International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:2, No:2, 2008

Utilizing Dutch Auction in an Agent-based Model
E-commerce System

Costin Badicd, Maria Ganzha, Maciej Gawinecki, Pawel Kobzdej, and Marcin Paprzycki

Abstract— Recently, we have presented an initial implementation
of a model agent-based e-commerce system, which utilized a simple
price negotiation mechanism—English Auction. In this note we
discuss how a Dutch Auction involving multiple units of a product
can be included in our system. We present UML diagrams of
agents involved in price negotiations and briefly discuss rule-based
mechanism exemplifying Dutch Auction.

Keywords— e-commerce, rule-based price negotiation mechanism,
Dutch Auction, agent system.

I. INTRODUCTION

ECENTLY, we have proposed a model agent-based

e-commerce system [2], [3], [4], [9]. While our approach
differs from what is typically discussed in the literature (for
more details see [1]), here the most important differences are:
(1) we consider a sequence of price negotiations (each one of
them involves a single unit or a collection of items sold/treated
as a single unit), (2) negotiations are “atomic events,” as agents
cannot join negotiation in progress, (3) each price negotiation
can involve a different price negotiation mechanism (e.g. first
243 units may be sold using Vickrey auction, while the next
37 units using fixed price with a deep discount).

It is the latter feature of our system that is our point
of departure. In our very early work we have actually
implemented a version of the system that involved multiple
modularized price negotiation mechanisms dynamically loaded
by Buyer Agents (see [11]). Since then we have concentrated
our attention on extending functionality of our system ([1]),
its formalization ([3]), and on rule-based representation of
price negotiation mechanism and its implementation ([4], [6]),
which was focused solely on an English Auction —one of the
simplest and best understood price negotiation mechanisms.

The aim of this note is to show how our system can
accommodate a more complex price negotiation mechanism—
Dutch Auction. Here, we consider a robust version of a Dutch
Auction, where multiple users can purchase sub-quantities
of the inventory put for sale (not only a single unit—as in
the case of an English Auction). Though, we still restrict our
attention to a single product being sold in a single negotiation

Manuscript received July 15, 2006; revised July 30, 2006

C. Badica is with the University of Craiova, Craiova 200440, Romania,
badica_costin@software.ucv.ro

M. Ganzha is with the Elblag University of Humanities and Economy
Elblag, Poland, and with Systems Research Institute, Polish Academy of
Science, Warsaw, Poland ganzha@euh-e.edu.pl

M. Gawinecki and P. Kobzdej are with Systems Research Institute, Polish
Academy of Science, Warsaw, Poland

M. Paprzycki is with the SWPS, Warszawa, Poland, and with Sys-
tems Research Institute, Polish Academy of Science, Warsaw, Poland,
marcin.paprzycki @swps.edu.pl

(e.g. we are not interested in multi-item auctions involving,
for instance, vodka and appetizers).

We proceed as follows. In the next section we define the
specific version of Dutch Auction that we are concerned
with. We follow with an overview of the system—focused on
these features that are pertinent to the proposed form of price
negotiations. In the next section we discuss our rule-based
approach to representing Dutch Auction. We conclude by
specifying subsequent steps in developing our system.

II. DUTCH AUCTION — GENERAL CONSIDERATIONS

While, for all practical purposes, there exists an all agreed
on definition of an English Auction, the situation with the
Dutch Auction is more complicated. Historically, Dutch Auc-
tion has been used in Holland as ways for selling produce and
flowers. Today, sometimes the name “Dutch Auction” is used
to describe a “short” version of a “true” Dutch Auction. For
example, in the Finance Glossary ([16]) one can read: “Named
after the Dutch tulip auctions, this form of auction is one where
the auctioneer starts with a high asking price, which is then
lowered until a bidder accepts the auctioneers price. This is a
quick way of auctioning goods, since a sale only requires one
bid.” Obviously, it is possible to use Dutch Auction to sell a
single unit of a product; however, a “full version” of a Dutch
Auction is—most typically—used to sell multiple units (note
that in the case of Dutch Auction it is the Seller who is the
“driving force” of negotiation, which is a reverse of an English
Auction, where Buyers are active and the Seller is “passive”).
What makes the situation particularly confusing is the fact that
nowadays the name “Dutch Auction” is used also for another
type of an auction — uniform second price auction [13], [14]
(this happens, for instance, in some eBay auctions).

In our work we have chosen the following conceptualization
of a Dutch Auction ([12]): “In a Dutch auction, bidding starts
at an extremely high price and is progressively lowered until
a buyer claims an item by calling "mine," or by pressing a
button that stops an automatic clock. When multiple units
are auctioned, normally more takers press the button as price
declines. In other words, the first winner takes his prize and
pays his price and later winners pay less. When goods are
exhausted, the bidding is over.”

Observe that this conceptualization is in accordance with
the following FIPA Dutch Auction Interaction Protocol [15]:
“First, the good may be split: for example the auctioneer may
be selling five boxes of tulips at price X, and a buyer may
purchase only three of the boxes. The auction then continues,
with a price at the next increment below X, until the rest

50

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:2, No:2, 2008

of the good is sold or the reserve price met. Such partial
sales of goods are only present in some markets; in others
the purchaser must bid to buy the entire good. Secondly, the
flower market mechanism is set up to ensure that there is no
contention amongst buyers by preventing any other bids once
a single bid has been made for a good. Offers and bids are
binding, so there is no protocol for accepting or rejecting
a bid. In the agent case, it is not possible to assume, and
too restrictive to require, that such conditions apply. Thus it
is quite possible that two or more bids are received by the
auctioneer for the same good. The protocol (...) thus allows for
a bid to be rejected. This is intended only to be used in the case
of multiple, competing and simultaneous bids. It is outside
the scope of this specification to pre-specify any particular
mechanism for resolving this conflict. In the general case, the
agents should make no assumptions beyond "first come, first
served.” In any given domain, other rules may apply.”

Since we consider Dutch Auction within an agent system,
the above considerations can be translated into the following
scenario. Let us assume that within a Negotiation Host (a
place where the negotiations take place), we have a single
Seller Agent (SeA) and multiple Buyer Agents (BA)s. The SeA
attempts at selling N units of product P. It starts bidding
(by posting an initial bid on a blackboard) and subsequently
reduces the price. At a certain moment one of BAs (e.g. BAss)
responds with an ACL message informing that it is ready to
purchase M units of P (where M < N) at a price equal to
the current bid. At this stage, the number of available units is
reduced by M and B Asj5 is removed from negotiations to pro-
cess its reservation (see below). If N — M > 0, process contin-
ues until either all IV units are sold, or the minimal reservation
price of the SeA is reached without further takers. While, in
general, it is possible for a given BA to bid for multiple quanti-
ties of a product; e.g. it could buy 23 items at $25 and 17 items
at $23, we have decided to simplify the system and assume
that each BA is allowed to submit at most one successful bid,
which results in it being removed from further negotiations.

Let us also note that (1) when implementing our negotiation
sub-system, rather than straightforwardly encoding the FIPA
Dutch Auction Interaction Protocol into agents behaviors (as
in [11]), we have decided to follow the more general approach
proposed in [8]. Thus, to gain flexibility and modularity,
we combine a generic negotiation protocol with a rule-based
declarative representation of the negotiation mechanism (this
solution was already applied to implement English Auctions
[4]). (2) Furthermore, since we implement our system in an ac-
tual agent environment (JADE) we avoid the above described
theoretical situation where two messages arrive at exactly the
same time. It will be the JADE runtime that will prevent such
an occurrence—one of messages will actually arrive earlier.

III. SYSTEM ARCHITECTURE—AN OVERVIEW

Let us now put the above defined Dutch Auction in the
context of our system. We focus our attention on these of
its features that are pertinent to the subject of this note. A
complete description of all of its functionalities can be found

in [1], [2], [3], [4], [5]. [6], [9].

Our system acts as a distributed marketplace where
products available in e-shops are sold by Shop and Seller
agents, while users utilize Client and Buyer agents to localize
products that satisfy their needs. In Figure 1 we present Use
Case diagram of the complete system. Let us note first that
outside of bounds of the system we have depicted User-Client
who attempts at buying products and User-Seller who tries
to sell products through her e-store.

Let us now briefly summarize functionalities of agents
appearing in the system. User-Client is represented by the
Client Agent (CA). The CA is assumed to be completely
autonomous. As soon as the decision to purchase M units of
product P is communicated by the User-Client, it will work
until either purchase is completed or has to be abandoned (e.g.
due to the current market-prices being higher than the user-
specified maximum). The CA communicates with the Client
Information Center (CIC) agent which possess a complete
information which e-stores sell which products (for more
information about information management in the system see
[10]). For each store that sells the desired product, the CA
delegates a single Buyer Agent (BA) to participate in price
negotiations and, if successful, possibly attempt at making
purchase. In our system, successful price negotiations result
in a product reservation (for a specific time period). When the
reservation expires without an actual purchase, item is returned
to the pool of products available for sale. Since multiple BAs
representing the same CA can win price negotiations and
report to the CA, the CA has to decide if either of available
offers is good enough to make a purchase. Buyer Agents either
migrate to the negotiation host or are created locally [5]. They
can participate in negotiations only if the Gatekeeper Agent
(GA) allows this. The GA utilizes trust information to evaluate
if a given BA should be admitted (e.g. BAs that win price
negotiations but do not purchase products may be barred from
subsequent negotiations—see [7] for more details). The GA is
one of agents that represent an e-store and is created by the
Shop Agent (SA). Its role is to admit (or not) incoming BAs
and to organize the negotiation process. In this latter capacity
it creates and manages a pool of generic Seller Agents (SeA)
that negotiate price with incoming BAs. The SA is the central
manager of the e-shop. In its role of facilitator of product sales,
the SA utilizes the GA, as well as a Warehouse Agent (WA)
that is responsible for inventory and reservation management).

Considering our earlier work, there are two agents that are
directly affected by incorporation of a Dutch Auction into the
system. The first one of them is the Gatekeeper agent'. In
Figure 2 we can see, affected by the changes in the system,
fragment of the statechart diagram of the Gatekeeper Agent. It
depicts its operations in management of, and interaction with,
Seller Agents that take place in the context of a Dutch Auction.

Here, we have to note that in the past it was the SA that was responsible
for creation of Seller Agents and we used one SeA for each product in the
store. Since we have changed the way that products are represented—different
features of a given product result in its being represented as a separate product
(see [10])—creation of a single SeA for each product defined in such a way
made no sense. We have thus decided to utilize a pool of generic SeAs that
can represent the store in any negotiation (of any product and using any
mechanism). Here, we will use the same approach based on dynamically
loadable modules as described in ([6], [11].)

51

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:2, No:2, 2008

Client Decision

Making Requesting

information

_—

— Registration

Client Information Center - CIC

Product
Registration

cic

Seller side 5

@ Client

N Sale finalization
Organization

of buying
process

<<include>=7

Admitting to
Shop
G

Buyer Seller

atekeeper

Preparing
negotiation

Shop Decision
Making

/

Shop

Creation
reservation

- Warehouse
S,
<<include>>
S

Info about
quantity of a
product

User-Client

User-Seller

Fig. 1 Use Case diagram of the proposed agent-based e-commerce system

In Figure 2 we present a situation when, as the first step,
an “initial pool” of Seller Agents is created. Then the GA is
awaiting for an event to service. Here, we recognize three
possible events: (1) a new price negotiation, that is to be
serviced by one of SeAs is being recognized by another “part”
of the GA and materializes as an event in the “SeA manage-
ment subsystem”—in this case, if there is an available SeA,
it will be appropriately equipped with a negotiation template
(and possibly a specific negotiation strategy) and assigned that
task; in the case when a SeA is not available then either one
will be created or the task will be buffered (depending on the
total number of existing SeAs); (2) an ACL message from the
SeA informing that a given BA is a winner of a negotiation
arrives—in this case, appropriate information is passed to the
SA (following basic rules of development of agent systems it is
assumed that the SA does not know SeAs that are created and
managed by the GA); (3) SeA informs that negotiation that it
was responsible for has ended and it is available to take up the
next one—in this case, if there is a task waiting in the buffer, it
will be assigned to that SeA; if there are no tasks in the buffer,

given SeA may be left idle or may be eliminated (if the GA
decides that it has too many active SeAs). Observe that the dis-
tinction between situation (2) and (3) would have not occur in
the case of an English Auction. Successful end of negotiations
in an English Auction means that the SeA has completed its job
(it ends an English Auction). However, in the case of a Dutch
Auction, the fact that one of BAs placed an accepted bid does
not mean that the auction is over as that bid could have been
placed for only a part of an inventory that is being auctioned.
Note, however, that the solution depicted in Figure 2 is capable
of handling both English and Dutch auctions. In the case of an
English Auction, the SeA simply informs about the result of
the negotiation and that it is free. Therefore, a single design of
the GA can handle multiple forms of price negotiations, which
was one of overarching goals of our system [1].

In Figure 3 we present a simple statechart diagram of
the Seller Agent that is involved in a Dutch Auction. Here,
the colored box denoted as “NEGOTIATIONS” encapsulates
Dutch Auction. Since the BA is relatively passive (it only waits
and places a single bid) it has been omitted from discussions.

52

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411
Vol:2, No:2, 2008

Q_SeA - number of SeAs
N - optimal number
QT -- number of Tasks in

?

Killing additional SeA

the buffer
M -- maximal number of

[Creation starting pool of SeAs]

Task which can be

serviced by N SeAs

~

Waiting for an event [else]
IS

Notifying SA

do / send(SA, Neg_Res)

sgSeA(Neg_Res,Busy)
New SgfA_Task

- I msgSeA(Neg_Info,Free)
| Checking buffer

[Checking pool of SeAs]

Checking quantity of SeAs

[NO task]

I Checking buffer

do/check QT

—
Buffering Task |
do / push(Task)

Creation new SeA

[There is available SeA]

[there ig A task]

[New SeA_Task]
l do / pop(buffer,SeA_Task) J

Assignement of the task I

do / send(SeA,SeA_Task) l

Fig. 2 Gatekeeper agent, functions related to interactions with and management of Seller Agent(s)

2

Canfirming request Listening CA

do f send{GaA, ok}

msgCAkilly

i

get MegotiationT as,

Starting negatiations l

entry j extract template and strategy
da f sendList{start infa)

/ sendListiontinuey | MEGOTIATIONS

(Notifying GA

do f sendi{CA, Neg_Res,Busy
exit [remove(BA, reg_list)

msgBALhid, o_bid

[q_Meg==0 || T Meg is expired]

Maotifying CA
do [send{CA, info, awvailable)

Fig. 3 State Chart diagram of the Seller Agent

Obviously, Dutch Auction is an example of an price negotia-
tions which continues when one BA completes its negotiations,
and ends when the inventory is sold or the reservation price of
the SeA is reached. However, this situation can be viewed as
a generalization of an English Auction. In an English Auction
when a Buyer Agent wins negotiations, SeA informs GA about
winner (send(GA,NegRes,busy)) and then checks whether the
negotiation can be continued—condition (¢_Neg == 0). Of
course it cannot and thus the SeA informs the GA that it is
available (send(GA,info,available)). In this way also the SeA
depicted here can handle both English and Dutch auctions.

IV. RULE-BASED REPRESENTATION OF A DUTCH AUCTION

Focus of this section is to briefly describe our solution
to rule-based representation of a Dutch Auction. However,
before starting this discussion, it has to be stressed that in our
work we assume the negotiation model and the infrastructure
proposed by [8]; that was previously used to implement
English Auctions, see [4], [6]. To make the presentation
self-contained, we start from an overview of that model and
then discuss how it was adapted to fit our needs.

Authors of [8] sketched a general framework for imple-
menting agent and non-agent negotiations. Their framework
is based on an abstract negotiation process that comprises: a
negotiation infrastructure, a generic negotiation protocol and
a taxonomy of negotiation rules. The negotiation infrastructure
defines roles involved in the negotiation process: Participants
and a Negotiation Host. Participants are usually Buyers and
Sellers that negotiate by exchanging proposals. The exchange
is mediated by the Negotiation Host (i.e., conceptually, there
is no direct exchange of messages between the participants,
but only via the host) and governed by a generic negotiation
protocol that defines how and when messages should be
exchanged between the Negotiation Host and Participants.

This approach has the advantage that all knowledge required
to facilitate negotiations is stored in a central place—the
Negotiation Host. Therefore, the Negotiation Host has the
power to control and coordinate negotiations. In particular,
it is proposed that this knowledge should be captured as
a set of negotiation rules organized taxonomically into rule
categories for: (1) checking the validity of negotiation propos-
als, (2) protocol enforcement, (3) updating negotiation status
and informing participants, (4) agreement formation and (5)
controlling the negotiation termination [8]. Note also that, in
the proposed framework, details of the particular negotiation
(specific values for parameters specified in generic negotiation

53

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:2, No:2, 2008

rules) are provided to its participants in a form of a negotiation
template.

While, according to this general framework, roles of the
Seller and the Negotiation Host are conceptually different,
in the present work, for efficiency reasons, we have decided
to merge them together within the same agent—the Seller
Agent. This basically means that the SeA will have two
responsibilities: (i) to regulate the negotiation by checking
bids and bid exchange compliance against the negotiation
rules that govern Dutch Auction (see below), and (ii) to post
bids (shout prices), as required by the Dutch Auction.

As specified in Section II, we consider multi-unit single-
product Dutch Auction, as conceptualized in the FIPA Dutch
Auction Interaction Protocol. It can be easily seen that the
FIPA Dutch Auction Interaction Protocol is under-specified
(a similar observation concerning the FIPA English Auction
Interaction Protocol can be found in [8]), as it does not specify
important issues like: (a) how often is the SeA allowed to
shout the price? for example, shouting prices “very fast” may
not leave enough time for the BAs to “think” if to bid or not;
(b) how much the SeA must decrement the price in the next
bid? for example, an auction might require a minimum value
for this decrement (note that, similarly, an English Auction
typically imposes a minimum value by which BAs should
increment the price of their next bid, [2]); (c) how much time
without any activity is allowed before terminating the auction?
note that it might happen that neither BAs bid nor SeA wants
to decrement the price, and in such a case the auction must
be terminated (even if SeA didn’t sell all the inventory).

Taking this into account, we have decided to add the
following parameters to the negotiation mechanism (to be later
specified in the negotiation template, [8]):

e Minimum value by which the Seller must decrement
the price at each announcement: H > 0; i.e. if the last
shouted price was X then the next shouted price must
be at most X — H;

« Minimum time limit that the Seller must wait before issu-
ing the next announcement: 7;,, > 0; i.e. if the last price
was shouted at time 7" and Buyers didn’t bid then the next
price must be shouted not earlier than 7"+ T,,; however,
if happened that a buyer submitted a bid, 7}, is ignored.

¢ Maximum time window of inactivity in the auction that,
when observed, will terminate the auction: 7T, > 0;
obviously, the following must hold: 7,,, < T,.

Additionally, number of units N of the product to be
sold is also placed in the negotiation template. This value is
decremented with the number items “sold” (actually reserved,
according to our model) whenever a successful bid is received
from a Buyer.

While parameters of the negotiation mechanism together
with negotiation rules are public, i.e. known to all negotiation
participants, each negotiation participant may also use a private
strategy that dictates how it should actually act during the
negotiation. In a Dutch Auction Buyer strategy dictates when
exactly the Buyer should accept price shouted by the SeA. It
could be extremely simple and require acceptance of shouted
price that falls below a given threshold. It could also be rather
complex and involve passage of time, number of still available

items and/or speed with which items are being purchased by
other Buyers. On the other hand, Seller strategy could contain
following parameters:

« initial price X, i.e. price that is shouted first,

« timing R; of reducing price at each new shout 7 (variable
at each shout); the following condition must hold: 7;,, <
R; < T, for all 7 to assure that rules are not violated
and negotiation does not terminate,

« Reservation price Xes; Seller will stop bidding if the

price reaches a value below this limit.

Let us now look into the rule-based representation of a
Dutch Auction. We define: Pr — proposal (or bid); X (Pr)
— price, T(Pr) — time when the proposal has reached the
Negotiation Host, and M (Pr) — number of units “accepted”
for purchase. Let us present sample rules that are a part of
our representation of the Dutch Auction.

The Seller is allowed to shout a new price when one of the
following conditions holds: (i) it is the first shout; (ii) one of
Buyers submitted a bid that was successful; (iii) no successful
bids were received and at least 7;,, time units elapsed since the
last shout. Rule 1 checks the third of these conditions. Note
that when the Seller offer passes all checks it becomes posted.

Rule 1 POSTING-SELLER

IF
There is a valid proposal Pr submitted by the participant
with role ‘Seller’ and
No participant with role ‘Buyer’ submitted a successful
bid since the last shout and
There is an active proposal Pry from the participant with
role ‘Seller’ and
T(Pr)—T(Pri) >Tm

THEN
Proposal Pr is posted

A posted offer that is not the first offer must also satisfy the
improvement tests in order to become active. This is realized
by rule 2 that asks for the shouted price to be at most equal to
the last shouted price minus a template-specified decrement.
When this condition holds, the seller offer becomes active.

Rule 2 IMPROVEMENT-SELLER

IF
Participant with role ‘Seller’ has posted proposal Pr and
Value of last offer posted by ‘Seller’ is B and
Minimum decrement is // and
X(Pr)y<B-H

THEN
Proposal Pr is active

Now let us see when a bid posted by a Buyer can be
accepted, i.e. it becomes active. Informally, a Buyer is allowed
to submit a bid only when there is already an active offer
shouted by the Seller. Additionally, the Buyer bid is accepted
(i.e. becomes active) only if its price is equal to the price
shouted most recently by the Seller and the required quantity is
at most equal to the quantity available in the Seller offer. These

54

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:2, No:2, 2008

conditions are checked by rules 3 and 4. Note that multiple
Buyer bids are allowed in-between two consecutive Seller
bids. The first-come first-served mechanism is used to resolve
situation when Buyer bids exceed the available inventory.

Rule 3 POSTING-BUYER
IF
Proposal Pr submitted by a participant with role Buyer’
is valid and
There is a seller active seller offer
THEN
Proposal Pr is posted

Rule 4 ACCEPTANCE-BUYER

IF
Proposal Pr was posted by a participant with role *Buyer’
and
The seller active offer has value B and
X(Pr)= B and
M(Pr) <N

THEN
Proposal Pr is active

When a Buyer bid becomes active, it will result in: (i)
triggering rules for informing participants (specifically, Buyers
are notified how many units are still available for sale); (ii)
triggering rules for agreement formation and negotiation
termination. An agreement formation rule 5 simply looks
for an active Seller offer and an active Buyer bid, in which
case it generates a deal by matching those two proposals and
updates number of units available for sale.

Rule 5 AGREEMENT FORMATION

IF
There is an active bid submitted by a participant Parq
with role Buyer and
There is an active offer shouted by a participant Pars
with role Seller

THEN
An agreement between Par; and Pary to transact ac-
cording to X (Pary) is formed and
Available quantity N is updated

Since the agreement formation rule updates number of items
still available for sale, a negotiation termination rule has to be
activated. It checks if there are any items left and if they are
none the negotiation is terminated.

Some effects of agreement formation and negotiation
termination rules have been depicted in Figure 3. It is
important to recognize that, operations performed by the
SeA (e.g. sending message to the GA) and their conditions
represent a different level of description than discussed above
rule-based mechanisms within the SeA that trigger them.

V. CONCLUDING REMARKS

In this note we have considered how a Dutch Auction
mechanism can be incorporated into our model agent-based

e-commerce system. To this effect we have: (1) defined the
specific form of Dutch Auction; (2) discussed, and illustrated
in the form of UML diagrams, these parts of our system that
are affected by adding a new price negotiation mechanism;
(3) shown that the proposed modifications are general enough
that they will be able to handle not only Dutch Auction, but
also accommodate earlier considered English Auction; (4)
specified, and illustrated by selected sample-rules how rule-
based mechanisms will be used to represent Dutch Auction.
The next step will be to adapt the complete set of rules for
the JESS rule-engine. We also will investigate which rules are
common to both English, Dutch and other auctions and which
are negotiation-specific. This may allow us to form a set of
core (reusable) rules applicable to a wide class of price nego-
tiations. We will report on our progress in subsequent papers.

ACKNOWLEDGMENT

Work of M. Ganzha, M. Gawinecki, P. Kobzdej and M.
Paprzycki has been partially sponsored by the M. Curie IRG
grant, project E-CAP.

REFERENCES

[1] C. Badica, A. Badita, M. Ganzha, M. Paprzycki, Developing a Model
Agent-based E-commerce System, in: Jie Lu et. al. (eds.), E-Service
Intelligence - Methodologies, Technologies and Applications (to appear)

[2] C. Badica, M. Ganzha, M. Paprzycki, Mobile Agents in a Multi-Agent
E-Commerce System,in: D. Zaharie et. al. (ed.), Proceedings of the
SYNASC 2005 Conference, IEEE Press, Los Alamitos, CA, 2005, 207—
214

[3] C. Badica, M. Ganzha, M. Paprzycki, UML Models of Agents in a
Multi-Agent E-Commerce System, in: Proceedings of the ICEBE 2005
Conference, IEEE Press, Los Alamitos, CA, 2005, 56-61

[4] C. Badica, A. Badita, M. Ganzha, A. lordache, M. Paprzycki, Rule-
Based Framework for Automated Negotiation: Initial Implementation,
in: A. Stoutenburg, et. al. (ed.), Proceedings of the RuleML Conference,
LNCS 3791, Springer Verlag, 2005, 193-198

[5] C. Badica, M. Ganzha, M. Paprzycki, Two Approaches to Code Mobility
in an Agent-based E- commerce System, in: C. Ardil (ed.), Enformatika,
Volume 7, 2005, 101-107

[6] C. Badica, M. Ganzha, M. Paprzycki, A. Pirvanescu, Combining Rule-
Based and Plug-in Components in Agents for Flexible Dynamic Nego-
tiations, in: Proceedings of the CEEMAS’ 2005, LNAI 3690, Springer
Verlag, 2005, 555-558

[7] C. Badica, M. Ganzha, M. Gawinecki, P. Kobzdej, M. Paprzycki,
Towards Trust Management in an Agent-based E-commerce System —
Initial Considerations, in: Proceedings of MISSI’2006 (to appear)

[8] C. Bartolini, C. Preist, N.R. Jennings, A Software Framework for
Automated Negotiation, in: Proceedings of SELMAS’2004, LNCS 3390,
Springer Verlag, 2005, 213-235

[9] M. Ganzha, M. Paprzycki, A. Pirvanescu, C. Badica, A. Abraham,
JADE-Based Multi-Agent E-Commerce Environment; Initial Imple-
mentation, Annals of West University, Seria Matematica-Informatica,
Vol. XLII, 2004, 79-100

[10] M. Gawinecki, M. Ganzha, P. Kobzdej, M. Paprzycki, C. Badica, M.
Scafes, G. Popa, Managing Information and Time Flow in an Agent-
based E-commerce System, in: Proceedings of the ISPDC’2006 (to
appear)

[11] M. Paprzycki, A. Abraham, A. Pirvanescu, C. Badica, Implementing
Agents Capable of Dynamic Negotiations, in: D. Petcu, et. al. (ed.),
Proceedings SYNASCO04, Mirton Press, Timisoara, Romania, 369-380

[12] http://www.agorics.com/Library/Auctions/
auction3.html

[13] http://collectibles.about.com/library/articles/
blebaydutch.htm

[14] http://www.ehow.com/
how_16375_bid-dutch-auction.html

[15] http://www.fipa.org/specs/fipa00032/XC00032F.pdf

[16] http://glossary.global-investor.com/terms/
Dutch-auction.htm?ginPtrCode=00000&1d=12389&
PopupMode=true

55

