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Abstract—To achieve reliable solutions, today’s numerical and
experimental activities need developing more accurate methods and
utilizing expensive facilities, respectfully in microchannels. The ana-
lytical study can be considered as an alternative approach to alleviate
the preceding difficulties. Among the analytical solutions, those with
high robustness and low complexities are certainly more attractive.
The perturbation theory has been used by many researchers to analyze
microflows. In present work, a compressible microflow with constant
heat flux boundary condition is analyzed. The flow is assumed to be
fully developed and steady. The Mach and Reynolds numbers are also
assumed to be very small. For this case, the creeping phenomenon
may have some effect on the velocity profile. To achieve robustness
solution it is assumed that the flow is quasi-isothermal. In this study,
the creeping term which appears in the slip boundary condition
is formulated by different mathematical formulas. The difference
between this work and the previous ones is that the creeping term
is taken into account and presented in non-dimensionalized form.
The results obtained from perturbation theory are presented based
on four non-dimensionalized parameters including the Reynolds,
Mach, Prandtl and Brinkman numbers. The axial velocity, normal
velocity and pressure profiles are obtained. Solutions for velocities
and pressure for two cases with different Br numbers are compared
with each other and the results show that the effect of creeping
phenomenon on the velocity profile becomes more important when
Br number is less than O(ǫ).

Keywords—Creeping Effect, Microflow, Slip, Perturbation.

I. NOMENCLATURE

Br Brinkman number, Eq. (3)

Kn Knudsen number, Eq. (3)

Pr Prandtl number

M Mach number, Eq. (3)

Re Reynolds number, Eq. (3)

H,L microchannel height and length

T temperature

u, ν velocity

γ specific heat ratio

ǫ height to length ratio, Eq. (3)

σν momentum accommodation coefficient

λ mean free path

µ gas viscosity

ρ density
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A. Subscripts

i, o averaged inlet and outlet property

w wall property

B. Superscript

− nondimensional property

II. INTRODUCTION

M
Icrochannels are important components for many

micro-electro-mechanical systems (MEMS). From a

microflow perspective, the micro-electro-mechanical systems

(MEMS) are devices with a characteristic length of less than

1 mm but more than 1 µm; therefore, the flow Knudsen

number in such devices is characterized between 0.01 and

0.1, which is in the range of a slip flow regime. The correct

slip-velocity boundary condition implementation is a rather

important task in simulating slip flow regime. Because of

rarefaction effects, the no-slip boundary condition cannot be

implemented anymore on solid boundaries [1]. For many

years, the micro flow through micro tubes and microchan-

nels has been investigated experimentally, numerically, and

analytically. Numerically, there were many simulations of

compressible flows in a microchannel as well. Examples

are the direct simulation Monte Carlo method [2−4], the

Information Preservation method [5], the direct-solving Boltz-

mann method [6], the Boltzmann equations [7], and gas-

kinetic BGKBurnett method [8]. Discussions of the thermal

heating are also reported as well [9,10]. There are some

analytical works which solve Navier-Stokes equations for both

compressible and incompressible flows. Tunc and Bayazitoglu

[11] analytically studied the flow in microtubes. They used

the method of separation of variables to obtain the temperature

profile imposing constant wall temperature condition. Xu et al.

[12] theoretically analyzed and examined the effects of viscous

dissipation in microchannel flows. They suggested a criterion

to determine the limits of viscous dissipation significance. The

past studies show that the Navier-Stokes equations can be

safely used to derive slip flow solutions in this range, e.g. see

Darbandi and Vakilipour [13,14]. One of the most familiar

analytical methods, which is used to analyze compressible

flows, is the perturbation theory. We consider the effect of

the creeping phenomenon and demonstrate its term in the

slip boundary condition in non-dimensionalized forms. The
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Fig. 1. Geometry for channel analysis, with a flow profile at a given position

creeping effect is expressed in non-dimensionalized numbers

including the Br, Re, and M. The first order analytical solution

is obtained by using the perturbation theory.

III. RELATED WORK

In a recent attempt, Cai and Boyd [15] used the pertur-

bation theory and analyzed compressible gas flow through a

microchannel. They presented a complete set of the first-order

analytical solutions for pressure and velocity profiles. Their

work is an extension of the original work of Arkilic et. al.

[16], who conducted studies in compressible flows through

microchannels. The present paper is the extension of the work

presented by Cai [15] including the creeping phenomenon

which is imposed through a boundary condition.

IV. ANALYSIS

In this section the effect of the creeping phenomenon on

the velocity profile is demonstrated. The flow is assumed to

be compressible and fully developed micro-Poiseuille. Also,

constant heat flux at the wall is imposed as a boundary

condition. Fig.(1) shows the geometry and a velocity profile

at a given position of the microchannel used for this analysis.

The continuity equation and the axial momentum equation can

be written as
∂(ρu)

∂x
+

∂(ρν)

∂y
= 0 (1)

and

ρ{u∂u

∂x
+ ν

∂ν

∂y
} = −∂P

∂x
+

∂

∂x
{µ(2

∂u

∂x
− 2

3
(
∂u

∂x
+

∂ν

∂y
))}

+
∂

∂y
{µ(

∂u

∂y
+

∂ν

∂x
)} (2)

, respectively. To simplify above equations, some non-

dimensional variables introduced as follows

ǫ =
H

L
, Kn =

λ

H
, Re =

ρuoH

µ
,

M =
uo√
γRTo

, Br =
µu2

o

(H
2

)q′′

s

, x =
x

L
,

y =
y

H
,P =

P

Pout

, u =
u

uout

, ρ =
ρ

ρout

. (3)

Since the creeping phenomenon is important for low velocity

flows ( Cai et. al. [15] ), it is assumed that Re ∼ O(ǫ),

and M ∼ O(ǫ) and Kn ∼ O(1). It is evident that these

assumptions, which was adopted by Arkilic [16], is a special

case from this category. According to the Schaaf et. al. [17],

the slip velocity can be expressed in the form of

us =
2 − σν

σν

λ
∂u

∂y
|y=

H

2

+
3

4

Pr(γ − 1)

γρRTw

(q
′′

s ) (4)

By using defined parameters the Eq.(1) and Eq.(2) can be non-

dimensionalized to yield

ǫ
∂(ρ u)

∂x
+

∂(ρ ν)

∂y
= 0 (5)

and

ReP (ǫu
∂u

∂x
+ ν

∂u

∂y
) = − ǫRe

γM2

∂P

∂x
+ ǫ2

∂2u

∂x2
+

∂2u

∂y2

+
1

3
(ǫ2

∂2u

∂x2
+ ǫ

∂2ν

∂x∂y
) (6)

, respectively. Also, the non-dimensional boundary conditions

are

us =
2 − σν

σν

Kn
∂u

∂y
|y=0.5 +

3

2

Pr(γ − 1)M2

Br.Re
(7)

∂u

∂y
|y=0 = 0 (8)

To solve governing equations analytically using the pertur-

bation theory, following formats are assumed for the non-

dimensional quantities [16]

P = Po + ǫP1 + ǫ2P2 + O(ǫ3)

u = uo + ǫu1 + ǫ2u2 + O(ǫ3)

ν = νo + ǫν1 + ǫ2ν2 + O(ǫ3) (9)

Expanding and separating different magnitudes in Eq. (5), with

nonporous wall condition, results in νo = 0. According to Cai

and Boyd [15] it can be proven that Po = P (x) . Considering

O(1) for Eq. (6), The following relation for uo can be obtained

O(1) : − ǫRe

γM2

∂Po

∂x
+

∂2uo

∂y2
= 0 (10)

Integrating Eq. (10) twice with respect to y leads to Eq. (11).

uo =
ǫRe

2γM2

∂Po

∂x
y2 + c1y + c2 (11)

Where c1 and c2 are integral constants. Using appropriate

boundary conditions, one can find c1 and c2.

A. First Case

If Br ∼ O(ǫ) then from Eq. (7) it can be concluded that

O(1) : u0s =
2 − σν

σν

Kn
∂uo

∂y
|y=0.5 +

3

2

Pr(γ − 1)M2

Br.Re
(12)

∂u0

∂y
|y=0 = 0 (13)
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The integral constants c1 and c2 of the Eq. (11) can be

determined from boundary conditions Eq. (12) and Eq. (13).

Therefore,

uo(x, y) =
−ǫRe

8γM2

∂po

∂x
{1 − 4y2 + 4(

2 − σν

σν

)Kn}

+
3

2

Pr(γ − 1)M2

Br.Re
(14)

Solving Eq. (5) for ν1 and considering, ν1 = 0 on the wall

surface as the boundary condition, ν1 can be expressed as

ν1 =
ǫRe

8γM2

1

Po

[
1

2
(
∂2Po

2

∂x2
)(y − 4

3
y3)

+4Kno(
2 − σν

σν

)
∂2P o

∂x2
y] − 3

2

Pr(γ − 1)M2

Br.Re

1

Po

∂Po

∂x
y (15)

Evaluating the preceding equation along the wall surface with

ν1 = 0, yields an expression for pressure as a function of the

Lambert W.

B. Second Case

If Br ∼ O(1) then from Eq. (7) it can be concluded that

O(1) : u0s =
2 − σν

σν

Kn
∂u

∂y
|y=

1

2

(16)

∂u0

∂y
|y=0 = 0 (17)

The integral constants c1 and c2 of the Eq. (11) can be

determined from boundary conditions Eq. (16) and Eq. (17).

Therefore,

uo(x, y) =
−ǫRe

8γM2

∂po

∂x
{1 − 4y2 + 4(

2 − σν

σν

)Kn} (18)

Solving Eq. (5) for ν1 and considering, ν1 = 0 on the wall

surface as the boundary condition, ν1 can be expressed as

ν1 =
ǫRe

8γM2

1

Po

[
1

2
(
∂2Po

2

∂x2
)(y−4

3
y3)+4Kno(

2 − σν

σν

)
∂2P o

∂x2
y]

(19)

Evaluating the preceding equation along the wall surface with

ν1 = 0 yields an expression for pressure along the side walls

Po(x) = −6
2 − σν

σν

Kno+

[(6
2 − σν

σν

Kno)
2 + (1 + 12

2 − σν

σν

Kno)x

+(Pin

2

+ 12
2 − σν

σν

KnoPin)(1 − x)]0.5 (20)

V. RESULTS AND DISCUSSION

Velocity and pressure profiles are obtained for Br ∼
O(1) and Br ∼ O(ǫ) for both wall heating and wall

cooling cases. To obtain a useful solution from this study,

the non-dimensionalized parameters are calculated for air

with the following properties: T = 350k, γ = 1.4, µ =
208.2 ∗ 10−7 N.s

m2 , ν = 20.92 ∗ 10−6 m2

s
, P r = 0.7, uout =

0.2m
s
, Pin

Pout

= 1.005, H = 1µm, L = 100µm, σν = 1. As

a result of the influence of fluid and channel properties, the

fundamental parameters of the study are defined as, Re=0.01,

M=0.001, Kn=0.08, and ǫ = 0.01. For the first case, Br is

equivalent to 0.01 and for the second Br would be 1 when

q
′′

s is 1.7 and 170 w
m2 , respectively. As it was shown by

the equations the creeping effect becomes insignificant when

Br ∼ O(1) however its effect becomes more pronounced

when Br ∼ O(ǫ).

Fig. 2. Non-dimensionalized pressure vs. non-dimensionalized position for
two different magnitudes of Br numbers for the heating wall condition.

Fig. 3. Non-dimensionalized position vs. non-dimensionalized velocity for
two different magnitudes of Br numbers for the heating wall condition.

Figures (2) and (3) reveals the creeping effect on the

pressure and velocity profiles for heating wall condition.

As Fig. (2) represents, the creeping effect on the pressure

profile is negligible in the channel-wise direction. The non-

dimensionalized velocity of fluid is graphed versus the non-

dimensionalized channel height in order to inspect the creeping

effect on velocity profile, see Fig. (3). As it can be seen for
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heating wall boundary condition, the creeping effect increases

both the velocity of the fluid and the flow rate, also. The

creeping effect on pressure and velocity profiles for cooling

wall condition are illustrated in Figs. (4) and (5). Figure (4)

justifies the neglect of the creeping effect on the pressure pro-

file. As Fig. (5) depicts, the creeping phenomenon decreases

the velocity and the flow rate, both. Therefore, the flow rate

is increased or decreased based on the heating or cooling

condition of the wall, respectively. It must be highly noted

that the magnitude of the heat flux has an influence on the

quasi-isothermal assumption [15].

Fig. 4. Non-dimensionalized pressure vs. non-dimensionalized position for
two different magnitudes of Br numbers for the cooling wall condition.

Fig. 5. Non-dimensionalized position vs. non-dimensionalized velocity for
two different magnitudes of Br numbers for the heating wall condition.

VI. CONCLUSION

The goal of this work was to derive the analytical solution

for the velocity profile of the compressible flow with constant

heat flux boundary condition considering the creeping effect.

The perturbation theory was applied to obtain the first order

axial velocity, normal velocity, and pressure profiles. The

creeping term in the slip equation was expressed based on

the non-dimensional parameters including Pr, Re, M, and Br

numbers. Simulations show that for studied cases there is

not any difference between pressure profiles for the two Br

numbers with different orders. However, some differences are

observed between velocity profiles in two cases. Simulations

show that for the heating wall condition the creeping term

increases the velocity of the fluid, whereas for the cooling

wall condition the creeping term has an inverse effect on the

magnitude of the velocity.
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