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Abstract—The Želazny Most tailing pond is one of the largest 
facilities worldwide for waste disposal from the copper mines located 
in South-West Poland. A potential failure of the dam would allow 
more than 10 million cubic meters of contaminated slurry to flow to 
the valley, causing immense environmental problems to the 
surrounding area. Thus, the determination of the strength properties 
of the dam's soils and their variability is of utmost importance.  

An extensive site investigation consisting of more than 480 cone 
penetration tests (CPTs) with or without pore water pressure 
measurements were conducted within a period of 13 years to study 
the mechanical properties of the tailings body. The present work 
investigates the point variability of the soil strength parameters 
(effective friction angle ’) of the three soil layers consisting the 
dam's slope as well as the spatially-averaged variation of ’ over the 
slope’s slip surface; this information is based on the well-established 
relationships between the CPT measurements and the strength 
parameters from literature. The study showed that the friction angle 
of the tailings exhibits smaller variation than the natural soils, which 
is consistent with the literature. As far as the spatial variability, the 
top and medium layers show a small fluctuation scale, while the 
bottom layer shows a ten-time greater correlation among its 
measurements.  

The effect of the soil variability on the stability of the dam is 
determined by performing a probabilistic analysis on a dam's cross-
section, while using the available knowledge about the soil properties 
of the dam. 

Keywords—Soil strength variability, friction angle spatial 
variability, Želazny Most tailing dam. 

I. INTRODUCTION

HREE copper mines exist in Lower Silesian Voivodeship 
(province) in Poland – see Fig. 1 – to explore the great ore 

body, namely the Lubin, the Rudna and the Polkowice - 
Sierszowice mine.  

The separation of the copper minerals from the rest of the 
ore is performed at the mill using the flotation method. 
According to KGHM’s website [1], about 4 – 6 % of the 
weight of the extracted ore is copper. The great majority of the 
extracted material is waste, called tailings that contains heavy 
metals and other contaminants. Since no large-scale 
application for the tailings has been found so far, the waste has 
to be safely deposited on the ground surface; this purpose for 
the three KGHM mines is served by the Želazny Most tailing 
pond.   

S. A. Arnaouti is with the Aristotle University of Thessaloniki, 541 24, 
Greece (phone: 30-2310-995713; fax: 30-2310-995619; e-mail: 
sarnaout@civil.auth.gr).  

D. C. Angelides is with the Aristotle University of Thessaloniki, 541 24, 
Greece (e-mail: dangelid@civil.auth.gr).

T. N. Chatzigogos is with the Aristotle University of Thessaloniki, 541 24, 
Greece (e-mail: thechatz@civil.auth.gr). 

W. M. Pytel is with the KGHM Polska Mied  S.A., Lubin, 59 301, Poland 
(e-mail: wpytel@cuprum.wroc.pl). 

The tailing dam is constructed according to the upstream 
method; a starter dike is constructed and then the tailings are 
discharged in the perimeter of the structure using spigots or 
cyclones. As the tailing slurry is released, the coarser materials 
settle quickly forming the new perimeter dike and the wide 
beach area, while the finer material moves along the beach to 
the pond. Each new perimeter dike is founded on the currently 
existing dam beach. Thus, the height of the dam is 
continuously increasing, while the dam’s area remains the 
same throughout the structure’s life. Part of the cleaned water 
of the tailing pond is send back into the mill. 

The Želazny Most tailing dam started operating in 1977 [1]. 
Since then, it receives approximately 80,000 tonnes of tailings 
in liquid form per day, causing its height to increase by about 
1.25-1.50m per year [2]. At its current state the dam’s 
perimeter has a length of 14.3km and the area occupied by the 
structure is about 13.94 km2 [1]. Reference [2] states that the 
dam’s crest is around 170m above sea level and that it is 22-
60m poked out from the ground natural terrain, forming the 
largest tailing dam in Europe. The tailing dam is a key feature 
of the mining process because incapacity of the dam to receive 
the waste will result to an abrupt stoppage of the whole mining 
activity, with great economical consequences to the mine 
owner. At the same time, a failure of the tailing dam can cause 
huge environmental problems and jeopardise the health of the 
nearby town population.In the present study, the variability of 
the strength properties of the dam’s body soil layers in time 
and space is investigated and its impact on a cross-section’s 
slope stability is determined. 
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Tabulated in Fig. 4 are the histograms of the granular and of 
the clayey effective friction angles for the three soil layers 
based on the CPT statistical analysis.  

Fig. 5 presents the histogram of the friction angle for the 
two soil types combined. It is obvious that the granular soils 
present mean values of ’ around 350 and very small variation 
(3-5%). This is not the case for the histogram of the clayey 
soils where high deviations from the mean value are observed 
(CV=8-11%). At the combined histogram of Fig. 5, the high 
proportion of granular soils over clayey (clayey soils are met 
at about the 17% of the cases) dominate the histogram, leading 
to smaller coefficients of variation than the ones observed at 
the clayey soils. 

Fig. 4 Histogram of the effective friction angle for the cases of (a) the granular measurement points and of (b) the clayey measurement points 
for the three soil layers based on the CPTs 

Fig. 5 Histogram of the effective friction angle for the three soil layers based on the CPTs 

TABLE I
RESULTS OF THE STATISTICAL ANALYSIS OF CPTS

soil layer mean ’ (o) CV no. of points 

A 36.0 8% 35965 

B 34.4 5% 49009 

C 34.0 6% 37740 
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It should be noted that the results obtained are based on all 
the 125 CPTs together even though they have been conducted 
within a great time spam of 13 years. This is based on the fact 
that the static loading of the tailings with time by the slurry 
release cannot compact the granular soil layers by a significant 
amount and thus does not affect greatly the effective friction 
angle. Indeed, as is shown in Fig. 6, the effective friction angle 
is almost insensitive to the time the CPTs were conducted.    

The coefficient of variation of each soil layer is increased 
by 2% to be on the safe side. This increase may accommodate 
the CPT measurement errors as well as the discrepancies from 
the equations used. Thus, the final probabilistic characteristics 
of friction angle for the three soil layers used in the subsequent 
analysis are given in Table II. 

Fig. 6 Mean value of effective friction angle based on the CPTs 
results conducted within each year 

IV. SPATIALLY-AVERAGED VARIATION OF FRICTION ANGLE

In the previous section, the variability of the effective 
friction angle at a specific point has been estimated. However, 
the variability of the strength parameters will be used for the 
determination of the slope stability and thus the variability of 
the whole cross-section is more appropriate than the 
variability at a specific point. Indeed, across the failure surface 
extremely high and extremely low values of ’ can be 
encountered; but what is actually needed for the analysis is the 

’ of the whole failure surface, which intuitively is expected 
to have the same mean but less standard deviation compared 
to the point ’. To take into account this effect, the 
methodology proposed in [11] is adopted in this section and 
the results are presented.    

Based on [11], the ratio of standard deviation of a parameter 
X in a specific area A (XA) over the point standard deviation 
of this parameter (X) equals (A), where  is named the 
root-mean-squared (rms) reduction factor. The  actually is a 
measure of the reduction of (XA) relative to the point (X).
For the one-dimensional case, the rms reduction factor for a 
length segment z is given by (6): 

zfor
z

zfor
z

1
)(              (6) 

where  is the scale of fluctuation of parameter X.    
The correlation function ( z) (essentially the 

autocorrelation function) of the parameter under study, the 
effective friction angle in the present analysis, is given by the 
exponential function of (7). 

2)/(exp)( bzz                (7) 

where b equals / .
For the selected formula of the correlation function (7), the 

rms reduction factor over the slip surface (A) can be 
expressed as the product of two one-dimensional rms factors. 

)()(),()( yxyxA           (8) 

If isotropy in the horizontal dimension is assumed, then (8) 
is further simplified to (9). 

)()()()()()( 2 xxxyxA      (9) 

Once the correlation function is determined based on (7), 
the following formula is used to estimate  [11]. 

1)(

2
2
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x

e
b
x

b
x

x
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where (·) is the error function. 
In the analysis it was assumed that the soil is locally 

homogeneous in the vertical dimension. So, for each borehole 
for which the cone penetration test was conducted, the average 
value of the effective friction angle of the test results that 
passed through each layer was selected. This mean value for 
each borehole was then used to estimate the correlation 
function. It should be noted that the distance among test 
locations was estimated as the resultant distance of the radial 
and circumferential distance of test locations.  

TABLE II
RESULTS OF THE SPATIALLY AVERAGED STATISTICAL ANALYSIS OF CPTS

soil layer mean ’ (o) CV  (m) 

A 36.0 10% 51 

B 34.4 7% 27 

C 34.0 8% 198
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its mean elevation as is illustrated in Fig. 2 and the safety 
factor is estimated according to the Bishop simplified method 
(Cornforth, 2005).   

Table IV presents the results of the probabilistic slope 
stability analysis. The mean safety factor remains the same in 
the three cases, but the coefficient of variation CVSF of the 
safety factor decreases from case 1 to case 3 following the 
reduction of the effective friction angle uncertainty. The 
probability of failure Pf is about 8% for the first case and is 
significantly reduced to 0.06% when the spatial-averaged 
effective friction angle variation is used. 

VI. CONCLUSIONS

In the present study, the strength parameters of the tailings 
and their spatial variability have been investigated based on a 
great number of available CPTs. The tailings show variability 
smaller than the natural soils. The bottom layer fluctuates 
smoothly in the horizontal direction, while the upper soil 
layers present more abrupt fluctuations, thus forcing the 
spatially-averaged friction angle variation to significant 
reduction. 

To illustrate the effect of the friction angle variability to the 
probability of failure, a probabilistic slope stability analysis 
was performed. If no CPT data were available, a coefficient of 
variation of 10% would have led to a non-acceptable value of 
the probability of failure (8%). The conventional use of the 
CPT results by estimating the point variation of ’ reduced the 
probability of failure to 3%. When the friction angle variation 
is spatially-averaged along the slip surface, the probability of 
failure is significantly reduced, highlighting the beneficial 
effect of the concept of statistical homogeneity. 

In the present case, the thorough understanding of the 
effective friction angle’s statistical properties through 
geotechnical investigation led to a computationally estimated 
substantially larger reliability of the structure, thus minimizing 
the necessity for stability measures.   
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TABLE III 
COEFFICIENT OF VARIATION FOR THE THREE CASES 

soil layer mean ’ (o)
CV

case 1 case 2 case 3 

A 36.0 10% 10% 3%

B 34.4 10% 7% 1.5% 

C 34.0 10% 8% 5%

TABLE IV 
RESULTS OF THE PROBABILISTIC SLOPE STABILITY ANALYSIS

case mean 
SF

min 
SF

max 
SF

CVSF

(%)
Pf

(%) 

1 1.055 0.927 1.199 3.7 8.04 

2 1.055 0.955 1.164 2.8 3.28 

3 1.055 0.980 1.113 1.6 0.06 


