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Abstract—The current speech interfaces in many military 

applications may be adequate for native speakers. However, 
the recognition rate drops quite a lot for non-native speakers 
(people with foreign accents). This is mainly because the non-
native speakers have large temporal and intra-phoneme 
variations when they pronounce the same words. This 
problem is also complicated by the presence of large 
environmental noise such as tank noise, helicopter noise, etc. 
In this paper, we proposed a novel continuous acoustic feature 
adaptation algorithm for on-line accent and environmental 
adaptation. Implemented by incremental singular value 
decomposition (SVD), the algorithm captures local acoustic 
variation and runs in real-time. This feature-based adaptation 
method is then integrated with conventional model-based 
maximum likelihood linear regression (MLLR) algorithm. 
Extensive experiments have been performed on the NATO 
non-native speech corpus with baseline acoustic model trained 
on native American English. The proposed feature-based 
adaptation algorithm improved the average recognition 
accuracy by 15%, while the MLLR model based adaptation 
achieved 11% improvement. The corresponding word error 
rate (WER) reduction was 25.8% and 2.73%, as compared to 
that without adaptation. The combined adaptation achieved 
overall recognition accuracy improvement of 29.5%, and 
WER reduction of 31.8%, as compared to that without 
adaptation. 

Keywords—speaker adaptation; environment adaptation; 
robust speech recognition; SVD; non-native speech recognition 

I. INTRODUCTION 
XISTING speech recognition software such as IBM via 
Voice or Dragon Naturally Speaking works well for 
native speaker and well-controlled background noise 

condition. However, the recognition performance drops quite 
significantly for non-native speakers and un-seen noisy 
conditions. The main reason is that the feature vectors of the 
non-native speech and corrupted speech are no longer similar 
to the distributions learned from the training data. This 
mismatch results in mis-classification and poor recognition 
[1], [2]. The training on accents and environmental condition 
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specific data is impractical due the overhead of collecting 
large amount of data and unpredictable real environment.  

 
   To reduce the effect of mismatch, various techniques have 
been proposed in the literature, which can be broadly 
categorized as:  

• Noise estimation and filtering that reconditions the 
speech signal or reconstruct speech features based on 
noise characteristics [3,4].  

• On-line model adaptation to reduce the effect of 
mismatch in training and testing environments [5]. 

• Extraction of speech features robust to noise [6, 7], 
including features based on human auditory and 
perception modeling [8-10].  

• Normalization techniques to compensate for the 
channel effect and speech production variations 
including cepstral mean normalization [11] and vocal 
track length normalization [12]. 

• Adaptation of acoustic model parameters to a specific 
speaker based on some criteria, including MLLR 
[13], constrained MLLR [14], maximum a posteriori 
(MAP) speaker adaptation [15], and Discriminative 
Likelihood Linear Transform (DLTR) [16].  

     Adaptation to the acoustic conditions of the test data is 
often performed by transforming the parameters of the state 
output densities of the Hidden Markov Models (HMM) in the 
recognizer through affine transforms [17]. While this method 
has proven to be highly effective, it is essentially an offline 
process that requires either significant amounts of adaptation 
data that are similar to the test data, or multiple passes over 
the test data. It also incurs the additional expense of having to 
transform the model parameters within the speech recognizer 
itself. Additionally, and possibly more importantly, the 
transformation parameters are learned such that the 
transformed model space best represents the complete set of 
incoming data from which they were learned. This does not 
account for any local variations that the data might have 
undergone even within the course of these recordings. 

In this paper, we propose a novel continuous feature 
adaptation algorithm to compensate for training and testing 
data mismatch. The algorithm is general and can be applied to 
both noisy and non-native speech recognition. The salient 
features of this algorithm are: 

1. Entirely based on acoustic feature space “tracking” and 
fully unsupervised. 

2. Does not need the speaker-id information for 
adaptation, amenable to multi-users system.  

3. Implemented by incremental singular value 
decomposition (SVD) [18] and runs in real time.  
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4. Continuously update transformation matrix based on a 
windowed acoustic features, effectively perform a non-
linear transform and capable of capture local acoustic 
variations. 

5. Can be further combined with other affine transform 
and normalization techniques. 

 
The paper is organized as follows. Section II describes our 

novel continuous feature adaptation algorithm based on 
incremental SVD for automatic acoustic space "tracking". 
Section III reviews the well-known MLLR model adaptation 
algorithm and shows how to integrate our feature adaptation 
algorithm with the model adaptation algorithm. In Section IV, 
we will summarize the experimental results and the 
comparative studies. Finally, conclusions will be drawn in 
Section V. 

II. CONTINUOUS FEATURE ADAPTATION ALGORITHM 
The mainstream acoustic features used for speech 

recognition is Mel Frequency Cepstral Coefficients (MFCC), 
which are obtained by taking the Discrete Fourier Transform 
(DCT) of log spectrum. The purpose of DCT is to achieve 
feature dimension reduction and de-correlation. It is well 
known that SVD projection results in the most informative 
subspace of all possible projection. While DCT uses constant 
transformation coefficient, the SVD needs to be trained from 
data and thus is sensitive to the training data acoustic 
characteristics. In this section, we first review the SVD 
technique and discuss the issues of applying it to speech 
recognition under mismatch condition; then we propose a 
continuous feature adaptation algorithm and its 
implementation by incremental SVD algorithm. 

A. SVD for Dimension Reduction and De-correlation 
The SVD is a technique for reducing the dimensionality of 

high-dimensional data sets [19]. Given an d n×  data matrix 
M  of rank r  (where we assume, without loss of generality, 
that d n> ), the SVD decomposes is given by 
  ( ) ( ) ,   min( , ),1

TM U diag s V r d nr nrd n d r→ ⋅ ⋅ ≤××× ×   (1) 

 
where U  and V  are unitary matrix (i.e. 1 1, .T TU U V V− −= = ), 

( )diag s  is an r r×  diagonal matrix.  
The columns of U  represent the “eigenvectors” of M  

and represent a set of r orthogonal bases, and diagonal entries 
of ( )diag s , termed the “singular values” of M, represent the 
scatter of the projections of the columns of M along the 
direction of these bases. SVD is often used to reduce the 
dimensionality of high-dimensional matrices. For instance, M 
may be reduced to a k n×  matrix M’ by projecting the 
columns of M the K columns of U that correspond to the K 
highest singular values in S 

 ( ) ,     ,TM U M k dKk n d n= <× ×
%  (2) 

where U UK d k= ×  is a matrix constructed from the K columns 

of U that correspond to the K highest singular values. One of 
the features of SVD is that a projection of the columns of M 

down to K dimensions in this manner is guaranteed to result in 
the most informative of all possible K dimensional projections 
of  M. 
 

B. SVD for Speech Recognition 
Dimensionality reduction by SVD is frequently used in 

speech recognition systems to de-correlate and project 
relatively high-dimensional log-spectral vectors down to 
lower-dimensional cepstrum like feature vectors [20]. In order 
to do so, a large number of log-spectral vectors of a training 
data set are arranged in a matrix M, and the K-dimensional 
projection matrix UK is derived by singular value 
decomposition of M. Thereafter UK is used to project all log-
spectral vectors, both from the training and test data, down to 
K-dimensional “cepstra”, where, typically, K=13. 
 

A problem arises when test data to be recognized are 
recorded in a different acoustic environment than the training 
data. In this case, the unitary projection matrix UK is no longer 
guaranteed to be the most informative projection, resulting in 
a loss of crucial information in the test data, with subsequently 
lowered recognition performance. Independent projections 
cannot be derived for the test data since these projections may 
not conform to the original projections of the training data – in 
the worst case the independently learned projections from the 
test data might project them into an entirely different K-
dimensional subspace from the training data. It therefore 
becomes necessary to identify a new projection matrix U'K 
that de-correlates the test data jointly with the training data 
along the most informative directions. 
 

C. Continuous Feature Adaptation Algorithm 
We have developed a feature adaptation algorithm to 

continuously modify the incoming features to conform to the 
expected distribution of the training data. It composed of three 
steps: 1) train a transformation matrix from training data using 
principle component analysis (PCA); 2) adapt the 
transformation matrix by including current testing data using 
incremental SVD; 3) transform current testing data using this 
new transformation matrix. The continuous feature adaptation 
algorithm can be formulated as follows 
 
Initialization 

Initial transformation matrix,   1T A− = ,  is computed from 
Principal Component Analysis (PCA) of training data, i.e., the 
training feature matrix in log-spectral domain. 

 
For t=0:T (on testing feature vectors) 

   ( ( , ), )1T Update Downdate T X Xt t t tτ
=

− −  (3) 

                (1 )H A Tt tγ γ= + −   (4) 

     ,t t tY H X=                  (5) 
where 
   tX  is the original testing feature vectors; 
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    tY  is the transformed testing feature vectors to be fed to the 
speech recognizer; 
   ( , )T Update T X=
)

, is the function to update the 
transformation matrix T to include a new feature vector X; 
  ( , )T Downdate T X=
)

 is the function to update the 
transformation matrix T to delete a history vector X; 
  τ  is the "memory window" within which data vectors  
contribute to the current transformation; 
  0 1γ≤ ≤  is a contribution tradeoff between training and 
current testing data; 
  tH  is the effective adaptation matrix used at time t. 
 

As with other transformation-based algorithms, the 
algorithm is not specific to a particular type of acoustic 
condition and is equally effective in adapting to variations, 
both local and global, in noisy conditions, and speaker and 
accent variations. Since the algorithm is performed directly on 
incoming data, the transcriptions of the data are not required. 
That is, it is completely unsupervised. Furthermore, since 
transformation matrices are computed in an incremental and 
causal manner, the algorithm is well suited to run-time 
implementations. 
 

 Unlike current transformation-based data normalization 
algorithms [17], the transformation that is applied to each 
incoming vector is unique, since it is estimated causally from 
the entire sequence of incoming data vectors up to and 
including the current vector, but not including any vectors 
further downstream. The effect of such a transformation is 
twofold: 1) it projects the incoming test data into the same 
region of the data space that the training data are expected to 
lie, thereby increasing the probability of correct classification; 
2) by normalizing the test data, it facilitates better estimation 
of model transformations for adaptation as the transformations 
need no longer account for data spread over a large region of 
the data space, resulting in improved recognition with 
transformed models. Since each vector is transformed 
uniquely, the effect of the data transformation is effectively 
non-linear and is not equivalent to that obtained with a single 
global affine transformation. 
 

Direct implementation of such projection-learning 
mechanisms is, however, infeasible since it would require that 
the entire training data (or at least, sufficient statistics from it), 
can be retained and manipulated in conjunction with the test 
data in order to determine the new projections. In our work we 
circumvented this problem by adopting the incremental SVD 
algorithm proposed by Brand [1].  
 

 D. Implementation by Incremental SVD  
The incremental SVD problem can be briefly stated as 

follows: given the SVD decomposition U, S, and V of a dxn 
matrix M and a new dxc matrix C, the goal is to obtain a new 
SVD matrix U ′′  that jointly de-correlates matrix [M C] 
without requiring explicit storage and manipulation of the 

original data matrix M. The incremental SVD algorithm 
proposed by Brand may be summarized as follows [18]: 

 
The SVD of the training data is given by 

( ) ( ) ,   min( , ).1
TM U diag s V r d nr nrd n d r→ ⋅ ⋅ ≤××× ×   (6) 

Given new testing samples Cd r× , the matrix [M C] can be 
decomposed as follows 

 [ ] ( ) 0
[ ].

0 0

T
diag s L V

U J M C
K I

=⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (7) 

 
where J is the orthogonal basis of H, for example, J,K could 
be a Q-R decomposition of H, specifically 

 

.

T

T

L U C
H C UL
K J H

=
= −

=

 (8) 

 
The middle matrix Q is diagonal with a c-column border, 

which needs to be further diagonalized. This is done using 
SVD again. Since Q is a small matrix, this SVD can be done 
very efficiently. 

 
( )

' ( ) ( )
0

diag s L TQ U diag s V
K

′ ′= → ⋅ ⋅⎡ ⎤
⎢ ⎥⎣ ⎦

 (9) 

 
The final decomposition matrices are given by  

 
[   ]

0
 

0

U U J U

s s

V
V V

I

′′ ′= ⋅

′′ ′=

′′ ′= ⎡ ⎤
⎢ ⎥⎣ ⎦

 (10) 

It is easy to verify that 

 ( ) ( ) [ ( ) ( )   ]

[   ].  

T TU diag s V U diag s V C

M C

′′ ′′ ′′⋅ ⋅ = ⋅ ⋅

=
 (11) 

 

A special case is when the additional data matrix C is a single 
vector c C= . The computation can be done very quickly 
since K becomes a scalar, Tk K c UU c= = − , and J  becomes 

a vector, ( ) /Tj J c UU c k= = − . This is what we implemented 
in our feature adaptation algorithm. 

Note that the above derivation only requires UK , J, S and C to 
compute U” and the training data M are not required at all. 
Only the first k columns of U” are retained for the projection.  
 

The incremental SVD algorithm described above can now 
be utilized to compute the optimal projection for a test data C 
as follows:  Compute an initial projecting eigen-matrix UK by 
SVD of the training data.  On the test data, we compute a new 
projection matrix U”K by incrementally considering C in 
conjunction with the test data as described above. In practice, 
C may be up or down weighted in the data matrices, prior to 
update, via a recursive IIR filter formulation that is permitted 
within the incremental SVD algorithm. Then we use the new 
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matrix U”K to project C down for recognition. Note that the 
new projection matrix U”K  includes residual information from 
subspaces not included in the training data; hence additional 
adaptation of the models using MLLR may be expected to be 
beneficial for this procedure. 
 

The incremental SVD algorithm incrementally computes the 
optimal orthogonalizing transformation for a data set. The 
algorithm has the following important features: 1) it 
incrementally updates the transformation matrix with each 
additional vector incorporated into the data set, without 
requiring explicit storage of the entire data set, 2) it 
incrementally updates the transformation matrix to account for 
deletion of vectors from the data set, also without requiring 
explicit storage of the entire data set, and 3) it performs both 
operations in linear time, as opposed to the quadratic time 
required by most SVD algorithms.   

III. AN INTEGRAED APPROACH TO IMPORVE SPEECH 
RECOGNITION ACCURACY FOR NON-NATIVE SPAKERS 

 
The feature adaptation method is different from the 

traditional Weiner filter and KLT (principal components 
analysis) for feature space transformations. Weiner Filtering 
works when the noise estimate is reliable regardless of how 
well the speech matches the clean training speech. KLT works 
when the speech components of the noisy data match the clean 
speech training data. In the current scenario, neither a reliable 
noise estimate is available, nor is a clean speech prior 
available. When a speaker changes, the accent may change. 
Hence, the acoustics of each distinct unit may change, and 
there may or may not be significant ambient noise in the 
background. The continuous feature adaptation algorithm 
presented above is observed to be able to improve recognition 
in all these situations. 
 

Salient features of this technology are: 
• The features are entirely based on acoustic space 

“tracking”, starting from a set of initial transformation 
vector values which are predetermined for a group of 
accents in the our study (the initial vectors would be 
predetermined for a set of speakers in a speaker 
verification task, for example, or on a set of noisy 
conditions, in a noise attenuation task – a combination of 
such conditions is also possible). 

• The tracking is based on the principle of incremental 
linear time SVD (singular value decomposition) described 
by Brand [18]. It runs real time on all current processors.  

• Continuously update transformation matrix based on a 
windowed acoustic features, effectively perform a non-
linear transform and capable of capture local acoustic 
variations. 

• Can be further combined with other affine transform and 
normalization techniques. 

 
Among many speaker adaptation algorithms, the Maximum 

Likelihood Linear Regression (MLLR) is most widely used 

and has shown to significantly improve speech recognition 
accuracy for accented speech using very few adaptation data 
[21-23]. Even though many advanced model adaptation 
algorithms have been developed recently [29-31], as a proof 
of concept we choose the basic MLLR algorithm for its 
simplicity. In this section, we first briefly review the MLLR 
algorithm and then propose an integrated feature and model 
adaptation system for non-native speech recognition.  
 

A. MLLR Model Adaptation Algorithm 
Due to limited amount of adaptation data, the MLLR 

algorithm usually only updates Gaussian mean vectors by a 
linear transformation. The distribution of data is assumed to 
be K  mixtures of Gaussian. If a baseline mean vector is ku , 

the corresponding adapted mean vector ˆku  for a new speaker 
or environmental condition is given by linear regression 
parameters A  and b ,                                         

ˆ ,u Au bk k= +      1 k K≤ ≤                 (12) 

The task is to estimate A  and b  such that the likelihood of 
adaptation data 1 2( , ,..., )TO o o o=  is maximized. Assume  

ku , ˆku  and b  are D  dimension vector. It follows 
ˆ( , ) ( , ),k k k kN u C N Au b C= +     1 k K≤ ≤ ,             (13)  

2 2 2
1 2( , ,..., )k k k kDC diag σ σ σ− − −=                 (14) 

It has been shown [13] that we can estimate A  and b  by 
minimizing 

1

1 1

( )( ) ( )
T K

T
t t k k t k

t k

Q k o Au b C o Au bγ −

= =

= − − − −∑∑           (15) 

where ( ) ( , )t tk s kγ γ=  is the posterior probability of being in 

state s  at time t  with thk  Gaussian. A  and b  can then be 
solved by setting the derivatives of Q with respective to A  
and b  to zero.  

 

B. Combine Feature and MLLR Model Adaptation 
As described above, both model-based MLLR and feature 

based continuous adaptation can improve speech recognition 
rate significantly. Since these two methods are independent, 
we can combine them to improve the speech recognizer 
further. We first perform feature-based continuous adaptation, 
and then implement model-based MLLR on the new speech 
feature.  Fig. 1 shows the integrated approach. Basically, the 
feature based method improves the Mel Frequency Cepstral 
Coefficients (MFCC). Then, the improved feature vector goes 
into the MLLR algorithm for updating the speaker specific 
acoustic model parameters. Finally, the new parameters go 
into the speech engine. Note, both the feature adaptation and 
MLLR model adaptations algorithms we implemented are 
unsupervised. For the MLLR algorithm, only a global 
transformation matrix for the Gaussian mean vectors is 
trained. 
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Fig. 1 Block diagram of the combined approach for speaker 
adaptation 

IV. EXPERIMENTAL RESULTS 

In this section we describe the evaluation of the feature and 
model adaptation algorithm on NATO non-native speech data 
base.  

A. The NATO Non-native Speech Database 

The NATO native and non-native corpus was developed by 
a NATO research group to provide a military oriented 
database for multilingual and non-native speech processing 
studies [24]. Speech data was recorded in naval transmission 
training center of four countries Germany (GE), Netherlands 
(NL), United Kingdom (UK), and Canada (CA). The subjects 
from Germany, Netherlands and UK were native speakers of 
German, Dutch and UK English, respectively. The Canadian 
subjects included native speakers of both English and 
Canadian French. Every speaker recorded a number of 
utterances in the international argot of the air force (English), 
as well as a rendition of Aesop's fable "The Northwind and 
the Sun", in both their native language and English. In this 
paper, recognition was performed only on the English 
utterances in the database. The detailed data and speaker 
information is given in TABLE . 

TABLE I  
NATO DATA AND SPEAKER INFORMATION 

 CA GE NL UK 
Data (hours) 2.49 2.25 2.53 1.63 
# Speakers 22 51 48 13 
# Women 5 0 9 5 
Age 22-35 17-23 17-61 19-62 
Average data per 
speaker (minutes) 

6.79 2.65 3.16 7.52 

 

B. The baseline Speech Recognition System 
1) Acoustic Model (AM) Training 
The Carnegie Mellon University (CMU) Sphinx-3 

continuous density HMM system was used for our study [25]. 
HMMs with 5000 tied states, each modeled by a mixture of 8 
Gaussians, were trained from native American speech: 130 
hours of BN (broadcast news) data combined with 33 hours of 
SPINE1 (Speech in Noisy Environments 1) and SPINE2 data 
[26] [27].  
 

The CMUdict pronunciation dictionary was used for the 
experiment. The pronunciations in this dictionary represent 
standard American pronunciation of all words, expressed in 
terms of 40 phonemes. No lexical adaptation was done. 

 
2) Language Model Training 
In order to bring out the effect of acoustic model adaptation 

algorithm, we first used simple uni-gram language model 
(LM) for speech recognition. The uni-gram model accorded 
equal probability to all the words in the recognition 
vocabulary. A tri-gram LM is trained with probability masses 
redistributed by the Good Turing discounting strategy [28]. 
We randomly partitioned the NATO data into two parts, part 
A and part B, which are roughly equal in terms of data size. 
When we performed recognition of part A, a language model 
trained from part B was adopted, and vice versa. 

 

C. Speech Recognition Experimental Results 
 
1) Baseline Results 

 
Using the above acoustic model trained from native data 

and NATO N4 non-native speech corpus as a test set [1], the 
baseline performance is summarized in TABLE . Due to the 
well-defined language structure in military communication, 
the tri-gram language model outperformed uni-gram language 
model significantly. 

TABLE II  
BASELINE NATO SPEECH RECOGNITION ACCURACY WITH 

UNIGRAM AND TRIGRAM LANGUAGE MODELS 

 
2) Continuous Feature Adaptation Results 

In feature adaptation experiments, non-native NATO log 
spectral features are continuously transferred before passing to 
the SPHINX decoder. TABLE  summarizes the results of the 
feature based adaptation method. Tri-gram language model 
was used in this experiment. In the table, the numbers outside 
the parentheses represent recognition accuracy, which 
corresponds to the commonly used metric of recall. The 
numbers within parentheses represent the recognition error, 
which is the sum of substitutions, deletions, and insertions 
error. The proposed feature based adaptation algorithm 
improved the baseline performance by an average of 15%. 
Performance on German and Dutch speakers has been 
improved the most.  

 

 

Data  Baseline with 
unigram (%) 

Baseline with 
trigram (%) 

Relative 
improvement 

(%) 
CA 57.26 77.75 35.78 
GE 26.85 52.51 95.57 
NL 34.22 59.90 75.04 
UK 46.03 69.25 50.44 
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TABLE III  
PERFORMANCE OF THE PROPOSED CONTINUOUS FEATURE BASED 

ADAPTATION METHOD (WITH TRIGRAM LM) 
Data  Baseline (%) With Feature 

adaptation 
(%) 

Relative 
improvement 

(%) 
CA 77.8 (33.4) 82.6 (27.3) 6.2 (18.3) 
GE 52.5 (55.8) 64.6 (42.3) 23.0 (24.2) 
NL 59.9 (49.7) 73.0 (33.0) 21.9 (33.7) 
UK 69.3 (49.6) 76.5 (36.2) 10.5 (26.9) 

 
3) MLLR Model Adaptation Results 

Our study shows the supervised approach offers about 1% 
of improvement over the unsupervised one on NATO data. 
Since speakers are usually reluctant to perform supervised 
training, our experiments were all based on unsupervised 
adaptation. Table 4 summarizes the experimental results. The 
MLLR adaptation algorithm improves the word recognition 
accuracy by an average of 11%.  Similar to feature adaptation, 
performance on German and Dutch speakers has been 
improved the most. It might due to the fact that German and 
Dutch accent are more different from American accent. The 
WER reduction does not improve as much as the recognition 
accuracy. This is attributable to the fact that the models for the 
background (non-speech) were adapted with the same 
matrices as the models for speech. This results in the insertion 
of a large number of spurious words in the recognition 
hypothesis in non-speech segments, as well as the 
misrecognition of several of the uttered words as silence. 

TABLE IV  
WORD RECOGNITION ACCURACY OF BASELINE AND THE MLLR 

ADAPTATION ON NATO DATABASE (WITH TRIGRAM LM) 
 
Data  

Baseline (%) With MLLR 
adaptation (%) 

Relative 
improvement 

(%) 
CA 77.8 (33.4) 83.9 (30.5) 7.9 (8.8) 
GE 52.5 (55.8) 64.0 (60.0) 11.5 (-7.1) 
NL 59.9 (49.7) 71.0 (47.0) 18.6 (5.5) 
UK 69.3 (49.6) 74.9 (47.7) 8.1 (3.7) 

 
4) Combined Adaptation Results 

TABLE  and Table 6 summarize the performance by 
combining the feature and MLLR model adaptation 
algorithms, with the unigram and trigram LM, respectively. 
All adaptation algorithms are unsupervised. With the tri-gram 
LM, The average overall accuracy improvement is 29.5% and 
the WER reduction is 31.8%. 

TABLE V  
RECOGNITION ACCURACY (WITH UNIGRAM LM) 

TABLE VI  
RECOGNITION ACCURACY (WITH TRIGRAM LM) 

D.  Comparative Studies 
As a comparative study, we trained a custom tied-state tri-

phone acoustic model for United Kingdom speaker from the 
WSJCAM0 database (CD0 and CD1 data). The WSJCAM0 is 
a British English speech corpus derived from Wall Street 
Journal text corpus [32]. Using the same language model, the 
recognition on UK part of NATO data shows a recognition 
accuracy of 78.9% and WER of 34.8%. The combined feature 
and model adaptation algorithm using acoustic model trained 
from native American speech achieves accuracy of 83.8% and 
WER of 33.9% (shown in Table 6). Our integrated adaptation 
approach for non-native speech recognition outperforms the 
custom accent specific acoustic model. The time-consuming 
data collection can be avoided by our integrated speaker 
adaptation algorithm. 

V. CONCLUSIONS 
In the paper, a feature based adaptation algorithm was 

proposed for unsupervised continuous speaker and 
environmental adaptation. Like MLLR, which modifies 
acoustic models to reduce the mismatch between training and 
test conditions, feature based adaptation also reduces the 
mismatch between the intra-phoneme spectral variations that 
occur as a result of non-nativity in the test data, as compared 
to those encountered in the training data.  Experiments on 
NATO non-native database has shown significant speech 
recognition accuracy improvement over baseline acoustic 
model trained on native American English speaker. The 
feature based adaptation integrated with MLLR model based 
adaptation improved the performance even further.  
 
The feature based adaptation algorithm described in Section 
III is not specific to a particular type of acoustic condition and 
is equally effective at adapting to variations, both local and 
global, in noisy conditions, speaker, and accent variations. 
However, it is critical to initialize the matrix   appropriately 
(completely random initializations do not work). In our 
current work, the initial transformation matrix A  was 
determined using data from a group of "typical" American 
data with accents, since our focus is on accent robustness. In a 
condition-specific task, it is more appropriate to initialize   
with the condition specific data. For example, in a task where 
robustness to speakers of a single accent is important, A could 
be estimated using data from many speakers, spanning, as far 
as possible, the range of variations expected in the vocal tract 
characteristics of test speakers.  In a noise attenuation task, the 
initial transformation matrix Acould be estimated using 
representative noise conditions. In mixed-focus tasks, some 
appropriate combination of data conditions could be used. 

Data Baseline  
(%) 

Feature 
adaptation 

(%) 

MLLR 
adaptation 

(%) 

Combined 
adaptation 

(%) 
CA 57.3 63.5 65.7 71.0 
GE 26.9 34.0 38.8 44.8 
NL 34.2 45.3 47.8 55.8 
UK 46.0 53.1 51.8 58.4 

Data Baseline  
(%) 

Combined 
adaptation (%) 

Overall 
Improvement (%) 

CA 77.8 (33.4) 86.9 (25.6) 11.7 (23.3) 
GE 52.5 (55.8) 76.8 (40.8) 46.3 (27.0) 
DL 59.9 (49.7) 83.3 (27.2) 39.1 (45.2) 
UK 69.3 (49.6) 83.8 (33.9) 20.9 (31.5) 
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