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Abstract—This paper considers a robust recovery of sparse fre-
quencies from partial phase-only measurements. With the proposed
method, sparse frequencies can be reconstructed, which makes full
use of the sparse distribution in the Fourier representation of the
complex-valued time signal. Simulation experiments illustrate the
proposed method’s advantages over conventional methods in both
noiseless and additive white Gaussian noise cases.
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I. INTRODUCTION

N general, the frequency components of a complex signal

generally cannot be recovered from just the magnitude or
phase alone. But it can be reconstructed from partial knowl-
edge of the input signal under certain conditions. For instance,
when the signal is band limited, it can be recovered using
extrapolation from the limited number of known samples. Be-
sides, under the constraint of minimum phase, the magnitudes
and phases of frequency components are related by the Hilbert
transform. They are no longer independent with each other.
Signal reconstruction using phase-only measurements has been
studied extensively [1]-[5],[10].

In [1]-[2], two algorithms are proposed to reconstruct a real
discrete-time signal within a scale factor from the phase of its
Fourier transform. However, those methods are not suitable for
complex-value signal. Moreover, the issue of extracting signal
frequencies from phase-only data has also been investigated
in [3]. But all of the methods are restricted in the number
of frequencies. As the extension of previous works (i.e., [1]-
[3]), Lee et al. have addressed the problem of extracting
multiple frequencies within a scale factor from phase-only data
of a complex discrete-time signal [4]. However, given partial
phase-only data, these methods of [4] are still invalid. Recent-
ly, Liu et al. have investigated sparse support recovery with
phase-only measurements by exploiting compressive sensing
(CS) technique in [5] (The details of CS can refer to [6]-[9]).
As it only exploits the phase components of the measurements
in the constraint, it can avoid the performance deterioration by
corrupted amplitude components. However, they don’t use the
amplitude information and consider the problem of spectrum
estimation. Different from previous literature, we address the
problem of extracting multiple frequencies from compressive
phase-only data in [10]. The frequency components of the
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complex signal reconstructed from compressive phase-only
data are obtained by solving an optimization problem, but it
is only suitable for noiseless case. Although an iterative hard
threshold algorithm is proposed for noisy case, it cannot obtain
acceptable performance with single snapshot.

The contributions of the paper can be summarized as
follows: Different from [4] to solve an overdetermined system,
sparse frequencies can be extracted from partial phase-only
data. It is recovered by solving an underdetermined system
with sparsity constraint. Besides, also different from our
previous work in [10], the proposed optimization method can
also work in noisy cases with single snapshot.

The following notations are used throughout the paper.
Matrices and vectors are represented by bold uppercase and
bold lowercase characters, respectively. Vectors are by default
in column orientation, whereas Re{-} and Im{-} return real
and imaginary parts of the input, respectively. Xy, is (k,)-th
element of the matrix X. |- | and || - ||,, stand for magnitude
operator and [,-norm respectively. Ry is the set (0,00).
[|X||F is the Frobenius norm of the matrix X. diag{-} is
diagonalization operator produces a diagonal matrix from a
column vector. Symbol < a,b > means inner production
between a and b (i.e., a’b). X(I,:) is [-th row of the matrix
X.

II. PROBLEM FORMULATION

From the M-point discrete Fourier transform (DFT), the

finite-length signal x(n) satisfies the following equation
] M-t

x(n) - M ;) X(wk)ejmﬂlk/]wﬂl = 07 17 e a]\/j -1 (1)
where wy = 27k/M. X(wg) is the DFT of z(n), k =
0,1,--- ,M — 1. Meanwhile, written in polar form, x(n) is
represented in terms of its magnitude and phase as

a(n) = |a(n)] eV @

where |z(n)| and ¢, (n) are the magnitude and phase of z(n),
respectively. From equations (1) and (2), we have

M-1
|z(n)] eida(n) _ i Z X(wk)ej2ﬂ'nk/]\4 3)
k=0
And thus
| M1 ‘
[(n)] = 57 D X(wp)ed BT/ =0200) @
k=0

Up to here, equation (4) is the problem formulation we
interested in the paper. Our problem is how to reconstruct
X (wg) only using the phase data ¢, (n).
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III. PROBLEM SOLUTION

For the above equation (4), one possible approach for recov-
ery from the phase-only measurements involves the solution
of a set of linear equations. The frequency estimation problem
can be transformed to solve a set of linear equations from the
phase samples ¢, (n). Frequencies of signal can be recovered
from phase-only data by solving [4]:

min || Im{Px}||2
Re{x(0)} = a, and a > 0

st. ¢ x(k)=0, fork=N,N+1,--- ,M—1
xe oM

where Pr,, = 7 exp(j(2mkn/M — ¢y(n))) and k,n =
0,1,....M — 1, M > 2N — 1. P € CM*M x =
[X (wo), X (w1),--+, X(war—1)]T. Frequency components can
also be extracted from phase-only data with an iterative
algorithm in [4]. We regard it as Lee’s method.

If we just obtain Q(Q) < M) random phase-only mea-
surements from ¢,(n) in (4), frequency components cannot
be reconstructed with (5). However, noted that frequencies
x are sparse, motivated by (4) and [10], a natural strategy
for recovering x is to search object function with [p-norm
minimize subject to constraints as follows,

&)

min[xl
. [| Im{P'x}||2 <o (6)
" | Re{P'x}>ce, x € CM

where e € RQ, and matrix P/ € C9*M i a matrix whose
rows are picked randomly from matrix P in (5). For extracting
multiple frequencies from partial phase-only data, the am-
plitude of x is vague. Therefore, it is insensitive to choose
parameter <. It just requires a positive scale (i.e., € € Ry).
Similarly, it requires that the entries in e are positive because
of the amplitude ambiguity of x. Without loss of generality,
we set e = [1,1,---,1]7. o is the maximum acceptable error
and o > 0.

However, it is an NP-hard problem to solve (6). In standard
CS, the objective function [p-norm minimization can be re-
placed by !/;-norm minimization if sensing matrix has restrict-
ed isometry property (RIP). As the standard constraints in CS
literature are different from those in (6), RIP of sensing matrix
with the constraints in (6) doesn’t imply constrained /p-norm
minimization is equivalent to its corresponding constrained [; -
norm minimization, but standard CS relaxation strategy can
give us an important insight. Similarly with the analysis of
standard CS, we illustrate the matrix P’ has RIP as follows.

Lemma 1: [11] Considering the M x M DFT matrix
W with entries Wy, = \/% exp{—j2rkn/M} k,n €
{0,1,---, M —1}, the matrix W’ whose rows are independent
picked from matrix W (Algebraically, we can view W' as a
random row sub-matrix of the DFT matrix W), if the number
of rows Q satisfies Q > cd~2K log(M)log®(K)} with proba-
bility at least 1 —2M exp(—2-2) for all [|x||o < K, we have
(1 —=0)||x|l2 < [[W'x||2 < (1 4 6)]|x||2. Here ¢ > 0 is an
absolute constant which only depends on K, 0 < 6 < 1.

Theorem 1: Assume P € CM*M js DFT matrix, i.e.,
Pkn = ﬁeXp(jZWkTL/AI - J%(”)), kan € {07 17 )
M — 1}, and suppose matrix P’ is random matrix whose
rows are independent picked from matrix P. If the number
of rows Q satisfies Q > ¢~ 2K log(M)log®(K)}, for all
|Ix||o < K with probability at least 1 — 2] exp(—<2-2), we
have (1 —9)||x||2 < ||P'x|| < (14 9)||x]||2. Here ¢ > 0 is an
absolute constant which only depends on K, 0 < ¢ < 1.

Proof: We set h = P'x and s = W'x, and denote h =
[ho, ha,- -+ ,hg-1]T and s = [sg,s1, -+ ,80-1]T, Tespec-
tively. Without loss of generality, denoting 0-th component’s
index in h is produced by < P(&p,:),x >, 1-th component’s
index in h is produced by < P(&1,:),x >, --+,(Q — 1)-th
component’s index in h is produced by < P(£p_1,:),x >.
Similarly, denoting 0-th component’s index in s is produced
by < W (&p,:),x >, 1-th component’s index in s is produced
by < W(&,:),x >, ---,(Q — 1)-th component’s index in s
is produced by < W ({g_1,:),x >, respectively. For any [
(l=1,2,---,Q — 1), we have

h = |(P'x),* = |[(Px)e,[* =

M—1 9 2
= ; exp (j¢a:(§l> - ;rélt) Ty
M—1 2
- | ewtoanen (-5 )al
t=0
= et |
= tz:; exp <7 Ju_l > Tt

= [(Wx)g, [? = [(W'x)|* = s

According to (7) and Lemma 1, the Theorem 1 is proved. R

Motivated by Theorem I together with [;-norm minimiza-
tion relaxation in standard CS, we employ a relaxed version
to recover sparse frequencies as follows.

wmin x|
. || Im{P'x}||2 <o 3
Re{P'x}>ce, x € CM

where e € RY, P’ € C2*M_ Since (8) is a convex
programming problem, the unique global minimum of the
programming can be obtained. The simulated experiments in
section IV will illustrate the validity of (8). For simplification,
we regard (8) as phase-only frequency estimation algorithm
(POFEA). In the following, we address the values of
o in both noiseless and additive white Gaussian noise
(AWGN) cases. Obviously, 0 = 0 for noiseless case.
For noisy case, the received phase data in matrix P’ is
perturbed by noise. D’ is the perturbation matrix and D’ =
diag{[exp(—j¢!,(0)), exp(—jd (1), exp(—jdo(@  —
1))]}. We have

Im{D'P'x} = Im{D'{Re{P'x} + jIm{P'x}}}
= Im{{Re{D’} + j Im{D’}} Re{P’'x}} 9
=Im{D'} Re{P'x} = Im{D’}y
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TABLE I: probability of successful recovery in noiseless case
with different frequencies number

frequency number | number of measurements | Lee’s method | POFEA
Q=43 98.4% 100%

K=2 Q=60 99.6% 100%

Q=717 100% 100%

Q=43 34% 100%

K4 Q=60 70% 100%

Q=77 91% 100%

Q=94 98% 100%

Q=I11 98.8% 100%

Q=128 100% 100%

=
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Fig. 1: PSR versus number of phase-only measurements (upper
subplot SNR=5dB, bottom subplot SNR=10dB)

In (9), P’ =Re{P'} + jIm{P’}, D’ = Re{ D'} + jIm{D'},
Re{P’x} =y and Im{ P’'x} = 0 are exploited, which yields

[ Tm{D}yll> < [[Tm{D}|rllyllr

= \/Zf;ol Sin2(¢zl(n))||y“F < Zf;ol 622 (n)|lyl|r
= Villyll2/VSNR

(10)
In (10), we define p £ Zf’f;ol »2(n) and using signal-to-
noise ratio definition SNR £ Z?;OI Ig(n)/zgz_ol ¢;2(n)
Furthermore, considering amplitude ambiguity of y, without
loss of generality, we assume y is a normalized vector (i.e.,
[lyll2 = 1). Thus we set ¢ = /u/SNR. Besides, given
llyll2=1and e = [1,1,---,1]T, parameter ¢ can be chosen
from the interval (0, Q~'/2].

IV. NUMERICAL EXAMPLES

In this section, we present two examples to illustrate the
performance improvement of the proposed method. We com-
pare the probability of success recovery (PSR) of POFEA
with Lee’s method. The one-dimensional complex sequence
x(n) of length M = 128 and N = 64. In POFEA, we take
€= % Suppose that spectrum of complex signals z(n) are
restricted in {x(0),x(1),--- ,x(N — 1)}, whose frequencies
are 0 for k= N,N+1,--- ;M —1, and Re{x(0)} = 1. Each
magnitudes of complex exponentials in frequency domain are
100. In simulation, 500 independent Monte Carlo experiments
are taken and all frequencies are assumed at the discrete grids.

100 = e

- - -
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98 1

96 —&— POFEA i
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Fig. 2: PSR versus number of phase-only measurements (upper
subplot SNR=15dB, bottom subplot SNR=20dB)
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Fig. 3: PSR versus number of phase-only measurements (upper
subplot SNR=5dB, bottom subplot SNR=10dB)
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Fig. 4: PSR versus number of phase-only measurements (upper
subplot SNR=15dB, bottom subplot SNR=20dB)

The PSR is defined as

p= (11

where Z is the estimated solution and xq is the generated true
vector. Symbol D(©) means the number of times that the event
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TABLE 1II: PSR in noisy case with different frequencies
number

SNR | frequency number | POFEA | Lee’s-full | Lee’s-loss
1 99.6% 100% 93.2%
5dB 2 69% 96% 20%
3 37.6% 71.8% 2%
4 17.8% 34.4% 0.8%
1 100% 100% 100%
2 100% 100% 77%
10dB 3 99.2% 100% 24.4%
4 94.2% 97.8% 5.8%
1 100% 100% 100%
2 99.8% 100% 94%
15dB 3 100% | 100% 51%
4 100% 100% 18.4%
1 100% 100% 100%
2 100% 100% 98%
20dB 3 100% 100% 60.8%
4 100% 100% 27%

O happens overall Mont Carlo trails, where 7' is the number
of times of Mont Carlo trails.

Example 1: In this example, suppose frequency number
in z(n) is 2 (i.e., K=2). We evaluate the PSR of POFEA
and Lee’s method in noiseless case. Simulation results are
shown in TABLE 1. Meanwhile, We evaluate the PSR of
POFEA and Lee’s method at SN R=5dB,10dB,15dB and
20dB, respectively. Simulation results are show in Fig. 1 and
Fig. 2, respectively. Besides, we also evaluate the PSR of two
methods when frequency number in z(n) equals 4 (i.e., K=4).
Simulation results are shown in TABLE I for noiseless case
and Fig. 3 and Fig. 4 for noisy cases, respectively.

TABLE I shows both POFEA and Lee’s method can work
in noiseless case when frequency number is 2, even if
(Q = 43) phase-only samples can be used. Meanwhile,
according to the results of Fig. 1 and Fig. 2, if we exploit
partial phase-only data to extract frequencies, the PSR of
POFEA is more robust to noise than Lee’s method. Moreover,
TABLE I also shows that POFEA can give the same PSR as
Lee’s method with full phase-only data when K=4. However,
the performance of Lee’s method deteriorates when number
of phase-only data decreased. It illustrate that the proposed
method is more robust to partial phase-only measurements
than the Lee’s method in [4]. In Fig. 3 and Fig. 4, we note that
if we exploit partial phase-only data to recover frequencies, the
performance of POFEA is better than Lee’s method. When
SNR > 10dB, the POFEA using partial phase-only data can
work approximately the same as the Lee’s method with full
phase-only data. Besides, for same phase-only measurement
number, Fig. 3 and Fig. 4 also indicate that POFEA is more
robust to noise than Lee’s method versus different values of
SNR.

Example 2: In the example, considering x(n) contains K
(K=1,2,3,4) frequencies. Assume () (()=43) phase-only data
are exploited. We simulate POFEA and Lee’s method (denoted
by Lee’s-loss) with () phase-only data at SINR = 5dB, 10dB,
15dB and 20dB, respectively. For contrast, we also simulate
the result of Lee’s method with all M (M=128) phase-only
data (denoted by Lee’s-full) at SN R =5dB, 10dB, 15dB and
20dB, respectively. Simulation results are shown in TABLE

II. The results of TABLE II indicate that if we exploit partial
phase-only data to recover frequencies, the Lee’s method
cannot work when K > 2. While for SNR>10dB, the POFEA
can work approximately the same as the Lee’s method with
full phase-only data.

Remark: Although we set Re{X (wg)} # 0 and X (wg) =0
for k=N,N+1,---,M — 1 in simulation, it’s can recover
multiple frequencies without these constraints in POFEA.

V. CONCLUSION

In the paper, we propose a robust sparse frequencies extrac-
tion method by reconstructing the spectrum of the complex-
valued time signal with partial phase-only data. The simulation
experiments show that the performance of POFEA outperform-
s conventional method.
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