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Abstract—The present paper is oriented to classification and 
application of agent technique in simulation of anticipatory systems, 
namely those that use simulation models for the aid of anticipation. 
The main ideas root in the fact that the best way for description of 
computer simulation models is the technique of describing the simu-
lated system itself (and the translation into the computer code is pro-
vided as automatic), and that the anticipation itself is often nested.  

Keywords—Agents, Anticipatory systems, Discrete event 
simulation, Simula, Taxonomy.  

I. PROBLEMS IN PROGRAMMING OF COMPUTER SIMULATION
MODELS AND THEIR SOLUTION

OMPUTER Simulation is the best (and may be said the 
unique) technique for exact studying of the complex 

dynamic systems, i.e. for the complex systems that are viewed 
to change their state during a Newtonian (non-relativistic) 
time flow. For studying dynamic systems that are not 
complex, simulation is a very expensive (therefore unfitting) 
technique. 

Simulation is based on experimenting with the model [1]. In 
order to reflect the causality relations during the experiment-
ing, the model is demanded to satisfy the following condition: 

When events E1 and E2 coming in the model, respectively 
reflect events 1 and 2 coming in the modeled system, and 
when 1 occurs later than 2, then E2 cannot occur later than 
E1 in the model. In such a case, E1 usually comes later then 
E2, but it is possible that both the events come at the same 
time (it happens namely when the model is rough, but even 
such models are of use).  

The reality of simulation is that the complex systems should 
be mapped to complex computer models with intricate beha-
vior in time, which has to be described as algorithms handling 
with tangled structure of a lot of data. Moreover, a small 
change of the simulated system can be frequently discovered 
during the application of simulation; although such a change 
could be described by a simple sentence, the corresponding 
modification of the computer model is often so large that it is 
comparable with programming a new model from scratch.  

In order to solve such problems concerning the program-
ming of simulation models, an attempt was accepted and  
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elaborated in two ways, which will be shortly described in the 
next lines; the attempt can be characterized so that instead for-
cing the author of simulation model M to describe what should 
happen in the computer C when M exists and operates inside 
C, the author should describe the simulated system and such a 
description should be automatically translated into the 
computer code realizing M. In the present paper, the attempt 
will be identified as . The last fifty years of computer 
simulation showed an enormous help of it.  

The first elaboration of the attempt consists in simulation 
programming languages (shortly simulation languages).
Each of them is oriented to a certain class of dynamic systems 
that could be well, promptly and without obstacles described 
is it. During the last 50 years, many tens of simulation 
languages were designed, correspondingly to many tens of 
classes of dynamic systems that attracted attention of the 
simulationists. 

The translation of the text in a simulation language into the 
corresponding computer code is a very knotty process, as it 
should well handle all texts in the simulation language. Imple-
menting it in a form of a compiler is a difficult challenge even 
for the high level programmers; they are not at disposal, while 
new classes of systems, which demand their own simulation 
languages, arise. Already in the sixties of the XX century, this 
situation stimulated the elaboration of a special technique of 
representation  of concepts, carried by programming language 
SIMULA [3]-[5]. 

Many years after, certain ideas existing in SIMULA were 
followed by the world professional community under title 
object-oriented programming (shortly OOP) and stepwise re-
flected in other programming languages like SmallTalk, C++, 
Eifel, or Java. The ideas were  

(1) representation of general concepts (commonly under 
name class) with  

(2) an absolute freedom to generate any number of their 
instances to represent individuals carrying the contents of the 
classes, and with  

(3) an absolute freedom to specialize such classes to their 
subclasses to represent concepts with a richer content,  

(4) the content of the classes consists in their attributes (re-
presenting “properties”) and methods (algorithms, 
representing “abilities”), so that 

(5) every instance of a class carries all attributes introduced 
for the class, and is able to perform any method introduced for 
the class, when it is demanded to do that, and that 

(6)  the specialization of a class consists in adding new 
attributes and new methods and  
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(7) giving new contents to methods that have been intro-
duced for the class, 

(8) values of attributes two different instances of the same 
class may differ but the name of the attributes of both the in-
stances must correspond. 

The event when an instance N is demanding an instance K
to perform method M is commonly called a message sent by 
sender N to addressee K, having selector F. A message can 
have parameters. The methods the contents of which be 
changed in the subclasses (see (7)), are called virtual. If such 
a method F is the selector in a message the addressee itself 
determines the way, according which the reaction to the 
message will be performed. If F is not virtual then the way is 
uniquely determined by the sender. 

Although the mentioned ideas rooted in the lack of the 
simulation languages they were already in [3] presented as 
applicable in programming anywhere. The next development 
confirmed that so strongly, that some years later the world 
professional community forgot the simulation stimulus for 
OOP. 

II. LIFE RULES

One of the most important sources of the systems complexi-
ty is that they have many elements which behave more or less 
autonomously and when they get in suitable states they may 
interact. Viewing the system (and the corresponding model) 
globally, the sequence of such interactions seems to be 
chaotic; viewing an individual element, its interactions are 
recognized as regular; but the stimuli for them, coming from 
the outside of the element, seem to appear as chaotic. 

The authors of the simulation languages were aware of that 
phenomenon already at the beginning of the sixties of the last 
century. Into some simulation languages, they incorporated 
certain ability, later called life rules: an element could be con-
nected with an algorithm that could modify its state at one side 
and react to the states of other elements at the other side. So 
called scheduling statements were at disposal in description 
of the life rules, enabling switching among life rules of 
different elements: while the life rules of an element A control 
the computation belonging to the model their stream could 
come to a scheduling statement and devolve the control of 
computation on another element. Later on, an element can 
devolve the control of the computation on A, which thus 
“actively” goes on in his life according to the rules that follow 
after the scheduling statement.  

An example of the A’s scheduling statement is “wait until 
the simulated time increases to a certain value q”; while the 
time is increasing life rules of other elements can influence the 
computing, and when the time accesses q the control of com-
puting is switched to the life rules of A. So a parallel develop-
ment of more elements can be modeled at a monoprocessor 
computer; in principle, that modeling is deterministic, there-
fore can be reproduced.  

The first and most popular simulation language that offered 
the life rules was GPSS [6] (applied even at the present days 

namely in the United Sates [7]). Later, the authors of 
SIMULA offered to describe life rules for any class C so that 

(a) any instance of C should behave according them, 
(b) any subclass D of C accepts the rules of C as its owns 

and an can enrich them by the rules introduced in the 
formulation of D,

(c) the scheduling statements were introduced as special 
cases of sequencing procedures, the semantics of which being 
independent of simulated time. 

III. AGENTS

The technique of simulation led to see two sorts of autono-
mous subjects, namely those recognized in the physical world 
and those mapping them in simulation models. In [8], term w-
agents was introduced for the first sort and term c-agents for 
the second one. Simulation practice and model programming 
demonstrates many structural similarities between the corre-
sponding pairs of a w-agent and the c-agent that models it, 
among that more or less autonomy appears. 

The ideas of OOP, commonly accepted by the world profes-
sional community, did not respect the life rules that have 
existed since the sixties and that have been included into the 
first OOP language SIMULA. During many years after 
SIMULA, the following  OOP languages (like SmallTalk or 
C++) offered only formulating some rules applicable during 
the instance generation. No switching is possible and therefore 
speaking on life rules would be rather illogic – for those 
languages the life of objects would be a life of ephemeron. 

But the parallel dynamics does exist and could be watched, 
either (outside of simulation) at the real world phenomena, or 
(independently of simulation) inside the parallel processes of 
computer systems. Expressing such a dynamic led to the term 
agent, which could be at hand sometimes as w-agent, some-
times as c-agent. In the scientific literature, agent is not under-
stood in a unique and clear form; some properties of agent are 
demanded (like autonomous existing and operating, mobility, 
reactivity, environment understanding etc.), but these proper-
ties are not exactly formulated and never classified whether 
necessary or sufficient. 

Let us rest at the opinion that certain autonomy is sufficient 
to characterize agent. A certain proof of it is [9], appearing in 
a highly professional conference proceedings oriented to 
agents in simulation – the model presented in the paper is fully 
based on the simulation language GPSS mentioned above (see 
the end of part 2). 

IV. SIMULATING AND SUBORDINATED AGENTS

Therefore the c-agents are indeed agents with autonomous 
dynamics. The essential component of OOP, namely reactions 
to the messages, causes them to have another ability 
frequently demanded for the agents, namely reactivity; note 
that that is “more intelligent” in case the selector of a message 
is virtual.  Nevertheless, the experts studying agents 
introduced term reactive agent as an opposite one to the term 
intelligent agent: the first should be much more primitive in 
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its reactivity than the last. In the next section, we will study 
the attempts to distinguishing intelligent agent from the poor 
reactive (i.e. really not intelligent) agents. But for that purpose 
we need to introduce two concepts, which will be done in this 
section. 

A simulation model itself can be an agent. If it is so we will 
call it simulating agent. The attempt  implies that the simu-
lating agents are often viewed as communities of c-agents that 
form it. Let them be called subordinated agents, as they are 
subordinated to their community. In the terminology related to 
the agents, such subordinated agents are delegated by the cor-
responding simulating agent. 

Fig. 1 presents an illustration. One can see that there is no 
barrier between the community C and the simulating agent 
itself, and in practice there is often no difference between the 
community and the simulating agent. 

Sometimes – namely in conventional simulation studies – 
using the term simulating agents can be hammy and function-
less. But in some sophisticated simulation studies (e.g. [10]-
[12]), the simulating agents figure really as agents, they are 
autonomous (among other, each of them has its own simulated 
time) and reactive (better – more or less intelligent), and they 
form a community (note that they figure as simulation models 
contemporarily existing in a simulation study). 

Note that the concept of subordinated agent can be generali-
zed to w-agent too: the components of any (material) system, 
which we see as autonomously behaving, can be viewed as w-
agents that are subordinated to their community, i.e. to the 
system S where they exist. A secure test to confirm that such 
elements are really subordinated agents consists in that such 
elements could be mapped to agents subordinated to the model 
of S in case S is simulated. 

Fig. 1 Simulating agent SIM and community C of 7 subordinated  
c-agents. They map the w-agents forming a simulated system S. With 
them, SIM represents a simulation model of S. The short double-side 

arrow illustrates that the C can be matched with SIM

V. INTELLIGENT SIMULATING AGENTS

As it was mentioned at the previous section, term 
intelligent agent is used as opposing to term reactive agent. It 

may be said that intelligent agents perform a certain 
processing  of the information that they have got and that 
they view as essential for the form o the reaction to a message. 
The adjective intelligent should express that  is supposed to 
model something near to the mental processes typical for 
humans. The specialists relate  either to some learning or to 
some deduction that could be expressed in the terms of 
predicate calculus of the first order or in fuzzy logic.  

Surprisingly, almost nobody discovered that humans often 
make something which could be called mental simulation, i.e. 
something that resembles computer simulation but is perform-
ed in a human imagination controlled by reason. One often de-
cides so that he imagines future steps what to do, recognizes 
the causal relations among them and then “sees in his mental 
sight” possible consequences, and possibly makes it several 
times in order to recognize the consequences of different vari-
ants, then chooses the variant with the best consequences and 
decides to do according to it. Naturally the mental abilities of 
humans are poor for that, and we can watch that it was just si-
mulation (so called “on line one”) that had to replace the 
mentioned feeble human thinking process by a much more 
powerful tool. 

An element of a real system that behaves in such a manner 
can belong to a system that should be simulated. As examples, 
passengers using a system of public transport or walking in a 
crowded environment, drivers in a road transport, or students 
transferring from lecture halls into other ones, or even some 
workers in a production system can serve. 

Fig. 2 Simulated system S contains six w-agents A – E and Q.
Q can simulate (or imagine), using model m that has seven 

subordinated agents 1 – 7. In simulation of S, S melts into 
simulating agent M, and its elements melt into subordinated agents a

– e and q. The boundaries of communities unite with those of 
models. Concerning the double-sided dotted arrow, see section VI 

Such elements are normally subordinated w-agents. When 
the system in that they exist is simulated they are mapped to 
subordinated c-agents. But their ability to perform “mental 

S M
Q q
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simulation” gives them a new quality: in fact they are near to 
be simulating agents and when they are simulated their images 
– subordinated c-agents – become simulating agents.  

In the simulation models of such (real) systems, it is 
suitable to reflect the mentioned imagining processes as 
simulation. Moreover, simulation performed in the described 
manner could inform about the real system behavior in case 
the human decision would be replaced by computer 
simulation, e.g. when control of such a system is fully 
automated. 

So we come to the idea to simulate a system S containing at 
least one simulating element Q that influences S (see Fig. 2). 
Such an element belongs to the community C of the other ele-
ments that form S. In the corresponding model (simulating 
agent) M, the element Q should be mapped as a subordinated 
agent q (because it belongs to the community of subordinated 
agents that reflect the elements of C). At the same time, q
should be considered as simulating agent, because it reflects 
the simulation performed by Q. In [13] and [14] a proof was 
presented that any neglecting this fact (e.g. neglecting that q is 
a simulating agent) is a testimony on bad designer’s profes-
sional level – either M should give bad information on the fu-
ture behavior of S, or simulation performed by Q is useless 
and can be completely removed or replaced by a simpler 
method even in S.

Let the agents that are simulating and subordinated as well, 
be called composed agents.

VI. IMPLEMENTATION OF COMPOSED AGENTS

No reason exists against applying the attempt  in case a 
composed agent A occurs. Describing it, demands a program-
ming tool available, in which it would be possible to describe 
both 

(a) the aspects that make A subordinated, and 
(b) the aspect that make A simulating. 
To be exact, let us note that the description concerns a w-

agent (i.e. a physical computer or a real imagining person) and 
is expected to be considered as the description of the corres-
ponding c-agent, i.e. to the image of A at computer model M.

The aspects sub (a) concern the fact that A exists in a 
certain physical world viewed as a system S in Newtonian 
time, and that in the same world other components of S exist 
and can interact with A. If A were not simulating, a simulation 
language could enable such a description; in case no suitable 
simulation language were at disposal, it would be possible to 
define it, formulating the necessary language tools (classes, 
methods,…) in an OOP language. Naturally, the OOP 
languages like Pascal or C++, which do not allow formulating 
life rules, could make problems but it is not the objective of 
the present paper. 

The aspects sub (b) concern the fact that A carries (or even 
is – see the double-sided dotted arrow in Fig. 2) a simulation 
model m. Relating to S, A has some electronic or neural (or 
mental) components that exist in S in the same manner as A
itself, but A makes an abstraction , namely a sophisticated 

transformation with them, seeing them as carriers of a certain 
abstract phenomenon, namely a model m that reflects some 
system S’ which is more or less similar to S. But there is no 
physical relation between the components of S and those of S’
– if one could formulate such a relation he had to base it on 
the abstraction  (among other, m should be bound to a 
certain fictive time axis that should be different from that 
figuring for M). Evidently, any modeler would like to neglect 
any analysis of such a relation – it is physically based on the 
internal function of the applied compiler which would surely 
be very complicated. (in other words,  to analyze how the 
abstraction roots in the physics of S would be the same as 
analyzing the internal details of M inside the computer – it is 
against the attempt ). 

If A were not a subordinated agent and if it were only a si-
mulating one, a suitable simulation language could be applied 
for describing S’ or – in case of a lack of such a language – an 
OOP language could aid to formulate such a simulation lan-
guage. But the reality is as follows: 

At one hand, A is a subordinated agent with its life rules re-
lated to the time flow of S, while at the other hand, among the 
life rules there is a “simulation phase” of the life, in which the 
description  of S’ should occur. To extract  from the life 
rules of A would be against the principles of , as S’ is always 
influenced by the instantaneous state of A.

Fig. 3 Q’s life rule(s)  containing description  of S’. For 
illustration, an entity X accessible (and/or manipulated) by  is 

presented; it can be used in .

No existing simulation language permits to describe such a 
situation (two time axes are sufficient for making the language 
unable) and similar problems arise in applying OOP. In [8] the 
essential principles of a user-friendly describing of such 
composed agents are presented, having use of the OOP that 
allow formulating life rules and that are block-oriented, too: a 
consequence of the block orientation is the permission to 
formulate classes local in blocks or in other classes. System S’
can be then described as local to some set  of the life rules 
and so its model can be generated by them and the model 
itself can communicate with them.  can contain any life 
rules, i.e. from one of them to all life rules of Q. (see Fig. 3). 

There is a very small number of programming languages 

S’ m
e1          e2 

e6        e7 

e3        e4        e5 
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that have all the three orientations; beside SIMULA, it is 
BETA and may be JAVA.  

VII. CLASSIFICATION OF AGENTS IN SIMULATION

A simple summarizing of the categories of agents occurring 
in simulation is in Fig. 4. Nevertheless, one can go further. Let 
a model handled by a composed agent be called nested model.

Fig. 4 Simple classification of agents occurring in simulation

At first, note that an agent can be sometimes simulating and 
sometimes no. That is important for the subordinated agents, 
which can operate during some time without any model they 
could handle and which can change such models. Such an 
agent may correspond to a simulating computer that is some-
times used for other tasks than simulation and that can change 
its nested models. Such an agent may also reflect a human 
who imagines only sometimes, his imagining concerns 
different thinks and situations, while in the remaining time she 
does not imagine. Note that almost all imagining persons and 
all simulating computers are of that sort. Therefore a 
subordinated agent can sometimes be composed and 
sometimes not, the concept of composed agent is dynamic.  

Into one’s consideration on simulation, it is possible to 
include a w-agent which is a computer that performs two or 
more simulation in multitasking mode (see Fig. 5). The corre-
sponding c-agent should be a composed one which can handle 
several simulation models at the same time. Although such an 
idea could seem rather theoretical, SIMULA allows implem-
enting it and a certain application of it exists [15].  

That leads to introduce the aspect of subordinated agents, 
which will be called size. It is defined as the number of 
models handled by the same agent. Therefore in the preceding 
section the composed agent were those of size=1. Naturally, 
one could generalize the concept of size and view the 
simulating agents that are not composed as composed agents 
of size 0; nevertheless such an idea could be a poor 
mathematical l’art-pour-l’artism. But size is a dynamic value 
and we can have use of that to admit it for any subordinated 
agent so that it can vary from zero to a certain maximal value, 
which informs of the agent’s power.

Let A be a composed agent subordinated to a simulating 
agent M that simulates a system S. Let  be a model nested in 
A.  simulates a system S’ that can be rather similar to S. Then 
A be called reflective agent. That seems to be a habitual case, 
while that of a rather great difference between S and S’ could 
seem a theoretical abstraction. Nevertheless, such cases exist, 
concerning so called fictive simulation or pseudosimulation:
A could simulate a fictitious system in order to solve some 
particular problem. The first applied examples is described in 
[16], a certain early collection is presented in [17]. 

Whether an agent is reflective or not, is a problematic 
question in general, because the words “S’ is rather similar to 
S” are too fuzzy. Fortunately, the reason of the application of 
the nested model can help. But there is another complication: 
an agent of a power greater than two can be reflective in 
relation to one of the models nested in it and not reflective in 
relation to another agent nested in it. Such a case was applied 
and described in [18], where one of the models (far from 
causing reflectivity) simulates a fictitious system for 
computing the shortest path in a labyrinth and the other model 
tests whether using the computed  path will not will not cause 
a deadlock; the last model leads to reflectivity. 

Fig. 5 A similar system S like in Fig. 2, similarly modeled by M; but 
computer Q handles three models ,  and  contemporarily 

Finally, there is another occasion to classify the composed 
agents, which could be called depth. A subordinated agent of 
power zero can be classified as power of depth zero: a model 
is never nested in it. Suppose a simulating agent M is nested in 
a subordinated agent A and suppose among the agents 
subordinated to M is an agent B that is composed. Such a 
situation corresponds to a system S that has element Q that 
simulates a system S’ containing an element q that is 
simulating, too (note that an experimental model of S was 
already implemented and run [19]). In such a case, A be called 
agent of depth two (see Fig. 6). In the “more habitual” case, 
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i.e. if M has no composed subordinated agents, A be classified 
as that of depth one.

Fig. 6 System S like in Fig. 2, similarly modeled by M; but computer 
Q models a system composed of three elements a, b and c, and c
reflects a computer C that simulates a system composed of five 

elements  - 

Evidently, the nesting can be iterated so that q simulates a 
system containing a composed agent etc., and so we can come 
to the depth three etc. Evidently, for an agent A of power two 
or more, the depth can differ when it is watched in relation to 
different agents subordinated to A. Therefore depth could be 
in general expressed by tree of subordination. 

VIII. CONCLUSION 

Nowadays, it is necessary to test the simulation of anticipat-
ory simulating systems as much as possible, in order to get 
new stimuli and to generalize what was already reached. The 
further application studies concern e.g. the hospitals [20-22] 
and the internal logistics in production halls considered as an-
ticipatory systems [23]. Other work that is prepared to follow 
the classification is joining it with some taxonomy introduced 
for the anticipatory systems independently of agents [24]. 
Also French system QNOP, which appeared a good tool for  
simulation of production systems [25], is studied to be 
transformed for to serve for describing composed agents.  
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