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A high order Theory for Functionally Graded
Shell

V. V. Zozulya

Abstract—New theory for functionally graded (FG) shell based Various theories of FG plates and shells have been
on expansion of the equations of elasticity forctisnally graded developed last decades [1, 2, 4, 6, 13]. The nateroperties
materials (GFMs) into Legendre polynomials seriess tbeen of FG plates and shells can be described by vafimional
developed. Stress and strain tensors, vectors sflatiements, ojations. Most researchers use the power-law ifmct
traction and body forces have been expanded intgendre . . . . . .
polynomials series in a thickness coordinate. He same way exponential funqtlon, or sigmoid function [1, 2, t6]describe
functions that describe functionally graded relasichas been also the volume fractions. Models of FG plates and shexlé based
expanded. Thereby all equations of elasticity idilg Hook’s law on the Kirchhoff-Love, Timoshenko-Mindlin hypothesbr
have been transformed to corresponding equatiomsFmurier used more complicated high order theories. Mathiealbt
coefficients. Then system of differential equatiois term of rigorous and promising for engineering applicatiapproach
displacements and boundary conditions for Fourgafficients has to creation high order hierarchical models of piaaed shells

been obtained. Cases of the first and second ajppaitizns have . . . .
been considered in more details. For obtained banyachlue is based on expansion of the 3-D equations of iegsin

problems solution finite element (FE) has been usedlumerical L€gendre polynomials series i.n term of thicknesschSan .
calculations have been done with Comsol Multiphysiod Matlab ~ approach have been used widely for developmentowsri
theories of isotropic [3, 12] and anisotropic [Ghtes and

Keywords—Shell, FEM, FGM, Legendre polynomial shells. The method of Legendre polynomials sengm@sion
has been used widely in our previous publications f
INTRODUCTION development theory of thermoelasticity of platesl amells

RECENTyearS the FGMs have been applied in a science aniih considering close mechanical and thermal axinfad-
engineering, as reflected in numerous papers [1, 125]. More specifically, problem of heat conductiremd
They are advantageous over classical homogenediilateral contact of plates and shell through theat-
materials with only one material constituent, beseafGMs conducting layer with considering a change of laygrkness
consist of more material constituents and they dnenhe in the process of the shell deformation has beemutated in
desirable properties of each constituent. As aessntative [14-16, 20, 24, 25]. The developed approach havenbe
example for FGMSs, we just mention the metal/ceraf@Ms, applied to the laminated composite materials witlssibility
which are compositionally graded from a ceramicsghto a ©of delamination and thermoelastic contact in terapge field
metal phase. Metallceramic FGMs can incorporat® [17, 18, ], the pencil-thin nuclear fuel rods deting in [19]
advantageous properties of both ceramics and metiats as and some other engineering problems in [21-23].
the excellent heat, wear, and corrosion resistantesramics In this paper we are developing new theory for sk@lls
and the high strength, high toughness, good mabtiilyaand based on expansion of the equations of elastiotyGFMs
bonding capability of metals without severe intértiermal into Legendre polynomials series. More specificallye
stresses. expanded functions that describe functionally gdaddations
The FG thin-walled structures have numerous apidics, into Legendre polynomials series and find Hook'w lenat
especially in reactor vessels, turbines and manlyerot related Fourier coefficients for expansions ofsgrand strain
applications in aerospace engineering [9]. LamihatéNumerical examples are presented.
composite materials are commonly used in many kiofls
engineering structures. In conventional laminatechposite I. 3-D FORMULATION
structures, homogeneous elastic laminas are botutgther Let a linear elastic body occupy an open in 3-Dl#ian
to obtain enhar_med me_chanical properties. Howeme, space simply connected bounded domair] R® with a
abrupt change in material properties across therfate gnooth poundarydVv. We assume that elastic body is
between different materials can result in largeerdaminar inhomogeneous isotropic shell of arbitrary geometit \gh

stresses leading to delamination [7]. One way tercwme . . _ B o
these adverse effects is to use FGMs in which Mterthlckness. The domain i =Qx[~h h] and it is embedded

properties vary continuously by gradually changimgvolume in in Euclidean space. Boundary of the shell capfesented

fraction of the constituent materials. This elintesainterface in the formdV =SO Q" 0 Q™. Here Q is the middle surface
problems of composite materials and thus the streggthe shell 0Q is its boundaryQ* andQ" are the outer sides
distributions are smooth. and S=Qx[-h,h] is a sheer side.

Stress-strain state of the elastic body is defibhgdstress
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and body forcesh vectors. These quantities are not Where for isotropic shell

independent, they are related by equations ofieigst
For convenience we transform above equations sfieiy

taking into account that the radius vect®(x) of any point in

1 o 2wl

0 -0 2 ) 0= =
R T rven K weyy

®)

domain V, occupied by material points of shell may be Substituting Cauchy relations (3) in Hook’s law éhd then

presented as

R(X) =rx,)+xn(x,) )

where (X, ) is the radius vector of the points located on the

middle surface of shelln(x,)is a unit vector normal to the
middle surface.

Let us consider that x, =(x*,x%)
coordinates associated with main curvatures of rthiédle
surface of the shell. In order to simplify 3-D etjoas of
elasticity we introduce orthogonal system of cooatkés
related to main curvatures of the middle surfacehef shell.
Such coordinates are widely used in the shell thelor this
case the equations of equilibrium have the form

(Agy) a(A.JIZ) O3 s a_A1+
ax, ox, ax,  ox,

+013A&A2k1_ 0-22(?3ﬁ + Afo\pl: 0,
(AT, , AAT,)

are curvilinear

AAZ

oA

+ I2s 4

X, 0X, AAZ Tz x1
2

A0S ARD, =0,

0(AT;) + (AT 3) i 0(AADTS) _ 2)

X, 0X, 0X,4
_011A1A2k1_ 022A1A2k2 + AlAp3: 0
Cauchy relations have the form
= 1 au 1 oA u,+ku,
A 5><1 AA, 0,
Ep = ! 0U2+ L aA2u1+k2u3v£33:%'
A 0x, AA 0x 0%,
_ ou, 10A ou, 10A
512__ T Ao Y |t 3 T e
Alox, A 0x Al 0x A, 0x,
c ou, 1 ou, & :a&_ 1 ou, 3
13 6X3 11 A&ax 23 0X3 22 AZOX ()

Here A, (x,X,) =
first quadratic form of the middle surface of thael,
k,(x,X,) are it main curvatures.

In the case if inhomogeneous of the shell considts
graduation of the elastic modulus in thg, direction

generalized Hook'’s law for FG elastic shell we esgnt in the
form

r(x,,X,) M (x,,x,) are coefficients of the

G; (x) = (4)

G ()& (%), ¢y (X) = E(X)Q?u

Hook’s law into equations of equilibrium (2) we abt
differential equations of equilibrium in the formf o
displacements

A (), () +B () =0 ©

Here

A (x) = E(x)c)0,0, = E(x) A} @)

where A? is a differential operator that correspond to the

case of homogeneous equations of elasticity.
These equations will be used for elaboration of 2iB
equations for FGhells.

II. 2-D FORMULATION
If Let us expand the parameters, that describessstain
of the cylindrical shell in the Legendre polynorsiaeries
along the coordinate, .

> k P(w),u( ) 2k 1%

Iu (Xy.%) B (@)dX, ,

> 75 (%) R (@) o (x )—%Ila(xa,xs)a(w)dxg,
£ (x)= fe.( DR@. ()= 2 e (x,.) R @i
S 2k +1 ¢
P ()= 20 (% )R (@ B (%) = = 0 (%) R (@),
bl(x):i'k(XU)Pk(w)’ Ik( a 2k+1,|-h a’XS w)dx
(®)

Substituting these expansions in equations (28pbtain
corresponding relations for Legendre polynomialgiese
coefficients.

Equations of equilibrium have the form

o(Adt)  o(AdE) o5 OA L ipny
ax, x, Zox, ° !
)
—ngﬁ—d_ﬁﬁpﬁAsz =0,
a(AzUZ)Jra(APZz) 0A2+0_ AAK,-
ox, ox, Pox, ¥ 2
)
—Jf1£—0'23+A1A fk =0, 9)
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o(Ads) , 9(ATE)
X, 0X,

~gh+ AAT =0,

- UlklAlAZkl - ng A1A4<2 -

where
g (x,) = A2

g (x,) 10157 (x,)+..)

2k+1, -
£(x,) =bk (%, )+ - (a7 (%)~ (D 035(x,))
(10)
Cauchy relations have the form
k

gﬁ:iai+_la_Alu;+ s,

A 0x  AA,0X,

1ou . 1 0A Y
ek = +kuk,
27 A 0, AiAb ox, A

k

gfzz_ %_ia_Azu; + = %—_10_Aiulk ,

A0X, A 0 AL0x A 0x

k

£1k3 :ia&_klul; +U1k-

A 0% -

1 aul (11)
= gt U Ul

where
ui"(xa)=&+l(uik”(xa)+ui“+3(xa)+...)
- h (12)

In order to transform Hook'’s law in 1-D form we expul
Young's E(X) in Legendre polynomials series

X, ) P (%),

2k +17¢
== IE(xa,xg)ﬂ(w)dxg.
h

(13)

Substituting this expansion and expansions fosstamd
strain tensors in Hook's law we obtain 1-D HooldsIfor
Legendre polynomials series coefficients

al (x,)= e ii O™ E" (x, ) &d (X,) (14)
where
1= [P )P IR DD, (1)

Substituting Cauchy relationg1) and Hook’s law

(14) in equations of equilibriun9) we obtain

EffLmD)= (16)
e B ][
—_ 10 11 —_ 10 11 1 _ 1
=& 5 L=l Lo u—uj,f—fj
(17

Here Lir}m are differential operators that correspond to

homogeneous elastic shellE™ =[0"" E" are coefficients
that characterized inhomogeneous properties aftibé.

Now instead of one 3-D system of the differentig@ions
in displacements (6) we have of 2-D infinite diéatial
equations for coefficients of the Legendre’s polyied series
expansion. In order to simplify the problem appmate
theory has to be developed and only finite setefivers have
to be taken into account in the expansion (8). Oafethe
system of equations depends on assumption regarding
thickness distribution of the stress-strain paranseiof the
shell.

I1l. RESULTS AND DISCUSSION

We consider here the case of relatively thick shell
Therefore we will keep three members in polynomial
expansion (8). In this case we will get the secamder
approximation equations for functionally gradedIishén this
case the stress-strain parameters, which desdrébestate of
the shell, can be presented in the form

g, (x) =7 (%) R
& (x) =& (x.)R
u (x) =u’ ()R

(x)=

2 (@) + 75 (%, ) R (@) + 7 (%, ) P, ()
X, ) P (@) + &7 (%, ) P (@),
> (@) +u' (%, ) P () +u?(x, ) P, (w), (18)
P (x) = PP (%) R (@) + (X, ) R (@) + p*(x, ) Pa(),
b (x) =07 (%, ) R (@) +1"(x, ) R (@) + b7 (%, ) P (@)-
Taking into account formulae (15) for the coeffitie[]"™

Hook’s law for coefficients of the Legendre polyrats series
expansion (15) has the form

(@)1

ol = [ZE0 + 2 E's +§E szf] :

gy =, 2E5,d (2E°+—4E2j£§+—4E1£§ ,
3 3 15 15

oo 2o e 2o e
5 15 5 35

o for 2
Now system of equations for displacements has s
form as (16), but it contains only four equationgnd
corresponding matrixes and vector have the form

differential equations in displacements. This gsyste

of equations contains infinite number of equations i i

which are 2-D, they can be written in the form

00 01 E02
N i

= E&O E”11 Eij12 (20)
E? E” E
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Most of operatorsi_i”jm are differential, they have the form

2,,0 0
p = (1+20) 0 5 120 =295 k=,

axlz 1 =13¥3 R 0)(1 1
A aul A auo
it = S L = OLiu = 0L = - £ o
00, ,0 0%uy u’ 02 2 00
L33U3 =u aX122 _(/] +2'u)—|;, |-33U3 = 0,|_1(iu1 =Q
3 auo azul 3
23 = _Tﬂa_xj U =(A+2p) 5 L —h_'lzl L
1 1 0
pap = A0 L O oo AW oo
Rax 0%, R 0x,
00,,0 2uy Uo 10..0
LUy = p—— _( +2/1)_F3Q'L11U1 =0,

0’y 3u .

L13u3 - h X,Lﬁuf:(/Hz,u) axlz Full
1 1 2
L]iéu;_i%+lu %’ liuf:o,l_:léjgzﬂ%,
R ox, 0x, h ox
31 au? 3N Aoul
L = = G Lk =~ L= —Eﬁ,

(1 24) g e =0

Bl = -2 i = 0, = 0 = 0,

1 2,,2
2 =0 12 = (1) 00 -1

h o o ht
2= 2% oz = o -2, )
Lt = e = AL
2 = uaa: "y +2u)[% +i_5j 2

Substituting these operators into (21) we obtastesy of
differential equations which together with corresgiog
boundary conditions can be used for the stresBistra
calculation for the second approximation shell tieo

Material properties of an FGM are the functionsrofume
fractions and they are managed by a volume fractighen
the shell is considered to consist of two materiaish

Young's modulus E, and E, respectively, the effective
Young's modulusE(x,) given by the following power-law
expression
X, +h
E =\E,-E 3
(%3) ( 2 1)( 2h

Substituting function (23) into equation (13) wéam
expressions for the Legendre polynomials coeffisidar the
effective Young’'s modulus

(BB L, _(E-E)m
1+n ' 2+ +n?’

e = _5(E.~E) (-2’ (24)
(L+n)(2+n)(3+n)

]n+a (n>0) (23)

For simplisity in this study we consider dimeticde

X

coordinatesfl=f and 63:% have been introdused.

Calculations have been done for Young's modulusaktpl
E,=1Pa and E/E,=2 and for Poison ratiov =0.3

respectively, other paramiters aR=0.29., h=0.25R and
n=0.2. Numerical calculations have been done using
commercial software Comsol Multiphysics and Matlab.
Results of calculations are presented on Fig. ig—3F

Fig. 1 shows the Legendre polynomials coefficdot the
displacements distribution versus the normalizedtie for the
second approximation theory. These coefficients REM
solutions of the systems of differential equati¢@g) with
differential operators (22). Fig. 2 shows displaeata and
stresses distribution versus normalized lengththictness for
second approximation theory.
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Fig.1 mLegendre polynomials coefficients for the
displacements

Displacements u, Displacements u,

1

Fig. 2 Displacements and stresses versus normaéneth
and thickness
On Fig. 3 are presented values of maximal displacgsn

U, and stresse®,, at the cross section situated at the middle

point of the shell with coordinaté =0 versus ratitn/ R.
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Fig. 3 Displacementsl, and stresses,;versush/ R for
various exponents

IV. CONCLUSION

The high order theory for FG axisymmetric cylindiishell
based on expansion of the axisymmetric equatiorsdasticity
for FMs into Legendre’s polynomials series has been
developed. Starting from axisymmetric equation®lasticity
for FGMs, The stress and strain tensors, vectors of
displacements, traction and body forces and alsotifon that
describe functionally graded relations for Youngmodulus
have been expanded into Legendre polynomials seriessm
of the shell thickness coordinate. Then all equetiof
elasticity including Hook's law have been transfednto
corresponding equations for the Legendre’s polyadsrseries
expansion coefficients. The system of differentiquiations in
term of displacements and boundary conditions foe t
coefficients of expansion has been obtained. Caftte first
and second approximations have been consideredoie m
details. All necessary equations and heir coefitsidnas been
written explicitly and corresponding boundary-vapueblems
have been formulated. For numerical solution of the
formulated problems finite element (FE) has beeeduand
commercial software Comsol Multiphysics and Matlede
been used. For validation of the proposed theodyariained
equations comparison with results obtained usingaggns of
elasticity has been done for exponential functioor f
graduation law. Influence of different parametenstee stress-
strain state of the cylindrical shell has beenistid
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