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Abstract—Computer worm detection is commonly performed by 

antivirus software tools that rely on prior explicit knowledge of the 
worm’s code (detection based on code signatures). We present an 
approach for detection of the presence of computer worms based on 
Artificial Neural Networks (ANN) using the computer's behavioral 
measures. Identification of significant features, which describe the 
activity of a worm within a host, is commonly acquired from security 
experts. We suggest acquiring these features by applying feature 
selection methods. We compare three different feature selection 
techniques for the dimensionality reduction and identification of the 
most prominent features to capture efficiently the computer behavior 
in the context of worm activity. Additionally, we explore three 
different temporal representation techniques for the most prominent 
features. In order to evaluate the different techniques, several 
computers were infected with five different worms and 323 different 
features of the infected computers were measured. We evaluated 
each technique by preprocessing the dataset according to each one 
and training the ANN model with the preprocessed data. We then 
evaluated the ability of the model to detect the presence of a new 
computer worm, in particular, during heavy user activity on the 
infected computers.  

 
Keywords—Artificial Neural Networks, Feature Selection, 

Temporal Analysis, Worm Detection. 

I. INTRODUCTION 
HE detection of malicious code transmitted over computer 
networks has been substantially researched during the past 

years. Commonly, the term “malicious code” (malcode) refers 
to different types of codes, such as executables or scripts, 
which contain some code having a malicious purpose. One 
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type of malcode is worms, which actively propagate, 
exploiting vulnerability in the operating system, through 
communication protocols. Other types of malcode are viruses, 
which inject their code into an innocent file (a host) and are 
activated whenever the file is executed. Unlike worms, viruses 
require user intervention to propagate. Other recently 
disseminated malicious codes include Trojans, which are 
computer programs that have a useful functionality but also 
have some hidden malicious goal, and backdoors, which 
enable remote access and control with the aim of gaining full 
or partial access to the infected system. 

Nowadays, known malcodes are mainly detected and 
removed by antiviruses. Antiviruses search the executables for 
known patterns, also called signatures. Antiviruses are 
helpless when facing an unknown malicious executable. After 
the appearance of the new worm, a new signature is created by 
the antivirus system company. The antivirus signature base is 
periodically updated. However, since worms spread rapidly, 
the signature update action is often taken too late, and 
expensive damage may already have been done by the worm. 
Trojans and backdoors have other malicious motivations, such 
as economic, terrorist, or criminal. They are commonly 
installed on a relatively small number of hosts, and thus do not 
attract the attention of antivirus systems and remain 
undetected. For example, a student can demonstrate a problem 
he encountered in his homework using a portable memory 
device on his/her professor's computer. During this 
demonstration the student installs a backdoor that allows him 
to access the professor's computer and search for a copy of an 
upcoming examination. 

A recent survey of intrusion detection [1] suggests using 
artificial intelligence (AI) techniques to recognize malicious 
software (malware) in single computers and in computer 
networks. It describes the research done in developing these 
AI techniques, and discusses their advantages and limitations. 
One of the critical requirements of such an AI technique is 
that it operates efficiently in real-time. 

One of the AI techniques mentioned in this survey is 
Artificial Neural Networks (ANN). Other research studies 
referenced in the survey used the Self Organizing Map (SOM) 
method [2]-[4], the main challenge of which as reported by 
the authors was overcoming the high dimensional inputs. 
Linear techniques, such as Principle Component Analysis 
(PCA), Singular Value Decomposition or Support Vector 
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Machine [5], [6] are used to reduce the input dimensionality 
and may result in a less accurate modeling.  

Other aspects discussed in the survey [1] were the detection 
of an intrusion or a malware presence by analyzing executable 
files on local storage devices [7], analyzing the content of the 
packets sent or received by the computer [8,2], or looking at 
the system calls that were invoked by processes running on 
the system [9]. 

In this study a different approach is suggested. The 
detection of the presence of a malware in a computer is 
performed by analyzing the overall computer behavior. We 
define the computer behavior by a variety of different values 
which can be measured in the computer while it is operating. 

The main ANN advantages are a high level of accuracy in 
real-time operation, low CPU resources utilization during the 
classification phase, and the ability to generalize, in order to 
detect and identify, any previously unseen classes. The fact 
that worms propagate very fast on networks makes them one 
of the most challenging malwares. Fast detection of computers 
infected with worms is critically important on local networks. 
For these reasons we propose employing ANN for the 
detection of worm activity in real time. 

It was already shown in our previous work that the 
detection of new worms using ANN techniques is possible 
and effective [10]. However, continuous monitoring of large 
number of measured features may demand a significant part of 
the computational resources.  In this work we reduce the 
number of features significantly by using various feature 
selection techniques, while increasing the detection accuracy. 
We use the Causal Indices (CI) technique to estimate the 
contribution of each input feature to each classification output. 
Additionally, we evaluate the effect of several temporal 
analysis preprocessing techniques on the detection problem.  

The structure of this paper is as follows: In section II the 
classification, feature selection and temporal analysis methods 
are described. In section III we describe the creation of the 
datasets we used in the study. In section IV we present the 
techniques we used to evaluate the different methods, and we 
describe the CI technique in this section. Section V describes 
the experimental sequence and the purpose of each particular 
experiment. In section VI we present the results of the 
experiments. In section VII we discuss the experiment results 
and conclude with recommendations for further research. 

II. CLASSIFICATION, FEATURE SELECTION AND TEMPORAL 
ANALYSIS METHODS 

A. Classification Method 
We used a typical feed forward neural network, together 

with the Levenberg-Marquardt training method [11]. The 
number of hidden neurons was set empirically to six.  

B. Feature Selection Techniques 
Generally, there are two different approaches to feature 

selection: the wrapper and the filter approach. The wrapper 
approach searches for the optimal subset of features of a given 
dataset, for a specific classification algorithm. The main 

drawback of this approach is the relatively long computation 
time. The filter approach ranks the features according to a 
certain measure independent of any classification algorithm. 
Thus, after the calculation of ranks, one can use any subset of 
features based on their ranks.  

For features selection we used three different filter 
techniques. These techniques are described below. 

 
1) The relation between the inputs and the hidden neuron’s 

relative variance  
This knowledge extraction and dimensionality reduction 

technique involves ranking the inputs according to their 
relevance to the ANN prediction accuracy. It is based on the 
observation that in a trained ANN model a less relevant input 
contributes a small proportion of the variance in the hidden 
layer neuron’s activities. This may be the result of either the 
small relative variance of the input value or the small final 
connection weights to all hidden neurons assigned to this 
input by the trained ANN. 

 The contribution of an input i to the total variance of the 
hidden layer inputs is presented in (1). The (WH)i

 T is the i’th 
row of the transpose of WH, i.e., the i’th column of the input-
to-hidden connection weights expressed as a row vector; R is 
the covariance matrix for the network inputs x, estimated from 
the training set. 
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The relative contribution of an input i to the variance of the 

hidden layer inputs is calculated using (2). In (2) j is the index 
of each one of the n hidden neurons. 
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The less contributing inputs can be discarded and the ANN 

re-trained with the reduced input set, often yielding better 
prediction accuracy. This technique is described in detail in 
[12]. 

 
2) The Fisher score ranking 
The Fisher score ranking technique calculates the 

difference, described in terms of mean and standard deviation, 
between the positive and negative examples relative to a 
certain feature. Equation (3) defines the Fisher score, in which 
Ri is the rank of feature i, describing the proportion of the 
substitution of the mean of the feature i values in the positive 
examples (p) and the negative examples (n), and the sum of 
the standard deviation. The bigger the Ri, the bigger the 
difference between the values of positive and negative 
examples relative to feature i; thus, this feature is more 
important for separating the positive and negative examples. 
This technique is described in detail in [13]. 
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3) Gain Ratio Filter 
The Gain Ratio measure is based on the Information Gain 

(IG) measure, which is based on measuring the relative 
entropy reduction. This method requires discretization to be 
applied to the continuous data in advance. Equation (4) 
defines the classic entropy measure, in which S is the entire 
dataset, C is the class attribute, and Sc is a subset of S in which 
the value of C is c.  
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Equation (5) defines the IG rank. IG shows how much 

information we gain by splitting the dataset relative to 
attribute A. In this equation, V(A) is the set of unique values of 
attribute A, and Sv is the subset of S in which the value of 
attribute A is v. 
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The problem of the IG method is that it gives higher ranks 

to attributes with a large number of unique values, i.e., V(A) is 
high. Gain Ratio overcomes this bias by using an extra term 
which represents the way an attribute splits the data. Equation 
(6) defines this special term and (7) defines the ranking of 
Gain Ratio. 

 

S
S

S
S

ASSI v

AVv

v
2

)(

log),( ∑
∈

−=                   (6) 

 

),(
),(),(

ASSI
ASIGASGR =                              (7) 

 
When SI(S,A) is zero, it is defined as equal to IG(S,A). 

Additional information about this technique can be found in 
[14]. 

 

C. Temporal Analysis Techniques 
Since worm propagation involves a temporal characteristic, 

we thought about improving the detection accuracy by 
considering the temporal dimension. We present three 
temporal analysis techniques which use different types of 
sliding windows. We evaluated these temporal techniques 
using the reduced datasets that are based on the most-
contributive features selected at the feature selection stage. 
The challenge here is to represent the temporal dimension 

authentically while using a static classification algorithm. All 
three techniques are described below.  

 
1) Simple sliding window 
This technique proposes constructing a single window from 

the given dataset. Given a window size k, the new instance 
will include k original sequential instances. For example, with 
a dataset having instances [1,2,3,4,5] and window size k=3 we 
create three instances:  [1,2,3], [2,3,4], and [3,4,5], 
respectively. However, note that the current instance will 
include k multiplied by n attributes, where n is the number of 
attributes in an original instance.  

 
2) Simple exponential compression 
While being simple, the drawback of the simple sliding 

window representation is that the number of instances in each 
window grows linearly with the size of the window (k). 
Working with many instances could be problematic due to the 
long computation times. The simple exponential compression 
(SEC) technique overcomes this problem by averaging the 
“older” instances. The number of averaged instances will be 
2n where n is the place in the window starting with zero. For 
example, with a dataset [1,2,3,4,5,6,7] and a window size of 3 
the resulting one instance will look as follows: [7, avg(5,6), 
avg(1,2,3,4)] where 7 is the “youngest” original instance. 
Generally speaking, each instance represents precisely the 
current features values, and in a more abstractive and 
summarized representation, the earlier values.  Thus, the 
number of original instances the window covers grows 
exponentially with the size of the window (k). 

 
3) Poisson exponential compression 
We propose a technique that we have named Poisson 

exponential compression (PEC). The PEC technique is similar 
to SEC in the way that the instances are compressed in an 
exponential rate. However, this technique does not show 
precisely the “youngest” instances but the instances with 
higher Poisson probability density function (PDF). Poisson 
PDF is presented in (8). k is the index of the instance starting 
from the “youngest,” λ is a constant and was 2 in the 
experiment, and e is the base of the natural logarithm. 
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The motivation for using such a technique was the 

hypothesis that the most important instance in the window is 
not necessarily the “youngest.” The amount of averaged 
instances in place n is still 2n. For example, having a dataset 
[1,2,3,4,5,6,7] where 7 is the “youngest” instance, we can 
calculate the array of ranks, using the Poisson PDF, which 
will be [0.01,0.04,0.09,0.18,0.27,0.27,0.14]. Now, given a 
window size of 3, the resulting one instance will look as 
follows: [6, avg(5,4), avg(1,2,3,7)]. 
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III. DATASET DESCRIPTION 
Since no public standard dataset was available for this 

study, we had to create our own dataset. We created a 
computer network environment consisting of a variety of 
computers (configurations). We injected worms into the 
network environment, and monitored various computer 
features in each of the infected and non-infected computers. 

The computer network environment consisted of seven 
computers, which contained heterogenic hardware, and a 
server simulating the Internet.  

We used the MS Windows performance tool, which enables 
monitoring of system features that appear in these main 
categories: Internet Control Message Protocol (ICMP), 
Internet Protocol (IP), Memory, Network Interface, Physical 
Disk, Processes, Processor, System, Transport Control 
Protocol (TCP), Threads, User Datagram Protocol (UDP). 
We also used VTrace [15], a software tool which can be 
installed on a PC running Windows. VTrace collects traces of 
the file system, the network, the disk drive, processes, threads, 
inter-process communication, writable objects, cursor 
changes, windows, and the keyboard. The Windows 
performance tool was configured to measure the features 
every second and store them in a log file as vectors. VTrace 
stored time-stamped events, which were collected into a 
second file. Both files were merged and contained a vector of 
323 features for every second. 

In order to perform the evaluation in a realistic 
environment, we considered three major aspects: computer 
hardware configuration, constant background application 
requiring high computational resources, and user activity. For 
each dataset related to an aspect the data were collected when 
each one of the five worms was injected separately, for a 
constant length of time. In addition there was a time period in 
which no worm was activated. In the rest of the paper we will 
refer to this clean period as a state named "Clean." The 
resulting datasets were combined into a single dataset. 

Computer hardware configuration: Both computers ran MS 
Windows XP, since we considered it to be the most commonly 
used operating system. There were two configurations: old, 
using a PC based on Pentium III 800 MHz CPU, bus speed 
133 MHz and memory 512 Mb, and new, using a PC based on 
Pentium IV 3 GHz CPU, bus speed 800 MHz and memory 1 
GB. 

Background application activity: There were two 
configurations: with background application activity and 
without. We ran the WEKA mathematical processing 
application software [16] which mainly effected the following 
features: Processor Time (usage of 100%); Page Faults/sec; 
Avg Disk Bytes/Transfer; Avg Disk Bytes/Write; Disk 
Writes/sec.  

User activity: A user opened several applications, including 
Internet Explorer, Word, Excel MSN messenger, and 
Windows Media Player in a scheduled order. There were two 
configurations: with user activity and without. The exact 
schedule of the user activity is described in Table I. 

 

TABLE I 
USER ACTIVITY SCHEDULE 

Time period User operations 
0-5 minutes - Opening 10 MS Word instances 

- Downloading two files simultaneously 
5-10 minutes - Opening 5 instances of MS Excel  

- Generating random number in MS Excel  
- One file downloading 
- Listening to internet radio 

10-15 minutes - Opening 12 instances of MS Word 
- Downloading one file 

15-20 minutes - Opening 9 instances of MS Excel 
- Generating random numbers in MS Excel 
- Browsing the internet (using MS IE) 

In each time period all the user operations were performed simultaneously.  
 
During the evaluation we used five different real worms. 

The description of each one is presented below.  
 
1.  Dabber.A (Daber.A) 
This worm scans networks for random IP addresses, 

searching for victim machines that have the ftp component of 
the Sasser worm installed on port 5554. 

When the worm finds a suitable victim machine, it sends a 
vulnerability exploit to it to infect the system. It then launches 
the command shell on port 8967. It also installs a backdoor on 
port 9898 to receive external commands. 

 
2.  W32.Sasser.D (Sasser.C) 
This worm spreads by generating random IP addresses 

using 128 threads. The IP addresses are generated so that 48% 
of them should be close to the current computer by using the 
current computer's IP and 52% of them completely random. It 
connects to the remote computer using TCP port 445 and if 
the connection is established, a remote shell is opened. The 
remote shell is used to connect to the infected computer's FTP 
server and transfer the worm. 

 
3.  W32.Deborm.Y (DebormY) 
This worm scans the local network and tries to propagate to 

other computers on the local network. It attempts to share C$ 
(C drive) using the accounts of the administrator, owner or 
guest (it succeeds if a certain account does not have a 
password).  

 
4.  W32.Korgo.X (PadobotKorgoX) 
This worm generates random IP addresses and exploits the 

LSASS Buffer overrun vulnerability using TCP port 445. If it 
succeeds in taking over a computer, the newly infected 
computer will send a request to download the worm from the 
infecting computer by using a random TCP port.  

 
5.  Slackor.A (Slackor.A) 
When the Slackor worm is run, it sends a SYN TCP packet 

to randomly generated IP addresses through port 445 to search 
for the systems using Server Message Block (SMB). It then 
attempts to connect to the Windows default shares on these 
systems by using the username and password pair that it 
carries. If successful, it tries to copy the worm to the system.  
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IV. EVALUATION TECHNIQUES 

A. Evaluation Measures 
In order to perform the comparisons of the methods 

described, we employed the commonly used evaluation 
measures: True Positive Rate (TPR), shown in equation (9), 
False Positive Rate (FPR), shown in equation (10), and 
Accuracy, shown in equation (11). TP is the number of true 
positive examples. FP is the number of false positive 
examples. TN is the number of true negative examples. FN is 
the number of false negative examples. 

 

)/( FNTPTPTPR +=                          (9) 
 

)/( TNFPFPFPR +=                           (10) 
 

FNFPTNTP
TNTPAccuracy

+++
+

=                (11) 

 
Additionally we used Receiver Operating Characteristic 

(ROC) curves in order to evaluate different methods. An ROC 
curve is a graphical representation of the trade off between the 
false negative and false positive rates for every possible cut 
off. Equivalently, the ROC curve is the representation of the 
tradeoffs between Sensitivity and Specificity. 

B. Causal Indexes Analysis 
The Causal Indexes (CI) method estimates the influence of 

each input feature on the classification output. The quasi-
quantitative influence of each input on each output is 
calculated based on the connection weights of a trained ANN 
[17]. The CI is calculated as the sum of the product of all 
“pathways” between each input to each output: 

 

∑
=

⋅=
n

j
jkijik wwCI

1

                             (12) 

 
Equation (12) presents the basic formula of the CI, from 

input i to output k. wij is the connection weight from input i to 
the hidden neuron j. wjk is the connection weight from hidden 
neuron j to output k. The product of these is computed for all 
the n hidden neurons. The CI reveals the influence direction 
(positive or negative) and the relative magnitude of the 
relationship of any input and any output.  

V. EXPERIMENTAL SEQUENCE 
We performed two types of experiments. First, we 

evaluated several feature selection methods, as a 
preprocessing stage. Second, we evaluated several temporal 
representations.  

A.  Feature Selection Experiments 
The aim of these experiments was to find the best of the 

three different feature selection methods: Hidden neurons 

relative variance based method, Fisher’s score, and Gain 
Ratio. Gain Ratio improved the performance of ANN as a 
classification method in [18] more than any other feature 
selection method. In addition to these three feature selection 
methods, we used a common feature extraction method known 
as Principal Component Analysis (PCA) for comparison. For 
each feature selection method we chose six different subsets 
of features ranked by this method: top5, top10, top20, top30, 
top50, and full. We did the same for PCA by choosing the 
most significant principal components. Each of the sets 
contained respectively top 5, 10, 20, 30, 50, and 323 features. 
Thus, the total amount of subsets obtained was 4x6=24. For 
each subset we performed five different experiments. In each 
experiment one of the five different worms was removed from 
the training set. During each experiment we trained the ANN 
using a dataset constructed from the instances of four worms 
and 80% of the clean instances. The test set contained only 
instances of the fifth worm and an additional 20% of clean 
instances. Thus, the total number of experiments in this 
section was 4x6x5=120. Note that the test sets on which the 
ANN was tested contained only a new worm, which did not 
appear in the training set.  

 

B. Temporal Analysis Experiments 
After the best feature selection algorithm was identified, we 

examined the potential of improving the detection 
performance by using different temporal representation 
techniques. We used three techniques: Simple sliding window, 
Simple exponential compression, and Poisson exponential 
compression, which were explained earlier in section II.C. 
Using the best feature selection algorithm, we chose the 20 
best attributes. We used the reduced dataset to create three 
different datasets by applying three different temporal 
representation techniques. With each one of these datasets we 
performed five experiments, by moving one worm, out of five, 
from the training set to the test set. As in the feature selection 
case, we included 20% of clean examples in the test set. Thus, 
the total number of experiments was 3x5=15. The sliding 
window size in all experiments was 5; thus the input vector 
size was constant and equal to 20x5=100. 

VI. RESULTS 

A. Feature Selection Results 
The worm classification results using the feature selection 

techniques are summarized in Table II. Each cell represents 
five different experiments, one for each missing worm. The 
values in the cells are the detection accuracy averages of these 
five experiments. It can be seen that Fisher’s score method 
outperformed the other techniques. 
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TABLE II  
WORM CLASSIFICATION WITH FEATURE SELECTION RESULTS 

 Top5 Top10 Top20 Top30 Top50 Full Avg 

R.V. 0.67± 
0.35 

0.71± 
0.35 

0.85± 
0.14 

0.56± 
0.31 

0.77± 
0.23 

0.64± 
0.23 

0.70± 
0.28 

Fisher 0.90± 
0.05 

0.87± 
0.14 

0.84± 
0.21 

0.80± 
0.23 

0.81± 
0.19 

0.61± 
0.35 

0.81± 
0.21 

GR 0.81± 
0.24 

0.86± 
0.23 

0.87± 
0.20 

0.86± 
0.20 

0.60± 
0.34 

0.43± 
0.22 

0.74± 
0.24 

PCA 0.57± 
0.34 

0.71± 
0.37 

0.56± 
0.37 

0.72± 
0.28 

0.74± 
0.32 

0.63± 
0.34 

0.66± 
0.34 

R.V. stands for hidden neurons relative variance method. 
 
Surprisingly, the best accuracy was achieved by using only 

five attributes selected by the Fisher’s score method. The 
average accuracy of new worm detection using these attributes 
is 0.90 as shown in Table II. These five attributes are 
presented in Table III. They are related to memory 
management, and number of system context switches.   

 
TABLE III 

BEST FIVE FEATURES SELECTED BY FISHER’S SCORE 

Attribute № Attribute name Fisher’s 
score 

1 Perf_MemoryPool_Paged_Allocs 23.80 
2 Perf_MemoryCache_Bytes 17.09 
3 Thread_Total_Context_Switches_per_sec 15.24 
4 SystemContext_Switches_per_sec 14.54 
5 Perf_MemorySystem_Driver_Total_Bytes 13.66 

 
In Fig. 1 the averaged ROC curves of each one of four 

feature selection methods are presented. It is obvious that the 
separation level of Gain Ratio is significantly lower than that 
of the other three techniques. However, the separation levels 
of the hidden neurons Relative Variance technique and 
Fisher’s score technique are very close to the separation level 
of PCA.  
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Fig. 1 Averaged ROC curves for four different feature selection 

techniques 
 
The areas under the ROC curves are presented in Table IV. 

Despite the fact that Fisher’s score attained the best accuracy 
value, the Relative Variance method of selecting the reduced 
feature set has the best separation level. 
 

TABLE IV 
THE AREAS UNDER THE ROC CURVES 

Relative Var. Fisher’s score Gain Ratio PCA 
0.90 0.86 0.77 0.86 

B. Causal Index Analysis Results 
The CIs were calculated from the ANN model that used the 

five best features selected by the Fisher’s score method. The 
results are presented in Table V where CIs higher than 5 are 
marked bold and defined high, and those lower than -5 are 
underlined and defined low. The attribute numbers are related 
to these in Table III and the worm numbering is presented in 
Section III. 
 

TABLE V 
CI VALUES OF TOP 5 ATTRIBUTES 

Att. 
№ Clean Worm 

№ 1 
Worm 
№ 2 

Worm 
№ 3 

Worm 
№ 4 

Worm 
№ 5 

1 2.82 -7.23 -12.82 -7.41 9.67 -4.17 
2 6.44 6.86 11.51 -8.99 -6.56 -6.21 
3 -17.20 18.76 -7.65 -7.70 -3.13 -1.91 
4 -15.16 15.57 -16.40 -8.30 1.13 -1.39 
5 -10.85 -0.38 -14.50 2.62 6.68 -3.84 

 
If a certain CI is positive with a relatively high magnitude, 

then the related input influences the related output in the same 
direction, i.e., if the input is high the output will rise also. 
Alternatively, if the CI is negative with a relatively high 
magnitude, then the related input influences the related output 
in the opposite direction, and thus if it is high the output will 
be relatively low. 

From the CI’s presented in Table V the following "rules" 
can be formulated: 

• If 2 is high and ,3,4,5 are low, then Clean 
• If 2, 3 and 4 are high and 1 is low, then DabberA 
• If 2 is high and 1,3,4,5 are low, then SasserC 
• If 1, 2, 3 and 4 are low, then DabormY 
• If 1 and 5 are high and 2 is low, then Padobot 
• If 2 is low and 1,3,4,5 are average then SlakorA 

C. Temporal Analysis Results 
The evaluation results of different temporal preprocessing 

techniques are presented in Table VI. Each cell in this table 
represents the averaged accuracy of five experiments, one for 
each missing worm. Simple Window showed the best results 
in this category, achieving an accuracy of 0.85. As already 
mentioned, we took 20 best attributes selected by Fisher’s 
score as raw data and preprocessed them with different 
preprocessing techniques. Thus, it is interesting to compare 
the accuracy of Simple Window technique, 0.85, to the 
accuracy of regular Fisher’s score with 20 attributes, 0.84. 
Although there is an increase in the accuracy, it is very minor. 
Such a phenomenon can be explained by the fact that it takes a 
very short time for a worm to initialize and after the 
initialization phase it starts to operate in a constant manner. 
Thus, in this case, the temporal preprocessing does not help 
much, but only adds attributes, thus making the ANN more 
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complicated for training. 
 

TABLE VI 
TEMPORAL ANALYSIS RESULTS 

 Averaged accuracy  
Without temp. preprocessing 0.84±0.21 
Simple Window 0.85±0.17 
Simple Exponential 0.83±0.24 
Poisson Exponential 0.81±0.23 

VII. DISCUSSION AND CONCLUSION 
 In this paper we presented three different feature 

selection techniques for selecting computer behavior features 
that can be used for detecting the presence of worms. We 
showed that the accuracy of worm detection may increase 
when the detection process is using only the most important 
features. We presented the five most important attributes and 
derived different rules, related to these attributes, from the 
trained ANN by using the Causal Indices method. 
Additionally, we used three temporal preprocessing 
techniques to see whether they are able increase the accuracy 
of the detection.  

We showed that Fisher’s score, despite its simplicity, 
appears to be a good feature selection method for computer 
behavior data. It demonstrated the best accuracy and minimal 
standard deviation using only the top five features. 
Additionally, we showed that preliminary temporal processing 
does not increase the detection accuracy significantly and may 
even decrease it. This may happen due to the fact that the 
initialization period of the worm is very short and after this 
period of time worm operation is stable and temporal 
preprocessing becomes irrelevant.  

For future work, we propose the evaluation of the system 
using additional types of malwares such as Viruses, Trojans 
and so on. 
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