−0.19960589,−0.52882597).

For x0 = (5, 5, 2) the proper values of � are � ∈ (−1,−0.55)
and for x0 = (−15,−15,−15) are � ∈ (0, 0.018). Table I

illustrates that if x0 is not sufficiently close to the actual root,

there is enough reason to suspect that Newton’s method (NM),

Chebyshev’s method (CM) and Halley’s method (HM) will

diverge and in this case we can still find a proper value of �

that ensures the convergence of method (10).

TABLE I
NUMERICAL RESULTS OF THE SOLUTIONS IN EXAMPLE 4

method x0 = (5, 5, 2) x0 = (−15,−15,−15)
iter iter

NM
CM
HM
HAM

14
8
8

6(� = −0.6)

Divergent
Divergent
Divergent
9(� = 0.001)

IV. CONCLUSION

The HAM algorithms are very effective and efficient which

provide highly accurate results in less number of iterations as

compared to some well-known existing methods. It is shown

to have significant advantages over the traditional methods

in terms of flexibility, convergence and possibly speed. One

of the disadvantages of the algorithms that it require the

computation of high derivatives. But, The practical relevance

of these methods increases since computer aided formulae

manipulation facilities became a common tool in numerical

analysis. HAM algorithms contain the parameter � which can

be used to ensure and accelerate the convergence. In future

work, we will seek an efficient method to get optimal values

of �.
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