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Abstract A Finite Volume method based on Characteristic
Fluxes for compressible fluids is developed. An explicit cell-centered
resolution is adopted, where second and third order accuracy is
provided by using two different MUSCL schemes with Minmod,
Sweby or Superbee limiters for the hyperbolic part. Few different
times integrator is used and be describe in this paper. Resolution is
performed on a generic unstructured Cartesian grid, where solid
boundaries are handled by a Cut-Cell method. Interfaces are
explicitely advected in a non-diffusive way, ensuring local mass
conservation. An improved cell cutting has been developed to handle
boundaries of arbitrary geometrical complexity. Instead of using a
polygon clipping algorithm, we use the Voxel traversal algorithm
coupled with a local floodfill scanline to intersect 2D or 3D boundary
surface meshes with the fixed Cartesian grid. Small cells stability
problem near the boundaries is solved using a fully conservative
merging method. Inflow and outflow conditions are also
implemented in the model. The solver is validated on 2D academic
test cases, such as the flow past a cylinder. The latter test cases are
performed both in the frame of the body and in a fixed frame where
the body is moving across the mesh. Adaptive Cartesian grid is
provided by Paramesh without complex geometries for the moment.

Keywords Finite volume method, Cartesian grid, Compressible
solver, complex geometries, Paramesh.

I. INTRODUCTION

UMERICAL simulation is more and more widely used in
hydrodynamics. Limited to simplified models of the flow

around a body in frequency domain two decades ago, it now
deals with the temporal modeling of complex unsteady
phenomena. In particular, models based on the Navier-Stokes
equations in Reynolds averaging (RANS) are now used
routinely in applied research to solve complex realistic
problems. Meanwhile, the commercialization of general codes
of this kind knows an increasing success in the industry,
starting to replace the previous empirical solutions. The RANS
models based on volume mesh implicit methods still do not
respond to all situations encountered in naval hydrodynamics
and offshore. One can give as examples the simulation of two-
phase phenomena caused by the progression of a ship at sea
with its propeller (air entrainment in the jet bow, bubbles in
the wake), violent sloshing impacts on long duration, etc.
These examples raise the problem of safety of floating
structures, their staff, their passengers and their cargo (often
polluting) but they also concern energy reduction, ship
signature, etc. The main limitations faced by standard solvers

based on implicit methods on body-fitted unstructured meshes
are : the presence of multiple bodies of complex geometry in
arbitrary motion in the flow, non-diffusive interfaces between
fluids, multi-physics within the solver, automatic mesh
refinement, mesh adaptation in the frame of fluid-structure
coupling. Here, we develop a different model based on a fixed
Cartesian grid, an explicit resolution based on compressible
Finite Volumes (FVCF method) enabling easy inclusion of
multi-physics. Arbitrary complex geometries can be embedded
in the fixed grid and move freely thanks to a developed cut-
cell technique. Fully-conservative treatment of interfaces and
automatic mesh refinement are presently being implemented.
In the present paper, these different components are first
presented, and followed by validation test cases.

II.FVCF FRAMEWORK

A. Navier-Stokes & Inviscid Euler Equations
We model 3D Navier-Stokes equations for viscous
compressible flow :

(1)
         

which can be written in conservative form as
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(2)
The internal energy is linked to the total energy per unit
volume and the kinetic energy by

                     (3)   

                   
An additional equation is needed to close the system by
coupling the pressure with conservative variables
EOS( , U, E) = 0. We use either an ideal gas assumption or a
barotropic fluid. On the one hand Tammann-
equation of state expresses the pressure as a function of the
density, the internal energy and the polytrophic constant.
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      (4)   

                                   
as a 

function of the density,  the polytrophic constant, reference 
pressure P0, nominal density 0 and nominal speed of sound c0  
 

                       (5)  
 

The viscosity terms in Navier-Stokes equation can be 
represented in terms of the viscous stress tensor components 
as : 

      (6) 

 

B. Finite Volume Characteristic Flux (FVCF) schemes 
The FCVF scheme, proposed by Ghidaglia et al [1] in 

1996, is a finite volume scheme with cell centered variables, 
including the kinetic vector. The conservation laws are 
discretized by calculating numerical sum fluxes  
through cell edges. These fluxes are expressed in terms of cell 
defined physical fluxes F, G and H in 3D, and not cell 
variables W as classical Godunov scheme. Introducing the flux 
of conservative variables in normal direction   as 

 

                   (7)  

 
Let us define V(t) a volume and its boundary (t) which 

can be decomposed in time independent edges  and moving 

edges (t) with local velocity  . 
                             

 

 

 

            (8) 
Introducing (7) one gets 

 

   (9) 
The integrated system becomes : 
 

 

(10) 
 
In the finite volume framework we obtain : 

 

 

                  (11) 
 

where dt is a time step, and superscripts n and n+1 indicate 
time levels;   the unit normal vector to the face, and A the 
face area. 
 

We discretize the Navier-Stokes equation as an hyperbolic 
part plus some viscosity terms. We use the Jacobian matrix  
associated to the hyperbolic system and the 
state to build a flux solution . For this study we can 
rewrite (2) : 

dim

1
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it i x
i
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(12) 
 Then we need to multiply (12) by the same Jacobian matrix 
express at the mid interface of the two cells. MUSCL method 
can be used here to improve the reconstruction of the new 
interface conservative variables that will be explained later 
with more details. We use simple linear interpolation as 
follow, where L and R refer respectively left and right state of 
the mid interface. 
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(13) 
For barotropic fluids  hyperbolic conservation laws :  
                 

dim 2
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(14) 
And with energy conservation equation: 
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(15) 
Next step consist to compute eigensystem see in [2] for more 
details.  
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 We remember two classical form of flux calculation, 
Godunov flux [14] : 
 

                   (16) 
 
Where  is the exact solution of a Riemann 
problem between left and right states of fluid. Roe flux [14] : 
 

 
                   (17) 

 
The algebraic reduction provides us with everything to work 
in the characteristic basis. The FVCF flux  can then be 
written in physical space in the following form 
 

 

 

(18) 
 
That can be regroup in general upwind form 
 

 
 (19) 

 
Conservation :   
Consistancy :      

 
Remark 1. FCVF method have a close definition with Roe 

method, nonetheless the Roe matrix 
calculable in complex case as multiphase flow whereas 

 been. 
Remark 2. FCVF method key point is to stay consistent in 

any linearization case of the left and the right state. 
Remark 3. FCVF method naturally translates interface 

exchange between adjacent cells. 
 
The timestep is defined by the CFL condition. 
 

int

min
max ( )

i

i
k i k

Voldt  

(20) 
Where int is the interface face area. 
 
 
 

C. Characteristic Boundary conditions 
 

Inlet-oulet boundary conditions are written in the 
characteristic space, see [1]. Inflow velocity is given at the 
inlet which allows to calculate density and then pressure 
through the EOS.    

 

(21) 
At the outlet we impose the pressure  from which we calculate 
the density. 

 

(22) 
 
At a wall, we consider the normal velocity to be equal to 

zero. Thus, to calculate the numerical flux at the wall we only 
have to determine the pressure as 
 

 

 (23) 
 

D. Characteristic hybrid cut-cell method 
 

Flow simulation around moving complex bodies is a 
challenging problem, especially when a fixed Cartesian grid is 
used. We have to find local grid modification on body surface, 
without significant increasing computational cost. We present 
here a new characteristics implementation procedure for an 
existing two-dimensional cell-merging method to overcome 
the problem of conservation laws. The present method may 
have a better potential for 3D extension. 
 

The first step is to immerse a 2D or 3D complex geometry 
in a Cartesian grid and to provide volumes, intersection 
coordinates and solid edge normals for each intersected cell. 
Instead of using a polygon clipping algorithm [3] we use the 
Voxel traversal algorithm [10] coupled with a local floodfill 
scanline to intersect 2D or 3D complex surface meshes with 
fix Cartesian grids.  

 
The second step is to define the cut-cell topologies which 

can be found in 2D/3D [7], and to define a modified FCVF 
scheme. Considering the 2D problem for simplicity, 12 
configurations exist which can be viewed as 6 symmetric 
configurations [2] .These cell configurations modify the 
discretized scheme since one has now between 3 to 5 flux 
calculations to perform for each cell on specific non-equal 
edges. The finite volume scheme becomes: 
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                                         (24) 

Where dt is a time step, and superscripts n and n+1 indicate 
time levels; m is the total number of cell faces in the cell under 
consideration, k the face number, n the unit normal vector to 
the face, and  the face area.  

 
(1) Computing the total flux of all cells at time level n; 
(2) Merging the cut cells; 
(3) Moving the body to the next time level, n + 1; 
(4) Computing cell geometrical properties; 
(5) Computing the solution; 
(6) Separating the merged cut cells. 
 

Cell merging treats very small cut cells, which can greatly 
reduce the size of a time step. Furthermore, it has been shown 
by Coirier et al.[17] that cell merging affects only the local 
computational accuracy, not its global value. However Cut-
cell configurations induce the presence of some small volume 
cells whose local time step is low due to the CFL criterion. A 
fully conservative cell-merge method is thus added to avoid 
this difficulty. We thus define a minimum volume under 
which the small cell is merged with it closest neighbor cell. 
This technique results in a lower local accuracy but has no 
significant effect on global accuracy, see [11]. Since Van 

work [4], the MUSCL scheme (Monotonic Upstream-
centered Scheme for Conservation Law) has been studied and 
widely used in simulation. In MUSCL schemes, the 
conservative solution vectors are described as piecewise linear 
polynomials for recovering second-order accuracy. A gradient 
ratio is introduced in each direction. We write a new 
conservative vector at the edge between two conform 
Cartesian cells using the two closest neighbor cells. A 
monotonic slope limiter is used to forbid non realistic or 
inversion reconstruction. The Minmod slope limiter function 
preserves a strict monotonic reconstruction but in practice we 
use the Sweeby slope limiter with  which provides better 
results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. IMPROVEMENTS 
 

We implemented two MUSCL [4],[7] methods on 
conservative solution vectors which are used for recovering 
second and third order accuracy and we investigated 
especially the role of flux limiters. Regarding time advance we 
investigated various 3rd and 4th-order schemes.  
 

To get the best accuracy/CPU time compromise we selected 
a 4th-order multistep scheme that permited to use a CFL 
coefficient of 3.5, instead of 0.8 for a classical 3rd-order 
Runge-Kutta scheme. A class of high-order strong stability 
preserving (SSP) time discretization method was first 
developed in [16] and was called TVD (Total Variation 
Diminishing) like SSP Runge-Kutta integrator 

 

 

(25) 
In order to find the best compromise between computation 

time and accuracy, it has been decided to implement the VFFC 
solver in an adaptive mesh refinement. Paramesh is a parallel 
AMR library based on the principle of block AMR developed 
by Berger et al [8]. Paramesh is a parallel and portable block 
AMR code. It allows the user to automatically refine a 
structured mesh (a Cartesian one in this case) according to a 
user specified criteria. Fig. 1 illustrates the principle of block 
refinement. Paramesh builds a structure of nested rectangular 
grids covering the entire studied area. The specificity of 
Paramesh is that each block has the same topology (here 4x4). 
This simplifies the refinement process and speeds up the 
calculation at the cost of slightly decreased code flexibility. 

 

 
Fig. 5 Block AMR (4x4) 

To implement the code parallelization at the least possible 
cost, the cells are distributed on different processors along a 
"Z-order "or" Morton order ". This optimizes the 
communication intra and extra processors. We assign guard 
cells to each block at its periphery. We need these guard cells 
to calculate the flux balance on the block boundary cells. The 
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guard cell filling is made according to the boundary condition 
type around the block. We distinguish three cases: fine/fine 
interface, coarse/fine interface and external boundary 
condition Fig. 3. In the first case, the guard cells take the 
neighboring cells values. In the second case, we must 
extrapolate the coarse neighboring cells to the guard cells. 
Finally, in the last case, the guard cell filling depends on the 
physical boundary condition used. As soon as guard cell 
filling is done, the flux balance is calculated for the block 
cells. 

 
 

Fig. 7  Guard cell filling process 
 
An interesting aspect of Paramesh is that it allows a non-

permanent storage of the guard cells data, this leads to a 
reduction of the required memory size. Indeed, the guard cells 
data storage can be very costly, since the number of guard 
cells of a block is often higher than the number of cells in the 
block itself. 

 
Paramesh supports conservation laws. Actually, at the 

interface between two blocks, inlet flux and outlet flux must 
be equal. This is ensured by a specific routine which applies 
an appropriate correction to the flow at the interfaces when 
necessary. Finally, post-treatment can be done with VisIt. This 
software can read HDF5 format, which is very light. A 
specific routine in Paramesh ensures the generation of an 
output HDF5 file. The implementation of a calculation with 
Paramesh is relatively easy. It is divided into six steps: 

 
1. Boundary conditions definition 
2. Initial conditions definition 
3. Refinement criteria definition 
4. CFL timestep definition 
5. Computation of FVCF flux 
6. Time advance 

 
 

 
 
 

IV. VALIDATIONS 
 

A. 2D validation on 2D Shock Tube 
 

Two dimensional Riemann problems can be seen as single 
one dimensional shock & rarefaction waves or two 
dimensional slip line with tangential velocity discontinuity, 
that define four couples of initial interface location which 
define nineteen possible configurations. 

 

 
Fig. 1  Pressure fields obtained with 2nd-order (a) and 3rd-order (b) 
schemes on 2D SOD configurations 11 (left) and 6 (right), see [16] 

 

B. 2D Validation with simple & complex obstacles 
 

Validation is made here against the SPH solver SPH-flow 
which uses a Riemann solver based on a Godunov resolution 
with MUSCL in an ALE formalism, see e.g. [5] In the present 
solver and in SPH-flow we use the same EOS, the same time 
integration (4th-order Runge-Kutta scheme) and space 
convergence order. We define simple academic tests to 
validate FVCF solver in 2D with infinite inlet/outlet 
conditions. We fix inlet velocity to 5.0m/s and outlet pressure 
to the reference pressure. A second order MUSCL scheme 
with a minmod limiter is used in both cases. The figure below 
presents the comparison between the horizontal velocity 
obtained by SPH in a eulerian frame (particles are fixed on a 
cartesian lattice in SPH, a second-order convergence is thus 
recovered) and by the present solver. Very comparable fields 
are obtained by both methods. [2-17]. Next figure shows the 
field past a cylinder in terms of pressure, velocity components, 
and vorticity. This test case was made to compare the solution 
obtained in a frame of the cylinder with inlet-outlet conditions, 
and in a fixed frame where the cylinder is moving within the 
mesh. The same field patterns were obtained, showing the 
ability of the method to simulate the flow around moving 
bodies embedded in the fixed grid. 
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Fig. 2 - Flow past a cylinder, (a) Pressure (b) Longitudinal velocity (c) 

Normal velocity (d) Vorticity 
 
 
 
 
 

C. 2D Validation for low Renolds flow. 

The lid-driven cavity problem has long been used as 
validation test case for new codes or new solution methods. 
The geometry involved an this test case is a simple squared 
box tank, allowing to impose easily the boundary condition. 
The standard case is a fluid contained in a square domain with 
Dirichlet boundary conditions on all sides, with three fixed 
sides and one moving side (with velocity tangent to the side). 
Similar simulations have also been done at various aspect 
ratios, and it can also be done with the lid replaced with a 
moving fluid. This problem is a somewhat different situation, 
and is usually referred to as the shear-driven cavity. You may 
see the two names (lid-driven and shear-driven) used 
interchangeably in spite of the fact that they are distinct (and 
different) problems. 

This problem has been solved with both laminar flow and a 
turbulent flows, and many different numerical techniques have 
been used to compute these solutions. A good set of data for 
comparison is the data of Ghia, and Shin (1982), since it 
includes tabular results for various Reynolds numbers. These 
simulation results are obtained using a non-primitive variable 
approach.  

 

Fig. 4  Driven Flow in square cavity at Re=1000 after 5s 

 

(a) 

(c) 

(b) 

(d) 
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Fig. 5  U-velocity through Geometric Center of Cavity at Re=1000 
 

 
 

Fig. 6  V-velocity through Geometric Center of Cavity at Re=1000 
 

 Even with a full explicit viscous fluxes solver, we obtain 
an excellent comparison for Re<5000. Different 
discretizations are used and a very close agreement is 
observed already from the coarsest resolution. The results are 
also very good from Re=100 to 1000, at Re<1000 we obtain a 
stationary solution.  
 
 

V. CONCLUSION 
A new solver based on the Finite Volume Characteristic 

Flux method was developed. It is based on an explicit 
resolution relying on a fixed non-conform Cartesian grid into 
which bodies can freely move thanks to a dedicated cut-cell 
technique. First validations are presented showing very 
encouraging results. The solver has now to be extended to 
handle interfaces by means of a fully conservative technique. 
The mass loss of the level-set solver will be especially 
investigated, in particular by comparing the Particle Level-Set 
and Level-Set/VOF techniques on representative marine 
applications. Further developments will deal with automatic 
refinement of the mesh which will be eased by the Cartesian 
nature of the grid. Finally, turbulence will be modeled in the 
future through an LES scheme. 
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