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Abstract—New theory for functionally graded (FG) shell based 
on expansion of the equations of elasticity for functionally graded 
materials (GFMs) into Legendre polynomials series has been 
developed. Stress and strain tensors, vectors of displacements, 
traction and body forces have been expanded into Legendre 
polynomials series in a thickness coordinate.  In the same way 
functions that describe functionally graded relations has been also 
expanded. Thereby all equations of elasticity including Hook’s law 
have been transformed to corresponding equations for Fourier 
coefficients. Then system of differential equations in term of 
displacements and boundary conditions for Fourier coefficients has 
been obtained. Cases of the first and second approximations have 
been considered in more details. For obtained boundary-value 
problems solution finite element (FE) has been used of Numerical 
calculations have been done with Comsol Multiphysics and Matlab. 
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INTRODUCTION 

ECENT years the FGMs have been applied in a science and  
engineering, as reflected in numerous papers [10, 11]. 
They are advantageous over classical homogeneous 

materials with only one material constituent, because FGMs 
consist of more material constituents and they combine the 
desirable properties of each constituent. As a representative 
example for FGMs, we just mention the metal/ceramic FGMs, 
which are compositionally graded from a ceramic phase to a 
metal phase. Metal/ceramic FGMs can incorporate 
advantageous properties of both ceramics and metals such as 
the excellent heat, wear, and corrosion resistances of ceramics 
and the high strength, high toughness, good machinability and 
bonding capability of metals without severe internal thermal 
stresses. 

The FG thin-walled structures have numerous applications, 
especially in reactor vessels, turbines and many other 
applications in aerospace engineering [9]. Laminated 
composite materials are commonly used in many kinds of 
engineering structures. In conventional laminated composite 
structures, homogeneous elastic laminas are bonded together 
to obtain enhanced mechanical properties. However, the 
abrupt change in material properties across the interface 
between different materials can result in large interlaminar 
stresses leading to delamination [7]. One way to overcome 
these adverse effects is to use FGMs in which material 
properties vary continuously by gradually changing the volume 
fraction of the constituent materials. This eliminates interface 
problems of composite materials and thus the stress 
distributions are smooth. 
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Various theories of FG plates and shells have been 
developed last decades [1, 2, 4, 6, 13]. The material properties 
of FG plates and shells can be described by various functional 
relations. Most researchers use the power-law function, 
exponential function, or sigmoid function [1, 2, 6] to describe 
the volume fractions. Models of FG plates and shells are based 
on the Kirchhoff-Love, Timoshenko-Mindlin hypothesis or 
used more complicated high order theories. Mathematically 
rigorous and promising for engineering applications approach 
to creation high order hierarchical models of plates and shells 
is based on expansion of the 3-D equations of elasticity in 
Legendre polynomials series in term of thickness. Such an 
approach have been used widely for development various 
theories of isotropic [3, 12] and anisotropic [5] plates and 
shells. The method of Legendre polynomials series expansion 
has been used widely in our previous publications for 
development theory of thermoelasticity of plates and shells 
with considering close mechanical and thermal contact [14-
25]. More specifically, problem of heat conducting and 
unilateral contact of plates and shell through the heat-
conducting layer with considering a change of layer thickness 
in the process of the shell deformation has been formulated in 
[14-16, 20, 24, 25]. The developed approach have been 
applied to the laminated composite materials with possibility 
of delamination and thermoelastic contact in temperature field 
in [17, 18, ], the pencil-thin nuclear fuel rods modeling in [19] 
and some other engineering problems in [21-23]. 

 In this paper we are developing new theory for FG shells 
based on expansion of the equations of elasticity for GFMs 
into Legendre polynomials series. More specifically, we 
expanded functions that describe functionally graded relations 
into Legendre polynomials series and find Hook’s law that 
related Fourier coefficients for expansions of stress and strain 
Numerical examples are presented.      

I.  3-D FORMULATION 

Let a linear elastic body occupy an open in 3-D Euclidian 

space simply connected bounded domain 3V ∈R  with a 
smooth boundary V∂ . We assume that elastic body is 
inhomogeneous isotropic shell of arbitrary geometry with 2h 

thickness.  The domain is ],[ hhV −×Ω=  and it is embedded 

in in Euclidean space. Boundary of the shell can be presented 

in the form −+ Ω∪Ω∪=∂ SV . Here  Ω is the middle surface 
of the shell, ∂Ω is its boundary, Ω+ and Ω- are the outer sides 
and [ , ]S h h= Ω× −  is a sheer side. 

Stress-strain state of the elastic body is defined by stress 
ijσ  and ijε  strain tensors and displacements iu , traction ip , 
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and body forces ib  vectors. These quantities are not 

independent, they are related by equations of elasticity.  
For convenience we transform above equations of elasticity 

taking into account that the radius vector )(xR of any point in 

domain V, occupied by material points of shell may be 
presented as  

3( ) ( ) ( )xα α= +R x r x n x               (1) 

where )( αxr is the radius vector of the points located on the 

middle surface of shell, )( αxn is a unit vector normal to the  

middle  surface.         
Let us consider that 1 2( , )x xα =x  are curvilinear 

coordinates associated with main curvatures of the middle 
surface of the shell. In order to simplify 3-D equations of 
elasticity we introduce orthogonal system of coordinates 
related to main curvatures of the middle surface of the shell. 
Such coordinates are widely used in the shell theory. In this 
case the equations of equilibrium have the form 
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Cauchy relations have the form 
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Here 1 2 1 2 1 2( , ) ( , ) ( , )A x x x x x xα = ⋅r r are coefficients of the 

first quadratic form of the middle surface of the shell, 

1 2( , )k x xα  are it main curvatures.  

In the case if inhomogeneous of the shell consists of 
graduation of the elastic modulus in the 3x  direction 

generalized Hook’s law for FG elastic shell we represent in the 
form 

( ) ( ) 0( ) ( ) ( ),ij ijkl k ijkl ijkll c E ccσ ε ==x x x x x           (4) 

where for isotropic shell   

( ) ( )
0

0 0 0 0 01 2
2 , ,

2 1 1 2ijkl ij kl il jkc
νµλ δ δ µ δ δ µ λ

ν ν
= + = =

+ −
   (5)

 

Substituting Cauchy relations (3) in Hook’s law (4) and then 
Hook’s law into equations of equilibrium (2) we obtain 
differential equations of equilibrium in the form of 
displacements  

( ) ( ) ( ) 0ij j iA u b+ =x x x
               (6)

 

Here  

( ) ( ) ( )0 0
ij ijkl k l ijA E c E A= =∂ ∂x x x  (7) 

where 0
ijA  is a differential operator that correspond to the 

case of homogeneous equations of elasticity.  
These equations will be used for elaboration of the 2-D 

equations for FG shells.  

II.  2-D FORMULATION  

If Let us expand the parameters, that describe stress-strain 
of the cylindrical shell in the Legendre polynomials series 
along the coordinate 3x .  
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Substituting these expansions in equations (2)-(3) we obtain 
corresponding relations for Legendre polynomials series 
coefficients.  

Equations of equilibrium have the form  
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Cauchy relations have the form 
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where  

( ) ( ) ( )( )1 32 1k k k
i i i

k
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In order to transform Hook’s law in 1-D form we expand 
Young’s ( )E x in Legendre polynomials series  

( ) ( )

( ) ( )

3
1

3 3

( ),

2 1
, ( )

2
.

r

h

r
r

h
k

k

E E P x

k
E E x P dx

h

α

α α ω

∞

=

−

=

+=

∑

∫

x x

x x         (13)

 

Substituting this expansion and expansions for stress and 
strain tensors in Hook’s law we obtain 1-D Hook’s law for 
Legendre polynomials series coefficients 
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Substituting Cauchy relations (11) and Hook’s law 
(14) in equations of equilibrium (9) we obtain 
differential equations in displacements. This system 
of equations contains infinite number of equations 
which are 2-D, they can be written in the form   

( )⋅ ⋅ =E L u f
                         (16)
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Here nm
ijL  are differential operators that correspond to 

homogeneous elastic shells, nrm rmnE E∈=  are coefficients 
that characterized inhomogeneous properties of the shell.  

Now instead of one 3-D system of the differential equations 
in displacements (6) we have of 2-D infinite differential 
equations for coefficients of the Legendre’s polynomial series 
expansion.  In order to simplify the problem approximate 
theory has to be developed and only finite set of members have 
to be taken into account in the expansion (8). Order of the 
system of equations depends on assumption regarding 
thickness distribution of the stress-strain parameters of the 
shell.   

III.   RESULTS AND DISCUSSION 

We consider here the case of relatively thick shells.  
Therefore we will keep three members in polynomial 
expansion (8). In this case we will get the second order 
approximation equations for functionally graded shells. In this 
case the stress-strain parameters, which describe the state of 
the shell, can be presented in the form 
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Taking into account formulae (15) for the coefficients nrm∈  
Hook’s law for coefficients of the Legendre polynomials series 
expansion (15)  has the form 
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Now system of equations for displacements has the same 
form as (16), but it contains only four equations  and 
corresponding matrixes and vector have the form 
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Most of operators nm
ijL  are differential, they have the form  
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Substituting these operators into (21) we obtain system of 
differential equations which together with corresponding 
boundary conditions can be used for the stress-strain 
calculation for the second approximation shell theory.  

Material properties of an FGM are the functions of volume 
fractions and they are managed by a volume fraction. When 
the shell is considered to consist of two materials with 
Young’s modulus 1E  and 2E  respectively, the effective 

Young’s modulus 3( )E x  given by the following power-law 

expression 
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  (23) 

Substituting function  (23) into equation (13) we obain 
expressions for the Legendre polynomials coefficients for the 
effective Young’s modulus 
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For simplisity in this study we consider dimetionless 

coordinates 1
1

x

L
ξ =  and 3

3

x

h
ξ =  have been introdused. 

Calculations have been done for Young’s modulus equal to 

1 1 PaE =  and 1 2/ 2E E =  and for Poison ratio 0.3ν =  
respectively, other paramiters are 0.25R L= , 0.25h R=  and 

0.2n = . Numerical calculations have been done using 
commercial software Comsol Multiphysics and Matlab. 
Results of calculations are presented on Fig. 1 – Fig. 3. 

  Fig. 1 shows the Legendre polynomials coefficients for the 
displacements distribution versus the normalized length for the 
second approximation theory. These coefficients are FEM 
solutions of the systems of differential equations (16) with 
differential operators (22). Fig. 2 shows displacements and 
stresses distribution versus normalized length and thickness for 
second approximation theory. 
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Fig.1 mLegendre polynomials coefficients for the 
displacements 

. 

 
 

 
Fig. 2 Displacements and stresses versus normalized length 

and thickness 
On Fig. 3 are presented values of maximal displacements 

3u  and stresses 33σ  at the cross section situated at the middle 

point of the shell with coordinate 1 0ξ =  versus ratio /h R . 

 

Fig. 3 Displacements 3u  and stresses 33σ versus /h R  for 

various exponents n  

IV.  CONCLUSION 

The high order theory for FG axisymmetric cylindrical shell 
based on expansion of the axisymmetric equations of elasticity 
for FMs into Legendre’s polynomials series has been 
developed. Starting from axisymmetric equations of elasticity 
for FGMs, The stress and strain tensors, vectors of 
displacements, traction and body forces and also function that 
describe functionally graded relations for Young’s  modulus 
have been expanded into Legendre polynomials series in term 
of the shell thickness coordinate. Then all equations of 
elasticity including Hook’s law have been transformed to 
corresponding equations for the Legendre’s polynomials series 
expansion coefficients. The system of differential equations in 
term of displacements and boundary conditions for the 
coefficients of expansion has been obtained. Cases of the first 
and second approximations have been considered in more 
details. All necessary equations and heir coefficients has been 
written explicitly and corresponding boundary-value problems 
have been formulated. For numerical solution of the 
formulated problems finite element (FE) has been used and 
commercial software Comsol Multiphysics and Matlab have 
been used. For validation of the proposed theory and obtained 
equations comparison with results obtained using equations of 
elasticity has been done for exponential function for  
graduation law. Influence of different parameters on the stress-
strain state of the cylindrical shell has been studied.        
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