
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

278

Abstract—The present paper is oriented to classification and
application of agent technique in simulation of anticipatory systems,
namely those that use simulation models for the aid of anticipation.
The main ideas root in the fact that the best way for description of
computer simulation models is the technique of describing the simu-
lated system itself (and the translation into the computer code is pro-
vided as automatic), and that the anticipation itself is often nested.

Keywords—Agents, Anticipatory systems, Discrete event
simulation, Simula, Taxonomy.

I. PROBLEMS IN PROGRAMMING OF COMPUTER SIMULATION
MODELS AND THEIR SOLUTION

OMPUTER Simulation is the best (and may be said the
unique) technique for exact studying of the complex

dynamic systems, i.e. for the complex systems that are viewed
to change their state during a Newtonian (non-relativistic)
time flow. For studying dynamic systems that are not
complex, simulation is a very expensive (therefore unfitting)
technique.

Simulation is based on experimenting with the model [1]. In
order to reflect the causality relations during the experiment-
ing, the model is demanded to satisfy the following condition:

When events E1 and E2 coming in the model, respectively
reflect events 1 and 2 coming in the modeled system, and
when 1 occurs later than 2, then E2 cannot occur later than
E1 in the model. In such a case, E1 usually comes later then
E2, but it is possible that both the events come at the same
time (it happens namely when the model is rough, but even
such models are of use).

The reality of simulation is that the complex systems should
be mapped to complex computer models with intricate beha-
vior in time, which has to be described as algorithms handling
with tangled structure of a lot of data. Moreover, a small
change of the simulated system can be frequently discovered
during the application of simulation; although such a change
could be described by a simple sentence, the corresponding
modification of the computer model is often so large that it is
comparable with programming a new model from scratch.

In order to solve such problems concerning the program-
ming of simulation models, an attempt was accepted and

Manuscript received June 27, 2006. The paper was elaborated under
support of the grant No. 201/06/0612 of the Grant agency of Czech Republic.

Eugene Kindler is with Ostrava University Faculty of Sciences, Czech
Republic (phone: +420-221-914-286; fax: +420-221-914-323; e-mail:
evzen.kindler@ mff.cuni.cz).

elaborated in two ways, which will be shortly described in the
next lines; the attempt can be characterized so that instead for-
cing the author of simulation model M to describe what should
happen in the computer C when M exists and operates inside
C, the author should describe the simulated system and such a
description should be automatically translated into the
computer code realizing M. In the present paper, the attempt
will be identified as . The last fifty years of computer
simulation showed an enormous help of it.

The first elaboration of the attempt consists in simulation
programming languages (shortly simulation languages).
Each of them is oriented to a certain class of dynamic systems
that could be well, promptly and without obstacles described
is it. During the last 50 years, many tens of simulation
languages were designed, correspondingly to many tens of
classes of dynamic systems that attracted attention of the
simulationists.

The translation of the text in a simulation language into the
corresponding computer code is a very knotty process, as it
should well handle all texts in the simulation language. Imple-
menting it in a form of a compiler is a difficult challenge even
for the high level programmers; they are not at disposal, while
new classes of systems, which demand their own simulation
languages, arise. Already in the sixties of the XX century, this
situation stimulated the elaboration of a special technique of
representation of concepts, carried by programming language
SIMULA [3]-[5].

Many years after, certain ideas existing in SIMULA were
followed by the world professional community under title
object-oriented programming (shortly OOP) and stepwise re-
flected in other programming languages like SmallTalk, C++,
Eifel, or Java. The ideas were

(1) representation of general concepts (commonly under
name class) with

(2) an absolute freedom to generate any number of their
instances to represent individuals carrying the contents of the
classes, and with

(3) an absolute freedom to specialize such classes to their
subclasses to represent concepts with a richer content,

(4) the content of the classes consists in their attributes (re-
presenting “properties”) and methods (algorithms,
representing “abilities”), so that

(5) every instance of a class carries all attributes introduced
for the class, and is able to perform any method introduced for
the class, when it is demanded to do that, and that

(6) the specialization of a class consists in adding new
attributes and new methods and

Agent-Based Simulation of Simulating
Anticipatory Systems – Classification

Eugene Kindler

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

279

(7) giving new contents to methods that have been intro-
duced for the class,

(8) values of attributes two different instances of the same
class may differ but the name of the attributes of both the in-
stances must correspond.

The event when an instance N is demanding an instance K
to perform method M is commonly called a message sent by
sender N to addressee K, having selector F. A message can
have parameters. The methods the contents of which be
changed in the subclasses (see (7)), are called virtual. If such
a method F is the selector in a message the addressee itself
determines the way, according which the reaction to the
message will be performed. If F is not virtual then the way is
uniquely determined by the sender.

Although the mentioned ideas rooted in the lack of the
simulation languages they were already in [3] presented as
applicable in programming anywhere. The next development
confirmed that so strongly, that some years later the world
professional community forgot the simulation stimulus for
OOP.

II. LIFE RULES

One of the most important sources of the systems complexi-
ty is that they have many elements which behave more or less
autonomously and when they get in suitable states they may
interact. Viewing the system (and the corresponding model)
globally, the sequence of such interactions seems to be
chaotic; viewing an individual element, its interactions are
recognized as regular; but the stimuli for them, coming from
the outside of the element, seem to appear as chaotic.

The authors of the simulation languages were aware of that
phenomenon already at the beginning of the sixties of the last
century. Into some simulation languages, they incorporated
certain ability, later called life rules: an element could be con-
nected with an algorithm that could modify its state at one side
and react to the states of other elements at the other side. So
called scheduling statements were at disposal in description
of the life rules, enabling switching among life rules of
different elements: while the life rules of an element A control
the computation belonging to the model their stream could
come to a scheduling statement and devolve the control of
computation on another element. Later on, an element can
devolve the control of the computation on A, which thus
“actively” goes on in his life according to the rules that follow
after the scheduling statement.

An example of the A’s scheduling statement is “wait until
the simulated time increases to a certain value q”; while the
time is increasing life rules of other elements can influence the
computing, and when the time accesses q the control of com-
puting is switched to the life rules of A. So a parallel develop-
ment of more elements can be modeled at a monoprocessor
computer; in principle, that modeling is deterministic, there-
fore can be reproduced.

The first and most popular simulation language that offered
the life rules was GPSS [6] (applied even at the present days

namely in the United Sates [7]). Later, the authors of
SIMULA offered to describe life rules for any class C so that

(a) any instance of C should behave according them,
(b) any subclass D of C accepts the rules of C as its owns

and an can enrich them by the rules introduced in the
formulation of D,

(c) the scheduling statements were introduced as special
cases of sequencing procedures, the semantics of which being
independent of simulated time.

III. AGENTS

The technique of simulation led to see two sorts of autono-
mous subjects, namely those recognized in the physical world
and those mapping them in simulation models. In [8], term w-
agents was introduced for the first sort and term c-agents for
the second one. Simulation practice and model programming
demonstrates many structural similarities between the corre-
sponding pairs of a w-agent and the c-agent that models it,
among that more or less autonomy appears.

The ideas of OOP, commonly accepted by the world profes-
sional community, did not respect the life rules that have
existed since the sixties and that have been included into the
first OOP language SIMULA. During many years after
SIMULA, the following OOP languages (like SmallTalk or
C++) offered only formulating some rules applicable during
the instance generation. No switching is possible and therefore
speaking on life rules would be rather illogic – for those
languages the life of objects would be a life of ephemeron.

But the parallel dynamics does exist and could be watched,
either (outside of simulation) at the real world phenomena, or
(independently of simulation) inside the parallel processes of
computer systems. Expressing such a dynamic led to the term
agent, which could be at hand sometimes as w-agent, some-
times as c-agent. In the scientific literature, agent is not under-
stood in a unique and clear form; some properties of agent are
demanded (like autonomous existing and operating, mobility,
reactivity, environment understanding etc.), but these proper-
ties are not exactly formulated and never classified whether
necessary or sufficient.

Let us rest at the opinion that certain autonomy is sufficient
to characterize agent. A certain proof of it is [9], appearing in
a highly professional conference proceedings oriented to
agents in simulation – the model presented in the paper is fully
based on the simulation language GPSS mentioned above (see
the end of part 2).

IV. SIMULATING AND SUBORDINATED AGENTS

Therefore the c-agents are indeed agents with autonomous
dynamics. The essential component of OOP, namely reactions
to the messages, causes them to have another ability
frequently demanded for the agents, namely reactivity; note
that that is “more intelligent” in case the selector of a message
is virtual. Nevertheless, the experts studying agents
introduced term reactive agent as an opposite one to the term
intelligent agent: the first should be much more primitive in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

280

its reactivity than the last. In the next section, we will study
the attempts to distinguishing intelligent agent from the poor
reactive (i.e. really not intelligent) agents. But for that purpose
we need to introduce two concepts, which will be done in this
section.

A simulation model itself can be an agent. If it is so we will
call it simulating agent. The attempt implies that the simu-
lating agents are often viewed as communities of c-agents that
form it. Let them be called subordinated agents, as they are
subordinated to their community. In the terminology related to
the agents, such subordinated agents are delegated by the cor-
responding simulating agent.

Fig. 1 presents an illustration. One can see that there is no
barrier between the community C and the simulating agent
itself, and in practice there is often no difference between the
community and the simulating agent.

Sometimes – namely in conventional simulation studies –
using the term simulating agents can be hammy and function-
less. But in some sophisticated simulation studies (e.g. [10]-
[12]), the simulating agents figure really as agents, they are
autonomous (among other, each of them has its own simulated
time) and reactive (better – more or less intelligent), and they
form a community (note that they figure as simulation models
contemporarily existing in a simulation study).

Note that the concept of subordinated agent can be generali-
zed to w-agent too: the components of any (material) system,
which we see as autonomously behaving, can be viewed as w-
agents that are subordinated to their community, i.e. to the
system S where they exist. A secure test to confirm that such
elements are really subordinated agents consists in that such
elements could be mapped to agents subordinated to the model
of S in case S is simulated.

Fig. 1 Simulating agent SIM and community C of 7 subordinated
c-agents. They map the w-agents forming a simulated system S. With
them, SIM represents a simulation model of S. The short double-side

arrow illustrates that the C can be matched with SIM

V. INTELLIGENT SIMULATING AGENTS

As it was mentioned at the previous section, term
intelligent agent is used as opposing to term reactive agent. It

may be said that intelligent agents perform a certain
processing of the information that they have got and that
they view as essential for the form o the reaction to a message.
The adjective intelligent should express that is supposed to
model something near to the mental processes typical for
humans. The specialists relate either to some learning or to
some deduction that could be expressed in the terms of
predicate calculus of the first order or in fuzzy logic.

Surprisingly, almost nobody discovered that humans often
make something which could be called mental simulation, i.e.
something that resembles computer simulation but is perform-
ed in a human imagination controlled by reason. One often de-
cides so that he imagines future steps what to do, recognizes
the causal relations among them and then “sees in his mental
sight” possible consequences, and possibly makes it several
times in order to recognize the consequences of different vari-
ants, then chooses the variant with the best consequences and
decides to do according to it. Naturally the mental abilities of
humans are poor for that, and we can watch that it was just si-
mulation (so called “on line one”) that had to replace the
mentioned feeble human thinking process by a much more
powerful tool.

An element of a real system that behaves in such a manner
can belong to a system that should be simulated. As examples,
passengers using a system of public transport or walking in a
crowded environment, drivers in a road transport, or students
transferring from lecture halls into other ones, or even some
workers in a production system can serve.

Fig. 2 Simulated system S contains six w-agents A – E and Q.
Q can simulate (or imagine), using model m that has seven

subordinated agents 1 – 7. In simulation of S, S melts into
simulating agent M, and its elements melt into subordinated agents a

– e and q. The boundaries of communities unite with those of
models. Concerning the double-sided dotted arrow, see section VI

Such elements are normally subordinated w-agents. When
the system in that they exist is simulated they are mapped to
subordinated c-agents. But their ability to perform “mental

S M
Q q

m
1 2

6 7

3 4 5

 B b D d
C c

A a E e

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

281

simulation” gives them a new quality: in fact they are near to
be simulating agents and when they are simulated their images
– subordinated c-agents – become simulating agents.

In the simulation models of such (real) systems, it is
suitable to reflect the mentioned imagining processes as
simulation. Moreover, simulation performed in the described
manner could inform about the real system behavior in case
the human decision would be replaced by computer
simulation, e.g. when control of such a system is fully
automated.

So we come to the idea to simulate a system S containing at
least one simulating element Q that influences S (see Fig. 2).
Such an element belongs to the community C of the other ele-
ments that form S. In the corresponding model (simulating
agent) M, the element Q should be mapped as a subordinated
agent q (because it belongs to the community of subordinated
agents that reflect the elements of C). At the same time, q
should be considered as simulating agent, because it reflects
the simulation performed by Q. In [13] and [14] a proof was
presented that any neglecting this fact (e.g. neglecting that q is
a simulating agent) is a testimony on bad designer’s profes-
sional level – either M should give bad information on the fu-
ture behavior of S, or simulation performed by Q is useless
and can be completely removed or replaced by a simpler
method even in S.

Let the agents that are simulating and subordinated as well,
be called composed agents.

VI. IMPLEMENTATION OF COMPOSED AGENTS

No reason exists against applying the attempt in case a
composed agent A occurs. Describing it, demands a program-
ming tool available, in which it would be possible to describe
both

(a) the aspects that make A subordinated, and
(b) the aspect that make A simulating.
To be exact, let us note that the description concerns a w-

agent (i.e. a physical computer or a real imagining person) and
is expected to be considered as the description of the corres-
ponding c-agent, i.e. to the image of A at computer model M.

The aspects sub (a) concern the fact that A exists in a
certain physical world viewed as a system S in Newtonian
time, and that in the same world other components of S exist
and can interact with A. If A were not simulating, a simulation
language could enable such a description; in case no suitable
simulation language were at disposal, it would be possible to
define it, formulating the necessary language tools (classes,
methods,…) in an OOP language. Naturally, the OOP
languages like Pascal or C++, which do not allow formulating
life rules, could make problems but it is not the objective of
the present paper.

The aspects sub (b) concern the fact that A carries (or even
is – see the double-sided dotted arrow in Fig. 2) a simulation
model m. Relating to S, A has some electronic or neural (or
mental) components that exist in S in the same manner as A
itself, but A makes an abstraction , namely a sophisticated

transformation with them, seeing them as carriers of a certain
abstract phenomenon, namely a model m that reflects some
system S’ which is more or less similar to S. But there is no
physical relation between the components of S and those of S’
– if one could formulate such a relation he had to base it on
the abstraction (among other, m should be bound to a
certain fictive time axis that should be different from that
figuring for M). Evidently, any modeler would like to neglect
any analysis of such a relation – it is physically based on the
internal function of the applied compiler which would surely
be very complicated. (in other words, to analyze how the
abstraction roots in the physics of S would be the same as
analyzing the internal details of M inside the computer – it is
against the attempt).

If A were not a subordinated agent and if it were only a si-
mulating one, a suitable simulation language could be applied
for describing S’ or – in case of a lack of such a language – an
OOP language could aid to formulate such a simulation lan-
guage. But the reality is as follows:

At one hand, A is a subordinated agent with its life rules re-
lated to the time flow of S, while at the other hand, among the
life rules there is a “simulation phase” of the life, in which the
description of S’ should occur. To extract from the life
rules of A would be against the principles of , as S’ is always
influenced by the instantaneous state of A.

Fig. 3 Q’s life rule(s) containing description of S’. For
illustration, an entity X accessible (and/or manipulated) by is

presented; it can be used in .

No existing simulation language permits to describe such a
situation (two time axes are sufficient for making the language
unable) and similar problems arise in applying OOP. In [8] the
essential principles of a user-friendly describing of such
composed agents are presented, having use of the OOP that
allow formulating life rules and that are block-oriented, too: a
consequence of the block orientation is the permission to
formulate classes local in blocks or in other classes. System S’
can be then described as local to some set of the life rules
and so its model can be generated by them and the model
itself can communicate with them. can contain any life
rules, i.e. from one of them to all life rules of Q. (see Fig. 3).

There is a very small number of programming languages

S’ m
e1 e2

e6 e7

e3 e4 e5

X

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

282

that have all the three orientations; beside SIMULA, it is
BETA and may be JAVA.

VII. CLASSIFICATION OF AGENTS IN SIMULATION

A simple summarizing of the categories of agents occurring
in simulation is in Fig. 4. Nevertheless, one can go further. Let
a model handled by a composed agent be called nested model.

Fig. 4 Simple classification of agents occurring in simulation

At first, note that an agent can be sometimes simulating and
sometimes no. That is important for the subordinated agents,
which can operate during some time without any model they
could handle and which can change such models. Such an
agent may correspond to a simulating computer that is some-
times used for other tasks than simulation and that can change
its nested models. Such an agent may also reflect a human
who imagines only sometimes, his imagining concerns
different thinks and situations, while in the remaining time she
does not imagine. Note that almost all imagining persons and
all simulating computers are of that sort. Therefore a
subordinated agent can sometimes be composed and
sometimes not, the concept of composed agent is dynamic.

Into one’s consideration on simulation, it is possible to
include a w-agent which is a computer that performs two or
more simulation in multitasking mode (see Fig. 5). The corre-
sponding c-agent should be a composed one which can handle
several simulation models at the same time. Although such an
idea could seem rather theoretical, SIMULA allows implem-
enting it and a certain application of it exists [15].

That leads to introduce the aspect of subordinated agents,
which will be called size. It is defined as the number of
models handled by the same agent. Therefore in the preceding
section the composed agent were those of size=1. Naturally,
one could generalize the concept of size and view the
simulating agents that are not composed as composed agents
of size 0; nevertheless such an idea could be a poor
mathematical l’art-pour-l’artism. But size is a dynamic value
and we can have use of that to admit it for any subordinated
agent so that it can vary from zero to a certain maximal value,
which informs of the agent’s power.

Let A be a composed agent subordinated to a simulating
agent M that simulates a system S. Let be a model nested in
A. simulates a system S’ that can be rather similar to S. Then
A be called reflective agent. That seems to be a habitual case,
while that of a rather great difference between S and S’ could
seem a theoretical abstraction. Nevertheless, such cases exist,
concerning so called fictive simulation or pseudosimulation:
A could simulate a fictitious system in order to solve some
particular problem. The first applied examples is described in
[16], a certain early collection is presented in [17].

Whether an agent is reflective or not, is a problematic
question in general, because the words “S’ is rather similar to
S” are too fuzzy. Fortunately, the reason of the application of
the nested model can help. But there is another complication:
an agent of a power greater than two can be reflective in
relation to one of the models nested in it and not reflective in
relation to another agent nested in it. Such a case was applied
and described in [18], where one of the models (far from
causing reflectivity) simulates a fictitious system for
computing the shortest path in a labyrinth and the other model
tests whether using the computed path will not will not cause
a deadlock; the last model leads to reflectivity.

Fig. 5 A similar system S like in Fig. 2, similarly modeled by M; but
computer Q handles three models , and contemporarily

Finally, there is another occasion to classify the composed
agents, which could be called depth. A subordinated agent of
power zero can be classified as power of depth zero: a model
is never nested in it. Suppose a simulating agent M is nested in
a subordinated agent A and suppose among the agents
subordinated to M is an agent B that is composed. Such a
situation corresponds to a system S that has element Q that
simulates a system S’ containing an element q that is
simulating, too (note that an experimental model of S was
already implemented and run [19]). In such a case, A be called
agent of depth two (see Fig. 6). In the “more habitual” case,

S M
Q q

A a E e

 B b D d
C c

composed
agents

c-agents

simulating
agents

subordinated
agents

w-agents

subordinated
agents

agents

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

283

i.e. if M has no composed subordinated agents, A be classified
as that of depth one.

Fig. 6 System S like in Fig. 2, similarly modeled by M; but computer
Q models a system composed of three elements a, b and c, and c
reflects a computer C that simulates a system composed of five

elements -

Evidently, the nesting can be iterated so that q simulates a
system containing a composed agent etc., and so we can come
to the depth three etc. Evidently, for an agent A of power two
or more, the depth can differ when it is watched in relation to
different agents subordinated to A. Therefore depth could be
in general expressed by tree of subordination.

VIII. CONCLUSION

Nowadays, it is necessary to test the simulation of anticipat-
ory simulating systems as much as possible, in order to get
new stimuli and to generalize what was already reached. The
further application studies concern e.g. the hospitals [20-22]
and the internal logistics in production halls considered as an-
ticipatory systems [23]. Other work that is prepared to follow
the classification is joining it with some taxonomy introduced
for the anticipatory systems independently of agents [24].
Also French system QNOP, which appeared a good tool for
simulation of production systems [25], is studied to be
transformed for to serve for describing composed agents.

ACKNOWLEDGEMENT

The paper was elaborated under support of the grant No.
201/06/0612 of the Grant agency of Czech Republic.

REFERENCES

[1] O.-J. Dahl: Discrete Event Simulation Languages. Oslo: Norsk Regne-
sentralen, 1966. Reprinted in [2]

[2] F. Genuys, Ed.: Programming Languages. London – New York: Acade-
mic Press, 1968

[3] O.-J. Dahl and K. Nygaard: “Class and subclass declarations”, in
Simulation Programming Languages, J. N. Buxton, Ed. Amsterdam:
North-Holland, 1968, pp. 158-174

[4] O.-J. Dahl, B. Myhrhaug and K. Nygaard: Common Base Language.
Oslo: Norsk Regnesentralen, 1968 (1st ed.). 1972 (2nd ed.), 1982 (3rd
ed.), 1984 (4th ed.)

[5] SIMULA Standard as Defined by the SIMULA Standards Group. Oslo:
Simula a.s., 1989R. Rosen: Anticipatory Systems. New York: Pegamon
Press, 1985

[6] G. Gordon: “A general purpose systems simulation program”. Proceed-
ing 1961 EJCC, New York: MacMillan, pp. 81-88

[7] T. J. Schriber: An Introduction to Simulation using GPSS/H, New York:
Wiley, 1991

[8] E. Kindler: “Object-Oriented Simulation of Simulating Anticipatory
Systems”. International Journal of Computer Science, vol. 1., no. 3, pp.
163-171, 2006

[9] E. Kalisz and A. M. Florea: “A GPSS Simulation model of Interactions
in a Market –Based Multi-Agent System” in Workshop 2000 Agent-
Based Simulation, B. Schmidt, Ed. Delft, Erlangen, Ghernt, San Diego:
CSC & ASIM, 2000, pp. 145-190

[10] J. Weinberger and E. Kindler: “Experimenting in quasiparallel”. Simula
Newsletter, vol. 10, p. 12 , 1982

[11] J. Weinberger: “Extremization of Vector Criteria of Simulation Models
by Means of Quasi-Parallel Handling”. Computers and Artificial
Intelligence, vol. 3, pp. 71-79, 1987.

[12] J. Weinberger: “Evolutional Approach to Extremization of Vector Cri-
teria of Simulation Models“. Acta Universitatis Carolinae Medica, vol.
34, pp. 249-258, 1988

[13] E. Kindler: “Chance for Simula”, in Proceedings of the 25th Conference
of the ASU – System Modelling Using Object-Oriented Simulation and
Analysis. Kisten (Sweden): ASU, 1999, pp. 29-53. Reprinted as [14]

[14] E. Kindler: “Chance for SIMULA”. ASU Newsletter, vol. 26, no. 1, May
2000, pp. 2-26. Reprint of [13]

[15] E. Kindler: “When everybody anticipates in a different way ...,” in Com-
puting Anticipatory Systems CASYS 2001 – Fifth International Confe-
rence, D. M. Dubois, Ed. Melville, New York: American Institute of
Physics, 2002, pp. 119-127

[16] E. Kindler and M. Brejcha: “An application of main class nesting – Lee's
algorithm”. SIMULA Newsletter, vol. 13, no.3, pp. 24-26, 1990

[17] E. Kindler: “Simulation of Systems Containing Simulating Elements”, in
Modelling and Simulation 1995, Proceedings of the 1995 European
Simulation Multiconference, M. Snorek, M. Sujansky, A. Verbraeck,
Eds. San Diego: Society for Computer Simulation International, pp.
609-613, 1995

[18] E. Kindler: “Nesting simulation of a container terminal operating with its
own simulation model”. Belgian Journal of Operations Research,
Statistics and Computer Sciences, vol. 40, no. 3-4, pp. 169-181, Dec.
2000

[19] P. Blümel and E. Kindler: “Simulation of antagonist mutually simulating
systems,” in Simulation und Animation '97, O. Deussen and P. Lorenz,
Eds. Erlangen, Ghent, Budapest, San Diego: Society for Computer
Simulation International, 1997, pp. 56-65

[20] E. Kindler and I. K ivý: “On the way to reflective simulation of
hospitals,” in 4th International Conference Aplimat, Part II. Bratislava:
Slovak University of Technology, 2005, pp. 309-314

[21] I. K ivý, E. Kindler: “Computer representation of formalized view of in-
patient departments of hospitals” in CompSysTech 2005 – Proceedings
of the International Conference on Computer Systems and Technologies,
Varna: Bulgarian Union of Automation and Informatics, Varna, 2005,
pp. 1-6

[22] I. K ivý, E. Kindler: “Reflective Simulation of In-Patients Dynamics”,
in: 5th International Conference APLIMAT 2006], Part I, M. Ková ová,
Ed. Bratislava: Slovak University of Technology, 2006, pp. 613-617

[23] E. Kindler, T. Coudert and P. Berruet: “Component-based simulation for
a reconfiguration study of transitic systems”, SIMULATION, vol. 80, no.
3, pp.153-163, March 2004

[24] E. Kindler, I. K ivý and A. Tanguy: “Object-oriented system analysis of
anticipatory systems in week sense”. International Journal of Comput-
ing Anticipatory Systems, vol. 14, pp. 271-285, 2004

[25] A. Tanguy: Implementation and application of a modelling environment
for manufacturing systems. In: Application of Distributed & Graphical
Simulation, Aberdeen (Scotland): King's College, Aberdeen, UK, pp. B-
2-1 – B-2-12, 1993

 A E

C

S M
Q q

 B D

 a b

 C c

