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Numerical studies of Galerkin-type
time-discretizations applied to transient
convection-diffusion-reaction equations

Naveed Ahmed and Gunar Matthies

Abstract—We deal with the numerical solution of time-dependent
convection-diffusion-reaction equations. We combine the local pro-
jection stabilization method for the space discretization with two
different time discretization schemes: the continuous Galerkin-Petrov
(cGP) method and the discontinuous Galerkin (dG) method of poly-
nomial of degree k. We establish the optimal error estimates and
present numerical results which shows that the cGP(k) and dG(k)-
methods are accurate of order k + 1, respectively, in the whole time
interval. Moreover, the cGP(k)-method is superconvergent of order
2k and dG(k)-method is of order 2k + 1 at the discrete time points.
Furthermore, the dependence of the results on the choice of the
stabilization parameter are discussed and compared.

Keywords—convection-diffusion-reaction equations, stabilized fi-
nite elements, discontinuous Galerkin, continuous Galerkin-Petrov

I. INTRODUCTION

Numerical simulations of time-dependent convection-
diffusion-reaction equations requires numerical schemes of
high order of accuracy both in space and in time. We consider
the vertical method of lines where the spatial discretization
by finite element methods is applied first. A large system of
ordinary differential equations appear which is then solved
numerically by a suitable time discretization. If we look,
for instance, to A-stable BDF-methods, then their order is
restricted to two. If we want to have an A-stable higher order
time discretization, we arrive at Runge-Kutta methods or at
Galerkin-type methods with higher polynomial order [11].

In this paper, we will consider two time classes of discretiza-
tions of variational type to solve time-dependent problems.
The first one is the discontinuous Galerkin (dG) time stepping
scheme in which both trial and test functions are discontinuous
in time [25]. In the second scheme, the trial functions are
continuous in time whereas the test functions are discontinuous
in time. This method can be viewed as a Petrov-Galerkin
method. The continuous Galerkin-Petrov (cGP) method has
been studied in [3] for heat equation. A numerical comparison
of cGP and dG methods applied to the heat equation is given
in [14]. Recently, in [24], [21], the cGP method has been
investigate for linear and nonlinear ordinary differential equa-
tions. The cGP methods are A-stable whereas it is well-known
that the dG methods are even strongly A-stable (or L-stable
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according to [11]), i.e., the dG methods have better damping
properties with respect to high frequency error components.

In applications, the size of the diffusion is often much
smaller than the size of the convection. Hence, the solutions
contain layers. The use of standard Galerkin methods in space
results in oscillations in the numerical solution even outside
the layers. A number of finite element methods has been de-
veloped to avoid this non-physical effect, for example residual
based methods like the streamline upwind Petrov-Galerkin
(SUPG) method [13] or Galerkin least squares FEM [23].
However, the combination of the SUPG method with higher
order schemes in time is not straightforward. Indeed, the
discrete time derivative, the source term and second order
derivatives have to be included into the stabilization term
to ensure the consistency of the method. An alternative to
SUPG is the use of symmetric stabilization techniques such
as local projection stabilization (LPS) [22], the continuous
interior penalty (CIP) [5], the orthogonal subscales method
(OSS) [9], [8]. A drawback of CIP, OSS and the two-level
LPS methods is an increased discretization stencil due to the
additional couplings between degrees of freedoms which do
not belong to the same cell. It was shown in [12] that the two-
level variant of the LPS can be also considered as an enriched
one-level method on the coarser mesh. This enables to reduce
the degrees of freedom in the two-level method without losing
the convergence rate.

Stabilized finite element methods for time-dependent
convection-diffusion-reaction problems have been investigated
by several authors. We refer to [20], [7] which consider
different stabilization techniques including SUPG and to [9]
using OSS. SUPG methods in space combined with the
backward Euler and the Crank-Nicolson method in time are
studied in [16]. The CIP in space combined with the θ-method
in time has been investigated in [4]. The coupling of other
stabilization techniques in the one dimensional case with the
finite difference time integration, in particular, vertical and
horizontal methods of lines have been discussed in [2]. The
dG method has been analyzed in time combined with LPS in
space in [1] and in space and time [10].

In this paper, we consider the the one-level local projection
method for the space discretization in combination with two
different higher order time discretization schemes: the contin-
uous Galerkin-Petrov (cGP) and discontinuous Galerkin (dG)
methods.

We consider the problem:
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Find u : Ω × (0, T ) → R such that⎧⎪⎨⎪⎩
u′ − εΔu+ b · ∇u+ σu = f in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),
u(·, 0) = u0 in Ω,

(1)

where Ω is a polygonal domain in R
d, d = 1, 2, or 3, with a

polyhedral boundary ∂Ω, T the final time, ε > 0 the diffusion
coefficient, b ∈ W 1,∞(Ω) the convection field, σ ∈ L∞(Ω)
the reaction coefficient, u0(x) the given initial data and f
describes sources. We assume that the data b, σ, u0 and f are
sufficiently smooth on Ω and Ω × (0, T ), respectively.

In the following, it is assumed that there is a constant σ0 > 0
such that

σ − 1
2
∇ · b ≥ σ0 > 0 in Ω.

This is a standard assumption in the analysis of equations of
type (1), see [23].

Throughout this paper, standard notations and conventions
will be used. Let Hm(Ω) denote the Sobolev space of func-
tions with derivatives up to order m in L2(Ω). We denote by
(·, ·) the inner product in L2(Ω) and by ‖ · ‖0 the associated
L2-norm. The norm in Hm(Ω) is defined as

‖v‖m =

⎛⎝ ∑
|α|≤m

‖Dαv‖2
0

⎞⎠1/2

.

We consider also certain Bochner spaces. To this end, let X
be a Banach space equipped with the norm ‖ · ‖X . Then, we
define

C
(
0, T ;X

)
=

{
v : [0, T ] → X, v continuous

}
,

L2(0, T ;X) =

{
v : (0, T ) → X,

∫ T

0

‖v(t)‖2
Xdt <∞

}
,

Hm(0, T ;X) =
{
v ∈ L2(0, T ;X) :

∂jv

∂tj
∈ L2(0, T ;X),

1 ≤ j ≤ m

}
,

where the derivatives ∂jv/∂tj are understood in the sense
of distributions on (0, T ). In the following we use the short
notation Y (X) := Y (0, T ;X). The norms and seminorms in
the above defined spaces are given by

‖v‖C(X) = sup
t∈[0,T ]

‖v(t)‖X , ‖v‖2
L2(X) =

T∫
0

‖v(t)‖2
Xdt,

‖v‖2
Hm(X) =

T∫
0

m∑
j=0

∥∥∥∥∂jv

∂tj

∥∥∥∥2

X

dt.

II. SPACE DISCRETIZATION

In order to introduce a variational setting for (1) we consider
the space V = H1

0 (Ω) consisting of functions vanishing on
the boundary. Finite element methods employ now a finite
dimensional space Vh ⊂ V of continuous elements of order

r ≥ 1, where h indicates the fineness of the underlying
triangulation Th. With the usual bilinear form

a(u, v) := (ε∇u,∇v) + (b · ∇u+ σu, v) (2)

associated with the problem (1), a Galerkin formulation arising
from (1) reads as follows:

Find uh : [0, T ] → Vh such that uh(0) = uh,0 and

(u′h, vh) + a(uh, vh) = (f, vh) ∀vh ∈ Vh (3)

with uh,0 ∈ Vh as a suitable approximation of u0.
It is well known that in the convection-dominated case

standard finite element methods will lead to discrete solutions
which contain global unphysical oscillations. In order to
prevent this, we will consider the one-level LPS to stabilize
the space discretization in which approximation and projection
spaces live on the same mesh. Let Dh(K), K ∈ Th, be finite
dimensional spaces and πK : L2(K) → Dh(K) the local L2

projection into Dh(K). The projection space Dh is given by

Dh :=
⊕

K∈Th

Dh(K).

We define the global projection operator πh : L2(Ω) → Dh by
(πhv)|K := πK(v|K). The fluctuation operator κh : L2(Ω) →
L2(Ω) is given by κh := id−πh, where id : L2(Ω) → L2(Ω)
is the identity mapping in L2(Ω). The stabilization term Sh is
defined by

Sh(uh, vh) :=
∑

K∈Th

μK

(
κh∇uh, κh∇vh

)
K

(4)

Here, K ∈ Th denotes the mesh cells of the triangulation,
(·, ·)K the inner product in L2(K), and μK the user chosen
non-negative constant. The stabilization term gives additional
control over the fluctuation of gradients. Note that one can
replace the gradient ∇wh by the derivative in streamline
direction b · ∇wh or (even better [18], [19]) by bK · ∇wh

where bK is a piecewise constant approximation of b, which
leads to similar results.

Now the stabilized semi-discrete problem reads:
Find uh : [0, T ] → Vh such that uh(0) = uh,0 and

(u′h, vh) + ah(uh, vh) = (f, vh) ∀vh ∈ Vh (5)

where

ah(u, v) := a(u, v) + Sh(u, v). (6)

Let us introduce the mesh-dependent norm on the space Vh

by

|||v||| :=

(
ε|v|21 + σ0‖v‖2

0 +
∑

K∈Th

μk‖κh∇v‖2
0,K

)1/2

.

Stability and convergence properties of the LPS method (5)
are based on the following assumptions with respect to the
pair (Vh, Dh), see [22], [23].

Assumption A1: There is an interpolation operator jh :
H2(Ω) → Vh such that for all K ∈ Th, v ∈ H l(K), and
2 ≤ l ≤ r + 1, the interpolation error estimate

‖v − jhv‖0,K + hK |v − jhv|1,K ≤ Chl
k‖v‖l,K
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and the orthogonality

(v − jhv, qh) = 0 ∀qh ∈ Dh, ∀v ∈ H2(Ω)

hold true.

Assumption A2: The fluctuation operator κh satisfies the
following approximation property

‖κhq‖0,K ≤ Chl
K |q|l,K ∀K ∈ Th, ∀q ∈ H l(K), 0 ≤ l ≤ r.

For the stationary problem associated with (1) we have

Theorem 1. Suppose A1 and A2, μK ∼ hK for all K ∈ Th

and let the data of the problem be sufficiently smooth. Then
there exists a positive constant C independent of ε and h, such
that

|||w − jhw||| ≤ C(ε1/2 + h1/2)hr‖w‖r+1

for all w ∈ Hr+1(Ω) ∩H1
0 (Ω).

For more detail, see [23], [22].

III. TIME DISCRETIZATION

We discretize the problem (5) in time using the continuous
Galerkin-Petrov method (cGP) and the discontinuous Galerkin
method (dG). To this end, we decompose the time interval
J = (0, T ] into N sub-intervals Jn := (tn−1, tn] of length
τn = tn − tn−1, where n = 1, . . . , N , 0 = t0 < t1 < · · · <
tN−1 < tN = T , τ = max1≤n≤N τn. In the following, the
set of the time intervals Mτ will be called the time-mesh.
For any positive integer k, the discontinuous and continuous
spaces are defined as

Yk := {v ∈ L2(J, Vh) : v|Jn
∈ Pk(Jn, Vh) ∀Jn ∈ Mτ},

Xk := {u ∈ C(J, Vh) : u|Jn
∈ Pk(Jn, Vh) ∀Jn ∈ Mτ},

where

Pk(Jn, V ) :=

⎧⎨⎩u : Jn → V : u(t)
k∑

j=0

U jtj

⎫⎬⎭
is the space of Vh-valued polynomials in time of order k.

A. The cGP(k) method

In this method, we use the space Xk as the fully discrete
solution space and Yk as the discrete test space. The fully
discrete cGP(k) method is defined as follows:

Find U ∈ Xk such that U(0) = uh,0 and∫ T

0

{
(U ′, ψ) + ah(U,ψ)

}
=

∫ T

0

(f, ψ) (7)

for all ψ ∈ Yk. Since the discrete test space is discontinuous in
time, problem (7) can be solved by a time-marching process
where successively local problems on the time intervals Jn

are solved. We consider the mesh-dependent norm

‖v‖cGP :=

(∫ T

0

{
‖v′‖2

0 + |||v|||2
})1/2

.

The following result states an a priori error estimate for the
fully discrete formulation (7), which is derived using the idea
from [21], [24].

Theorem 2. Suppose A1, A2, and μK ∼ hK for all K ∈ Th.
Let U and u be the solutions of the fully discrete problem (7)
and the continuous problem (1). Moreover, let u ∈ H1(Hr+1).
Then there exists a positive constant C independent of h, τ
and ε, such that the error estimate∥∥U − u

∥∥
cGP ≤ C

(
τk + (ε1/2 + h1/2)hr

)
(8)

holds true.

B. The dG(k) method

Here the discrete solution space is the same as the test space,
namely Yk. The fully discrete dG(k) method reads:

Find U ∈ Yk such that

N∑
n=1

∫
Jn

{(
U ′, ψ

)
+ ah(U,ψ)

}
+

n−1∑
n=1

([U ]n, ψ) + (U+
0 , ψ

+
0 )

= (u0, ψ
+
0 ) +

∫ T

0

(f, ψ) (9)

for all ψ ∈ Yk, where the left-sided value u−0 , right-sided value
u+

n and the jump [u]n are defined as

u−n := lim
t→tn−0

u(t), u+
n := lim

t→tn+0
u(t), [u]n := u+

n − u−n .

Due to the discontinuity in time of the discrete test space, a
time-marching process can be used to solve (9). We consider
the following mesh-dependent norm for the dG time discretiza-
tion method

‖v‖dG :=

(
N∑

n=1

|||v|||2 +
1
2
‖v+

0 ‖2
0

+
1
2

N−1∑
n=1

‖[v]n‖2
0 +

1
2
‖v−N‖2

0

)1/2

.

The next theorem states the main results from [1].

Theorem 3. Suppose A1, A2, and μK ∼ hK for all K ∈ Th.
Let U and u be the solutions of the fully discrete problem
(9) and the continuous problem (1), respectively. Moreover,
let u ∈ H1(Hr+1). Then there exists a positive constant C
independent of h, τ and ε, such that the error estimate

‖Uh − u‖dG ≤ C
(
τk+1/2 + (ε1/2 + h1/2)hr

)
holds true.

IV. NUMERICAL STUDIES

This section will present some numerical results for the
cGP and dG methods in time combined with LPS method
in space. All numerical calculation were performed with the
finite element package MooNMD [15].
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In our numerical computations, we use the mapped finite
element spaces [6] where the enriched spaces on the reference
cell K̂ are given by

P bubble
r (K̂) := Pr(K̂) + b̂�Pr−1(K̂),

Qbubble
r (K̂) := Qr(K̂) + span

{
b̂�x̂

r−1
i , i = 1, 2

}
.

Here, b̂� and b̂� are the cubic bubble on the reference
triangle and the biquadratic bubble on the reference square,
respectively. The pairs (P bubble

r , P disc
r−1), r ≥ 1, on triangles and

the pairs (Qbubble
r , P disc

r−1), r ≥ 1, on quadrilaterals fulfill the
assumptions A1 and A2. Further examples of spaces (Vh, Dh)
satisfying A1 and A2 are given in [22], [23].

The numerical tests have used for (Vh,Dh) the pairs
(Qbubble

r , P disc
r−1 ) and (P bubble

r , P disc
r−1 ), r = 1, 2, 3. The stabi-

lization parameters μK have been chosen as

μK = μ0hK ∀K ∈ Th

where μ0 denotes a constant which will be given for each of
the test calculations.

Example 1. We consider as example a pure transport
problem in two dimensions: a rotating Gaussian benchmark
taken from [4]. Hence, we consider (1) in

Ω = {(x, y) ∈ R
2 : x2 + y2 ≤ 1}

with the data

ε = 0, b = (−y, x)T , σ = f = 0,

and the Gaussian initial condition

u0(x, y) = exp
(
− 10(x− 0.3)2 − 10(y − 0.3)2)

)
is centered at (0.3, 0.3). In order to illustrate the convergence
order in time of the discrete solution, we have chosen a finite
element space based on P bubble

3 with projection onto P disc
2 on a

relatively fine mesh consisting of 32, 768 cells. The coefficient
in the stabilization parameter is set to μ0 = 0.1. We evaluate
the results of our calculations by considering the following
norms

‖e‖L2(J,Vh) :=

(∫ T

0

‖e‖2
Vh
dt

)1/2

,

‖e‖l∞(J,Vh) := max
1≤n≤N

‖e(tn)‖Vh
.

In Tables I-III, we report the convergence orders at T = 2π
(one complete rotation) of the discrete solution obtained with
the cGP(k)-method with k ∈ {1, 2, 3}. The predicted orders
for the error and its time derivative in the integral-based norm
‖ · ‖L2(J,Vh) are confirmed.

For heat equation, it was shown in [3] that the cGP(k)
method are superconvergent of order 2k in the discrete time
points tn. We can observe the order 2k for cGP(k) method
with k ∈ {1, 2, 3} also for the time-dependent convection-
diffusion equation with the local projection method as spatial
stabilization.

Furthermore, we also present norms of the error ẽ = u− Ũ
Ũ represents the post-processed solution Ũ which is obtained
by means of a simple post-processing from the solution U of
the original cGP(k)-method. It was shown in [21] that for k ≥

2 at least a superconvergence of order k+2 can be obtained for
the cGP(k)-method. From the results of Tables IV-VI, we see
that expected convergence orders are achieved for cGP(1) and
cGP(2). For cGP(3), the error start decreasing for smaller time
step length. This is because of the error in space dominates,
i.e., the mesh size is not small enough to see the corresponding
convergence order in time.

TABLE I
ERRORS AND CONVERGENCE ORDERS FOR CGP(1), WHERE e = u − U .

τ ‖e‖
L2(J,Vh) ‖dte‖

L2(J,Vh) ‖e‖l∞(J,Vh) ‖e‖cGP

error order error order error order error order
2π/10 2.768-1 6.695-1 1.778-1 7.244-1
2π/20 1.136-1 1.29 3.574-1 0.91 7.673-2 1.21 3.750-1 0.95
2π/40 3.434-2 1.73 1.373-1 1.38 2.364-2 1.70 1.415-1 1.41
2π/80 9.005-3 1.93 5.087-2 1.43 6.196-3 1.93 5.166-2 1.45
2π/160 2.276-3 1.99 2.193-2 1.21 1.564-3 1.99 2.205-2 1.23
2π/320 5.704-4 2.00 1.046-2 1.07 3.917-4 2.00 1.047-2 1.07

theoret. order: 2 1 2 1

TABLE II
ERRORS AND CONVERGENCE ORDERS FOR CGP(2), WHERE e = u − U .

τ ‖e‖
L2(J,Vh) ‖dte‖

L2(J,Vh) ‖e‖l∞(J,Vh) ‖e‖cGP

error order error order error order error order
2π/10 3.031-2 1.312-1 2.036-2 1.347-1
2π/20 2.981-3 3.35 2.181-2 2.59 1.967-3 3.37 2.201-2 2.61
2π/40 2.257-4 3.72 4.559-3 2.26 1.359-4 3.86 4.565-3 2.27
2π/80 1.856-5 3.60 1.120-3 2.03 8.703-6 3.97 1.120-3 2.03
2π/160 1.873-6 3.31 2.797-4 2.00 5.472-7 3.99 2.797-4 2.00

theoret. order: 3 2 4 2

TABLE III
ERRORS AND CONVERGENCE ORDERS FOR CGP(3), WHERE e = u − U .

τ ‖e‖
L2(J,Vh) ‖dte‖

L2(J,Vh) ‖e‖l∞(J,Vh) ‖e‖cGP

error order error order error order error order
2π/10 2.284-3 1.633-2 1.460-3 1.649-2
2π/20 7.299-5 4.97 1.610-3 3.34 3.377-5 5.43 1.612-3 3.36
2π/40 3.443-6 4.41 2.002-4 3.01 5.815-7 5.86 2.002-4 3.01
2π/80 2.095-7 4.04 2.508-5 3.00 1.347-8 5.43 2.508-5 3.00

theoret. order: 4 3 6 3

TABLE IV
ERRORS AND CONVERGENCE ORDERS FOR CGP(1), WHERE ẽ = u − Ũ .

τ ‖ẽ‖
L2(J,Vh) ‖dtẽ‖

L2(J,Vh) ‖dtẽ‖l∞(J,Vh)
error order error order error order

2π/10 2.946-1 6.661-1 3.990-1
2π/20 1.164-1 1.34 3.336-1 1.00 2.190-1 0.87
2π/40 3.448-2 1.76 1.119-1 1.58 7.683-2 1.51
2π/80 8.974-3 1.94 3.015-2 1.90 2.080-2 1.89
2π/160 2.263-3 1.99 7.660-3 1.98 5.277-3 1.98
2π/320 5.669-4 2.00 1.922-3 2.00 1.323-3 2.00

theoret. order: 2 2 2

TABLE V
ERRORS AND CONVERGENCE ORDERS FOR CGP(2), WHERE ẽ = u − Ũ .

τ ‖ẽ‖
L2(J,Vh) ‖dtẽ‖

L2(J,Vh) ‖dtẽ‖l∞(J,Vh)
error order error order error order

2π/10 3.008-2 1.165-1 7.787-2
2π/20 2.853-3 3.40 1.302-2 3.16 8.765-3 3.15
2π/40 1.974-4 3.85 9.799-4 3.73 6.253-4 3.81
2π/80 1.264-5 3.97 7.519-5 3.70 4.034-5 3.95
2π/160 7.955-7 3.99 8.749-6 3.10 2.694-6 3.91

theoret. order: 4 3 4

In Tables VII-IX, we report the errors and convergence
orders obtained for the discontinuous Galerkin method dG(k)
with k ∈ {1, 2, 3}. Optimal convergence with respect to the
integral-based norm was again obtained, see Theorem 3. It
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TABLE VI
ERRORS AND CONVERGENCE ORDERS FOR CGP(3), WHERE ẽ = u − Ũ .

τ ‖ẽ‖
L2(J,Vh) ‖dtẽ‖

L2(J,Vh) ‖dtẽ‖l∞(J,Vh)
error order error order error order

2π/10 2.137-3 1.143-2 7.531-3
2π/20 5.011-5 5.41 3.533-4 5.02 1.915-4 5.30
2π/40 9.272-7 5.76 1.910-5 4.21 6.735-6 4.83
2π/80 6.064-8 3.94 6.609-6 1.53 8.941-7 2.91

theoret. order: 5 4 6

was proved in [25] that the dG(k) method is superconvergent
of order 2k + 1 in the discrete time points tn for an abstract
symmetric model problem like the heat equation. We can also
observe the order 2k + 1 for dGk method with k ∈ {1, 2, 3}.

In X-XII, errors and convergence history of post-processed
solution associated with the discontinuous Galerkin method
are presented. In [21], the superconvergence of order k+2 for
dG(k) method, k ≥ 1, are obtained for the Burgers equations
as a test problem. In our model problem, we also see that the
dG(k) method is superconvergent of order k + 2.

TABLE VII
ERRORS AND CONVERGENCE ORDERS FOR DG(1), WHERE e = u − U .

τ ‖e‖
L2(J,Vh) ‖dte‖

L2(J,Vh) ‖e‖l∞(J,Vh) ‖e‖dG

error order error order error order error order
2π/10 8.792-2 3.873-1 4.986-2 1.177-1
2π/20 2.170-2 2.02 1.936-1 1.00 1.253-2 1.99 4.093-2 1.52
2π/40 4.052-3 2.42 9.503-2 1.03 2.051-3 2.61 1.379-2 1.57
2π/80 7.884-4 2.36 4.745-2 1.00 2.734-4 2.91 4.779-3 1.53
2π/160 1.775-4 2.15 2.373-2 1.00 3.458-5 2.98 1.676-3 1.51
2π/320 4.301-5 2.01 1.187-2 1.00 4.332-6 3.00 5.903-4 1.51

theoret. order: 2 1 3 1.5

TABLE VIII
ERRORS AND CONVERGENCE ORDERS FOR DG(2), WHERE e = u − U .

τ ‖e‖
L2(J,Vh) ‖dte‖

L2(J,Vh) ‖e‖l∞(J,Vh) ‖e‖dG

error order error order error order error order
2π/10 9.5673 8.816-2 5.134-3 1.834-2
2π/20 8.409-4 3.51 2.332-2 1.92 2.813-4 4.19 3.242-3 2.50
2π/40 9.311-5 3.18 5.966-3 1.97 9.909-6 4.83 5.707-4 2.51
2π/80 1.151-5 3.02 1.499-3 1.99 3.174-7 4.96 1.002-4 2.51
2π/160 1.438-6 3.00 3.751-4 2.00 1.394-8 4.51 1.76-5 2.51

theoret. order: 3 2 5 2.5

TABLE IX
ERRORS AND CONVERGENCE ORDERS FOR DG(3), WHERE e = u − U .

τ ‖e‖
L2(J,Vh) ‖dte‖

L2(J,Vh) ‖e‖l∞(J,Vh) ‖e‖dG

error order error order error order error order
2π/10 9.036-4 1.750-2 3.548-4 2.644-3
2π/20 4.800-5 4.23 2.370-3 2.89 4.383-6 6.34 2.434-4 3.44
2π/40 2.997-6 4.00 3.018-4 2.97 3.907-8 6.81 2.157-5 3.50

theoret. order: 4 3 7 3.5

TABLE X
ERRORS AND CONVERGENCE ORDERS FOR DG(1), WHERE ẽ = u − Ũ .

τ ‖ẽ‖
L2(J,Vh) ‖dtẽ‖

L2(J,Vh) ‖dtẽ‖l∞(J,Vh)
error order error order error order

2π/10 8.250-2 2.483-1 1.393-1
2π/20 1.923-2 2.10 7.224-2 1.78 4.329-2 1.69
2π/40 3.027-3 2.67 1.376-2 2.39 7.934-3 2.45
2π/80 3.989-4 2.92 2.421-3 2.51 1.093-3 2.86
2π/160 5.033-5 2.99 4.994-4 2.28 1.390-4 2.97
2π/320 6.302-6 3.00 1.170-4 2.09 1.746-5 2.99

theoret. order: 3 2 3

Example 2. This example is taken from [17]. The prescribed

TABLE XI
ERRORS AND CONVERGENCE ORDERS FOR DG(2), WHERE ẽ = u − Ũ .

τ ‖ẽ‖
L2(J,Vh) ‖dtẽ‖

L2(J,Vh) ‖dtẽ‖l∞(J,Vh)
error order error order error order

2π/10 8.017-3 3.802-2 2.179-2
2π/20 4.273-4 4.23 3.215-3 3.56 1.405-3 3.96
2π/40 1.592-5 4.75 3.196-4 3.33 5.144-5 4.77
2π/80 6.221-7 4.68 3.895-5 3.04 1.917-6 4.75
2π/160 3.663-8 4.09 4.862-6 3.00 8.930-7 1.10

theoret. order: 4 3 5

TABLE XII
ERRORS AND CONVERGENCE ORDERS FOR DG(3), WHERE ẽ = u − Ũ .

τ ‖ẽ‖
L2(J,Vh) ‖dtẽ‖

L2(J,Vh) ‖dtẽ‖l∞(J,Vh)
error order error order error order

2π/10 5.611-4 4.13-3 1.979-3
2π/20 8.709-6 6.01 1.949-4 4.41 2.722-5 6.18
2π/40 1.913-7 5.51 1.206-5 4.02 9.271-7 4.88

theoret. order: 5 4 7

solution has the form

u(x, y; t) = 16 sin(πt)x(1 − x)y(1 − y)

×
(

1
2

+
arctan

[
2ε−1/2w(x, y)

]
π

)
where

w(x, y) := (0.252 − (x− 0.5)2 − (y − 0.5)2.

This is a hump changing its height in the course of time. The
steepness of the circular internal layer depends on the diffusion
parameter ε. Analogue to [17], we present the simulation for
ε = 10−6, b = (2, 3), σ = 1 and T = 2. We measure the size
of the spurious oscillation by

var(t) := max
(x,y)∈Ω

U(x, y; t) − min
(x,y)∈Ω

U(x, y; t)

where the maximum and minimum were computed only in the
vertices of the mesh cells.

The time step was chosen to be τ = 10−3 and computations
were performed on a regular grid consisting of 128 × 128
squares. This leads to 33,025 degrees of freedom for Qbubble

1 ,
98,817 for Qbubble

2 and 180,993 for Qbubble
3 . Note that, in the

following figures only the nodal values at the cell vertices
are shown, i.e., the additional bubble part of the solution will
not be shown. We have performed the calculation with μ0 ∈
{0.01, 0.1, 1.0}.

The obtained numerical solutions for cGP(1) and the pair
(Qbubble

1 , P disc
0 ) with different values of stabilization parameter

μ0 in μK = μ0hK are presented in Fig. 1 and table XIII.
We see that for the small value of μ0 = 0.01 the solution
oscillates, and for large value of μ0 = 1.0 the tendency of
smearing is observed, see Fig. 1 top and bottom, respectively.
For a suitable value of μ0 = 0.1 the solution is captured very
well but still we see some small overshoots and undershoots.
The computed solutions for cGP(2) and the pair (Qbubble

2 , P disc
1 )

with different values of μ0 are given in Fig. 2 and table XIII.
Here, the behavior of the numerical solution with respect to
the stabilization parameter μ0 is similar to the cGP(1) case.
That is, the small value of μ0 = 0.01 causes oscillations and
the large value μ0 = 1.0 causes smearing, see Fig. 2 top and
bottom, respectively. For μ0 = 0.1 the solution is captured
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very well with very small overshoots and undershoots, see
Fig. 2 middle. Using cGP(3) and the pair (Qbubble

3 , P disc
2 ), the

situation changes. From Fig. 3 and Table XIII, we see that
even for the small value of μ0 = 0.01 solution shows no
oscillations. The solution is captured very well on almost the
whole domain.

The obtained numerical results for dG(1) and the pair
(Qbubble

1 , P disc
0 ) with different values of stabilization parameters

μ0 in μK = μ0hK are presented in Fig. 4 and Table XIII,
for dG(2) and (Qbubble

2 , P disc
1 ) in Fig. 5 and for dG(3) and

(Qbubble
3 , P disc

2 ) in Fig. 6. It is to be noted that, there are
no significant differences between the numerical solutions
obtained by using the cGP(k) or dG(k) methods. Furthermore,
the position of the hump is captured very well with higher
order discretization schemes, see the figures 3 and 6.

TABLE XIII
HUMP CHANGING ITS HEIGHT, RESULTS OBTAINED WITH (QBUBBLE

r , P DISC
r−1)

WITH CGP(r) OR DG(r), r = 1, 2, 3.

r μ0 var(0.5) r μ0 var(0.5)
0.01 1.174378-1 0.01 1.174996-1

1 0.1 4.381541-2 1 0.1 4.381543-2
1.0 4.559145-2 1.0 4.559179-2
0.01 4.047359-2 0.01 3.597300-2

2 0.1 1.860530-2 2 0.1 1.860530-2
0.01 2.754577-2 1.0 2.754577-2
0.01 4.339726-2 0.01 4.339726-2

3 0.1 1.700958-2 3 0.1 1.700958-2
1.0 2.977295-2 1.0 2.977295-2

Fig. 1. Hump changing its height, the computed solution with (Qbubble
1 , P disc

0 )
and cGP(1) at t = 0.5, with μ0 = 0.01, μ0 = 0.1, μ0 = 1; top to bottom.

Fig. 2. Hump changing its height, the computed solution with (Qbubble
2 , P disc

1 )
and cGP(2) at t = 0.5, with μ0 = 0.01, μ0 = 0.1, μ0 = 1; top to bottom.

Fig. 3. Hump changing its height, the computed solution with (Qbubble
3 , P disc

2 )
and cGP(3) at t = 0.5, with μ0 = 0.01, μ0 = 0.1, μ0 = 1; top to bottom.
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Fig. 4. Hump changing its height, the computed solution with (Qbubble
1 , P disc

0 )
and dG(1) at t = 0.5, with μ0 = 0.01, μ0 = 0.1, μ0 = 1; top to bottom.

Fig. 5. Hump changing its height, the computed solution with (Qbubble
2 , P disc

1 )
and dG(2) at t = 0.5, with μ0 = 0.01, μ0 = 0.1, μ0 = 1; top to bottom.

Fig. 6. Hump changing its height, the computed solution with (Qbubble
3 , P disc

2 )
and dG(3) at t = 0.5, with μ0 = 0.01, μ0 = 0.1, μ0 = 1; top to bottom.
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