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Abstract—The wave function at the origin is an important 

quantity in studying many physical problems concerning heavy 
quarkonia. This is because that it is using for calculating spin state 
hyperfine splitting and also crucial to evaluating the production and 
decay amplitude of the heavy quarkonium. In this paper, we present 
the variational method by using the single-parameter wave function 
to estimate the WFO for the ground state of heavy mesons. 
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I. INTRODUCTION 
ECENTLY, the wave function at the origin for the S-wave 
bound state of a heavy quark-antiquark system once again 

attracts physicists' attentions [1,2]. In the context of the non-
relativistic potential model [1,2] demonstrated the numerical 
results of WFO of the S-wave cc  , cb  and bb  systems.As 
well known, except the Coulomb and the harmonic oscillator 
potentials, there are few potentials which bound state 
problems can be analytically solved. For solving these non-
analytically soluble bound state problems, one has to use 
approximations. Numerically solving Schrodinger equation is 
the most powerful method which can reach most required 
accuracy. But the numerical method has some defects, for 
instance, it cannot give analytical aexpressions for further 
discussion [3].In other word, there exist systems whose 
Hamiltonians are known, but they cannot be solved exactly or 
by a perturbative treatment. That is no closely related 
Hamiltonian that can be solved exactly or approximately by 
perturbation theory because the first order is not sufficiently 
accurate. One of the approximation method that is suitable for 
solving such problems is the variational method, which is also 
called the Rayleigh-Ritz method [8]. This method does not 
require knowledge of simple Hamiltonians that can be solved 
exactly.The variational method has more advantages. It can 
give an analytical expression of the wave function. In 
particular, if there is only a single-parameter in the trial wave 
function, the resultant wave function has a simple form. Then 
it is very convenient in the practical application and physical  
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discussion. 

II.  THE POTENTIAL MODELS  
There are many potentialmodels which can fit the 

experimental spectra of the heavy quarkonia with certain 
accuracy. We consider three functional forms for the potential 
that give reasonable accounts of the cc , cb and bb spectra [2]. 

(1). Cornell potential [4] : 
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    (2). Martin potential [5]: 
( ) 1.0krrV =                                                         

(2) 
With 

( ) ( )2
b

2
c CGeV174/5m;CGeV8/1m;898/6k ===  

    (3). Logarithmic potential [6]: 
( ) ( )rlogkrV =                                                                  (3) 
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III. THE VARIATIONAL METHOD BY USING THE SINGLE-
PARAMETER TRIAL WAVE FUNCTION 

Within the framework of the non-relativistic potential 
model, the S-state wave function ( )rψ  of the heavy 
quarkonium satisfies the Schrodinger equation 

( ) ( ) ( ) ( ) ( )rErrVr
2
1rH 2 ψ=ψ+ψ∇
μ

−=ψ                              (4) 

Where H is the Hamiltonian of the quarkonium, ( )rV denotes 
the central potential between quark and antiquark, E   
represent the energy eigenvalue, and μ  is the reduced mass. 

To solve Eq. (4) by using the variational method, one needs 
to choose a suitable trial wave function ( )c,rψ with N 
independent parameters { } { }N21 c,,c,cc K= first and then to 
seek out a set of parameters { } { }N,,2,1i,cc ioo K==  which 
minimizes the expectation value of Hamiltonian, namely 

( )
( ) ( )
( ) ( )cc

cHc
HcE

ψψ

ψψ
==                                             (5) 
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The minimum value ( )ocE  gives an upper limit of the ground 
state energy.  

  In this section, we choose the simplest trial wave function 
in which there is only one variational parameter to study the 
1S state of heavy mesons. The general form of such trial wave 
function is written as 

( ) bar
trial Ner −=ψ                                                           (6) 

Where N is the normalization constant, a denotes the 
variational parameter which will be fixed by minimizing the 
expectation value of Hamiltonian and b is the model 
parameter which determines the type of the trial wave 
function. In practice, we select following four trial wave 
functions: 
(1). 1b = , namely ( ) ar

trial Ner −=ψ  ( hydrogen wave function 
or exponential wave function). It is the solution of the 
Coulomb potential model. 
(2). 2b = , namely ( ) 2ar

trial Ner −=ψ ( harmonic oscillator wave 
function or a Gaussian wave function). 

(3). 23b = , namely ( ) 2
3

ar
trial Ner −=ψ . This function was 

used by Gupta [7]. 

(4). 34b = , namely ( ) 3
4

ar
trial Ner −=ψ . This is a newly 

proposed trial wave function. 
 The normalization constant obtained from the 

normalization condition: 
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In the case of Cornel potential(1), potential energy ( )〉〈 rV  is 
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And kinetic energy 〉〈T  is 
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We know that ( ) ( )zzz1 Γ=+Γ , so we can write 
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Then we can obtain the expectation value of Hamiltonian and 
consequently an algebraic equation, which is used to 
determine a : 
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It is very easy to solve this equation, if we rewrite it in the 
following form: 
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The real solution of x  can be expressed as: 
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    In the case of Martin potential (2), the potential energy 
reads: 
 

( )∫ =ψ 1rdr 32
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Therefore, the equation for determining a is quite simple. The 
solution is 
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    In the case of Logarithmic potential (3), by the similar 
procedure we obtain 
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IV. THE VARIATIONAL RESULTS OF (WFO) OF 1S- STSTE cc  , cb  

AND bb    MESONS 

In the case of cornell potential, the values of reduce mass 
for cc  , cb  and bb  are 
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In the case of Martin potential, they are 
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And in the case of Logarithmic potential, we have 
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All the numerical results are listed in Tables 1 to 3.  

 
TABLE I 

THE VARIATIONAL RESULTS, ( ) 20ψ ( )3GeV , WITH A SINGLE-

PARAMETER TRIAL WAVE FUNCTION FOR 1S-STATE OF cc  
MESON    

Logarithmic 
Potential 

Martin  
Potential 

Cornell 
Potential 

b 

0.129747 0.1669310.182246 1 
0.039847 0.051150 0.050411 2 
0.062490 0.079977 0.082912 3/2 
0.076168 0.097511 0.103326 4/3 

 
TABLE II 

THE VARIATIONAL RESULTS, ( ) 20ψ ( )3GeV , WITH A SINGLE-

PARAMETER TRIAL WAVE FUNCTION FOR 1S-STATE OF cb  
MESON    

Logarithmic 
Potential 

Martin  
Potential 

Cornell 
Potential 

b 

0.246078 0.2934800.364261 1 
0.755745 0.089927 0.096576 2 
0.118519 0.140607 0.161307 3/2 
0.144460 0.171433 0.201642 4/3 

 
TABLE III 

THE VARIATIONAL RESULTS, ( ) 20ψ ( )3GeV , WITH A SINGLE-

PARAMETER TRIAL WAVE FUNCTION FOR 1S-STATE OF bb  
MESON    

Logarithmic 
Potential 

Martin  
Potential 

Cornell 
Potential 

b 

0.767454 0.1886051.347961 1 
0.208874 0.231169 0.345192 2 
0.369630 0.381445 0.595784 3/2 
0.450535 0.119027 0.749597 4/3 

 

V. CONCLUSION 

In this paper, we carefully studied the variational method, 
especially in determining the wave function at the origin of 
the quarkonium. Retaining generality as much as possible, we 
employ several potential models to analyze. We compared the 

(28)⎜ ⎟          
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numerical results obtained in terms of the variational method 
with those by solving Schrodinger equation numerically 
[2].The results shown in Tables 1 to 3 indicate that for the 
Cornell potential, the trial wave function with 3

4b =  , can 

give the least relative deviation of squared WFO. The value of 
the deviation is about 0.11 . For the Martin and Logarithmic 
potentials, the situations are better when 2

3b =  . One obtains 

the least values of 0.027 and 0.013 for the relative deviations 
of squared WFO.The accuracy of variational results can be 
improved when the number of the variational parameters are 
increased. The resultant accuracy of WFO seriously depends 
on the choice of the trial wave function.The trial wave 
function with a single variational parameter is most 
convenient for use. If the accuracy of 10% for WFO in the 

Cornell potential case is tolerable, ( ) 3
4

arNer −=ψ would be the 
best choice for the 1S state trial wave function. For the Martin 

and Logarithmic potentials, ( ) 2
3

arNer −=ψ  is the most 
appropriate trial wave function for the 1S state, and the 
corresponding WFOs have quite satisfactory accuracies. 
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