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Abstract—Understanding driving behavior is a complicated 

researching topic. To describe accurate speed, flow and density of a 
multiclass users traffic flow, an adequate model is needed. In this 
study, we propose the concept of standard passenger car equivalent 
(SPCE) instead of passenger car equivalent (PCE) to estimate the 
influence of heavy vehicles and slow cars. Traffic cellular automata 
model is employed to calibrate and validate the results. According to 
the simulated results, the SPCE transformations present good 
accuracy.  
 

Keywords—traffic flow, passenger car equivalent, cellular 
automata 

I. INTRODUCTION 

N recent years, the traffic demand in metropolitan areas has 
largely exceeded the vehicular capacity, which induces 

problems of increasing pollution and growing frequency of 
accidents. Traffic flow involves complex phenomena, such as 
acceleration, deceleration, dawdling, lane-changing and 
multiple driving behaviors. Therefore, various models are 
developed to understand and predict traffic flow phenomena so 
as to evaluate and adopt traffic control strategies. Mostly, traffic 
flow models are categorized to macroscopic, mesoscopic and 
microscopic models. Macroscopic models regard the whole 
traffic flow as a continuous medium [1]-[4]. Mesoscopic 
analysis is an intermediate method, which does not distinguish 
individual vehicles, but specifies the behavior of individuals; 
for instance, in probabilistic terms. Microscopic models 
simulate individual behavior of each vehicle. The rapid 
development of computer capacity enhances the studies of 
microscopic models [5]-[9]. Among the models, traffic cellular 
automata (TCA) have been increasingly used in simulations of 
traffic flow on account of simplicity and flexibility of the model 
[5]-[14].  

In CA, a road is represented as a string of cells, which are 
either empty or occupied by exactly one vehicle. Movement 
takes place by propagating along the string of cells. Traffic 
problems in real world involve many aspects, such as geometric 
design, different driving behavior, different types of vehicles, 
weather, lane usage, network topology and so on. There are 
diverse research topics of traffic flow. Generally, multilane 
multiclass traffic is a common situation in the real world. 
Multilane traffic involves acceleration, deceleration, 
lane-changing, and passing of vehicles.  
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Multilane traffic is not the only dilemma; there are different 

types of vehicles and driving behavior on a road. Each type of 
vehicle and driving behavior has its own acceleration, 
deceleration, lane-changing and passing characteristics. To 
improve the performance of traffic controls, describing and 
predicting the influence of each type of user is necessary. 
Therefore, this study tries to develop a dynamic multilane 
multiclass macroscopic traffic flow model and its numerical 
simulation. Although there are a large number of studies about 
the traffic CA rules, only a few of them deal with a systematic 
analytical description [15]-[16]. To provide dynamic traffic 
information on the roads, rapid computation is necessary. 
Therefore, how to simulate traffic flow fast and accurately is an 
importation issue of traffic related researches.  

In TCA, different driving behaviors are described by the 
setting of parameters, such as maximum speed, dawdling 
probability, lane-changing probability and so on. Different 
types of vehicles, such as trucks, cars and motorcycles, are 
described by different sizes of particles [3]-[4] or are 
transformed to the same type by passenger car equivalent (PCE) 
[17]. Of course, different types of vehicles may present different 
moving characteristics. Passenger car equivalent is a metric 
used to assess traffic-flow rate on a highway. A passenger car 
equivalent is essentially the impact that a mode of transport has 
on traffic variables (such as headway, speed, density) compared 
to a single car. Typically, the PCE of a heavy vehicle (trucks or 
buses) is 2 and the PCE of a motorcycle is 1/3. Transforming 
different types of vehicles to the same type by PCE is the 
simplest and most used method. Using this method, the value of 
PCE plays an important role because the estimation of density 
and flow depends on the value of PCE. In Taiwan, the PCE of 
motorcycle is not always equal to 1/3. It varies from 0.2 to 0.5 
according to different traffic conditions. Therefore, using PCE 
to transform different types of vehicles to the same type should 
be carefully. According to the results of Lo and Chu [18], PCE 
of heavy vehicles is a function of density, if the driving behavior 
of heavy vehicles is the same as it of passenger cars. It is not so 
realistic because the acceleration, deceleration and maximal 
speed of heavy vehicles and passenger cars are quite different. 
Therefore, a behavior-based PCE method for different types of 
vehicles and different driving behavior is proposed in this study. 
The paper is organized as follows. In Sec. 2, an introduction of 
traffic CA models are reviewed briefly. Then, the results of 
simulations and equivalent transformation are presented in 
Sec.3. Finally, Sec. 4 concludes with a short summary and 
discussion of our findings. 
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II.  HETEROGENEOUS TRAFFIC FLOW MODELING 

Nagel and Schreckenberg propose the first TCA model 
which is named the NaSch model [8]. The NaSch model is 
implemented by the following four steps: 
(Step 1) Acceleration. If time step is less than total simulation 

time, let each vehicle with speed, which is smaller than 
its maximum speed vmax, accelerate to a higher speed, 
i.e. v = min (vmax, v+1). 

(Step 2) Deceleration. If the speed is greater than the distance 
gap d to the preceding vehicle, the vehicle will 
decelerate: v = min (v, d). 

(Step 3) Dawdling. With slow-down probability p, the speed of 
a vehicle decreases spontaneously: v = max (v–1,0). 

(Step 4) Propagation. Let each vehicle move forward v cells and 
let time step increase one. Then, repeat the procedure: 
acceleration, deceleration, dawdling and propagation. 

In multi-lane traffic, overtaking maneuver uses an extended 
neighborhood behind and ahead the vehicle on both lanes. 
Technically, one can say that there must be a gap of size d−

+1+d+. The label + (−) belongs to the gap on the target lane in 
front of (behind) the vehicle that wants to change lanes. In the 
following we characterize the security criterion (no accident 
condition) by the boundaries [−d− , d+] of the required gap on 
the target lane relative to the current position of the vehicle 
considered for changing lanes. If one vehicle has enough gaps to 
change lane, it still has a probability pcl to keep in the same lane 
so as to avoid the ping-pong phenomenon. The overtaking step 
is inserted in front of the acceleration step. 

Multi-class users traffic are also been studied. Slow-to-start 
rules are mostly studied. Takayasu and Takayasu (the TT model 
or the T2 model) [11] suggested a CA model with a slow-to-start 
rule firstly. According to the TT model, a standing vehicle (i.e., 
a vehicle with the instantaneous speed v = 0) with exactly one 
empty cell in front accelerates with probability qt = 1 – pt, while 
all other vehicles accelerate deterministically. The other steps of 
the update rule (Step2 – Step4) of the NaSch model are kept 
unchanged. The TT model reduces to the NaSch model in the 
limit pt = 0.  

Another slow-to-start CA model is the BJH model proposed 
by Benjamin, Johnson and Hui [12]. Their slow-to-start rule is 
different to the TT model. According to the BJH model, the 
vehicles which had to brake due to the next vehicle ahead will 
move on the next opportunity only with probability 1 - ps. Step 1, 
3, 4 of are the same as the NaSch model. An extra step (Step 1.5) 
is introduced and Step 2 is modified as follows: 
(Step 1.5) Slow-to-start. If flag = 1, then let v = 0 with 

probability ps. 
(Step 2’) Blockage. v = min (v, d) and, then, flag = 1 if v = 0, else 

flag = 0. 
Here flag is a label distinguishing vehicles which have to 

obey the slow-to-start rule (flag = 1) from those which do not 
have to (flag = 0). Obviously, for ps = 0 the above rules reduce 
to the NaSch model. Velocity dependent randomization (VDR 
model) is a generalized BJH model, which considers a larger 
slow-down probability while the velocity is zero in the last time 

step. Fukui and Ishibashi [14] proposed a high speed CA model, 
which is so-called FI model. The FI model considers that a 
driver would not dawdle unless he is driving at the maximum 
speed. 

Lo and Chu [18] find that if heavy vehicles and passenger 
cars with different behaviors are simulated first then 
transforming the results to passenger car-based density or 
occupancy, the speed and flow are unreasonable. The reason is 
that the simulated speed of TCA is obtained by the stochastic 
process, which depends on the number of vehicles and dawdling 
probability. Since one truck is equal to two cars, the number of 
trucks is only a half of the number of cars under a given density. 
Thus, unreasonably high speed and flow are obtained. To 
correct the unreasonable results, they considered the PCE of 
truck is a function of density. By the PCE function, the 
multiple-type vehicles traffic flow is simulated successfully. 

III.  SIMULATIONS AND EQUIVALENT TRANSFORMATION 

In traffic cellular automata simulation, the length of cell is 
chosen according to the real world. In Taiwan, the upper speed 
limit of the No. 3 National Freeway is 110 km/h (kilometer per 
hour). Therefore, the length of a cell is considered as 7 m, the 
maximum speed vmax is 5 (i.e., 126.2 km/hr). The CA results are 
obtained from simulation on a chain of 1,000 sites, which is 7 
km. A periodic boundary condition is assumed so that both the 
total number and density are conserved at each simulated point. 
For each initial configuration of vehicles, results are obtained by 
averaging over 10,000 time steps after the first 10,000 steps, so 
that the long-time limit is approached. This criterion was found 
to be sufficient to guarantee a steady-state being reached. The 
density considered herein is dimensionless density, which is 
defined as k’ = k/kj, where k is the density and kj is the jam 
density. In this study, kj = 142 veh/km (vehicle per kilometer) 
per lane. Figures 1-3 show the simulation results of heavy 
vehicles and passenger cars by the NaSch model. Generally, the 
average length of a car is about 4 to 5 meters and the average 
length of a truck or a bus is about 7 to 10 meters. Therefore, a 
car occupies one cell and a heavy vehicle occupies two cells in 
our simulation. 

Lo and Chu [18] propose that PCE of heavy vehicles is a 
function of traffic density. They show that Eq. (1) is a good 
approximation of PCE for single-lane and two-lane traffic under 
vmax=5 and p=0.25. In traffic flow theory, speed is a function of 
density. Therefore, the basic assumption of their study is that if 
the average speeds of traffic flow on different roads are the same, 
the densities of the roads must be the same.  

( ) 98.0'028.1' += kkPCE .                                                                      (1) 

In this study, we follow the assumption and examine Eq. (1) by 
further combination of parameters. Figure 4 illustrates the PCE 
of heavy vehicle under nine combinations of simulation 
coefficients, that is, combinations of vmax=3, 4, 5 and p=0.25, 
0.5, 0.75. PCE varies largely when density is low. Therefore, we 
omitted the data, which density is smaller than 0.1. The PCE 
value does not influence traffic flow much when density is 
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smaller than 0.1 because in that regime traffic flow is under 
free-flow situation. The PCE function calibrated by simulation 
results of vmax=3, 4, 5 and p=0.25, 0.5, 0.75 is given by 

( ) 991.0'0162.1' += kkPCE ,                                                                    (2) 

which is close to Eq. (1). The R-square value of Eq. (2) is 
0.9853. Table I gives the mean absolute percentage error 
(MAPE) of Eq. (2). All of the MAPE values are smaller than 6%, 
which are highly accurate estimation. According to the results, 
we can conclude that Eq. (2) is a good equivalent transformation 
of heavy vehicles to passenger cars or single-lane and two-lane 
traffic under all combination of simulation parameters of the 
NaSch model. However, the equation can only transform heavy 
vehicles to passenger cars with the same driving behavior. 
Therefore, we propose a concept of standard passenger car 
equivalent (SPCE) to transform heavy vehicles to passenger 
cars. Furthermore, the SPCE can be employed to estimate the 
effect of slow passenger cars because the influence of a slow car 
on traffic flow is more than the influence of a standard car. If 
there are slow cars in the traffic flow, the density should be 
larger. In this study, the fastest car is considered as the standard 
passenger car and its SPCE is set to be one. The SPCE of slow 
car will be larger than one. Two transformation procedures are 
considered. The first one is transforming influence of dawdling 
probability first then transforming influence of maximum speed. 
For example, transforming a car with vmax=3 and p=0.5 to 
standard car, whose vmax=5 and p=0.25. According to the 
procedure, we transform the slow car to vmax=3 and p=0.25 
firstly and then transform it to vmax=5 and p=0.25. The second 
procedure is transforming influence of maximum speed first 
then transforming influence of dawdling probability. According 
to the procedure, we transform the slow car to vmax=5 and p=0.5 
firstly and then transform it to vmax=5 and p=0.25.Figure 5 
illustrates the SPCE-density relationship of different dawdling 
probabilities. When density is small, SPCE reduces largely. The 
SPCE of p=0.75 is quite different to that of the other two. Figure 
6 illustrates the SPCE-density relationship of different 
maximum speeds. When density is larger than 0.2, SPCE has a 
steady trend.  
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(a)                                                (b) 

Fig. 1 Speed-density relationship of (a) heavy vehicles and (b) 
passenger cars under vmax=3 and different dawdling probabilities 
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(a)                                                (b) 

Fig. 2 Speed-density relationship of (a) heavy vehicles and (b) 
passenger cars under vmax=4 and different dawdling probabilities 
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(a)                                                (b) 

Fig. 3 Speed-density relationship of (a) heavy vehicles and (b) 
passenger cars under vmax=5 and different dawdling probabilities 
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Fig. 4 PCE of heavy vehicle and density relationship for combination 

of vmax=3, 4, 5 and p=0.25, 0.5, 0.75 
 

According to the results, we have two regression equations. 
Equation (3) is the transformation of p=0.5 to p=0.25 and Eq. (4) 
is the transformation of p=0.75 to p=0.25. The R-square values 
of Eqs (3) and (4) are 0.8779 and 0.9979, respectively. Let 
SPCEv,p be the SPCE value of a car with speed is v and dawdling 

probability p. SPCEv,p= SPCEp × SPCEv, where SPCEp is the 

standard passenger car equivalent of dawdling probability p and 
SPCEv is the standard passenger car equivalent of maximum 
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speed v. A general form of SPCEp is given by Eq. (5), where a(p) 
and b(p) are p dependent coefficients. In this study, we can only 
determine a(p) and b(p) by two data points. More simulations 
are left for further studies.  

( ) 6722.1'705.0'5.0 +−= kkSPCE .                                                          (3) 

( ) 4044.3'3554.2'75.0 +−= kkSPCE .                                                      (4) 

( ) ( ) ( )pbkpakSPCEp += '' .                                                        (5) 

 
TABLE I 

MAPE VALUE OF ACTUAL PCE AND ESTIMATED VALUE OF EQ. (2) 
vmax p MAPE (%) 
3 0.25 5.12 

0.5 3.41 
0.75 3.07 

4 0.25 2.30 
0.5 1.92 
0.75 1.95 

5 0.25 2.97 
0.5 1.74 
0.75 1.45 
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(a)                                                (b) 

Fig. 5 SPCE-density relationship of passenger cars under (a) vmax=3 
and (b) vmax=4 with different dawdling probabilities 

 

density
0.0 0.2 0.4 0.6 0.8 1.0

S
P

C
E

0

2

4

6

8

10

vmax=5

vmax=4

vmax=3

 
density

0.0 0.2 0.4 0.6 0.8 1.0

S
P

C
E

0

2

4

6

8

10

12

vmax=5

vmax=4

vmax=3

 
(a)                                                (b) 

Fig. 6 SPCE-density relationship of (a) p=0.5 and (b) p=0.75 under 
different maximum speed 

 
Finally, the transformations of maximum speed are given by 

Eqs (6) – (7). kc is the minimum k’, which makes SPCE(k’) = 1. 
Also, a general form of SPCEv is given by Eq. (8), where c(v) 
and d(v) are v dependent coefficients. The general form of 

SPCEv,p is shown as Eq. (9). Table II shows the MAPE value of 
Eq. (9). Only MAPE of SPCE3,0.25 and SPCE3,0.5 are larger than 
10%, the others are smaller than 10%. The results show that our 
equivalent transformations present good accuracy. By Eqs (2) 
and (9), we can find the equivalent value of heavy vehicles with 
different driving behavior so as to estimate their influence on 
the road accurately.  
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TABLE II 

MAPE VALUE OF ACTUAL PCE AND ESTIMATED VALUE OF EQ. (9) 
vmax p MAPE (%) 
3 0.25 15.70 

0.5 10.15 
0.75 8.78 

4 0.25 6.21 
0.5 4.76 
0.75 3.23 

5 0.5 7.53 
0.75 2.34 

 

IV.  CONCLUSION 

In this study, a standard passenger car equivalent (SPCE) is 
proposed to estimate the influence of heavy vehicles and slow 
cars on the road. According to the results, our estimation 
presents a high accuracy of passenger car equivalent. More 
simulations are left for further researches so as to make our 
work more compact and robust. 
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