
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2887

Abstract—Computer worm detection is commonly performed by

antivirus software tools that rely on prior explicit knowledge of the
worm’s code (detection based on code signatures). We present an
approach for detection of the presence of computer worms based on
Artificial Neural Networks (ANN) using the computer's behavioral
measures. Identification of significant features, which describe the
activity of a worm within a host, is commonly acquired from security
experts. We suggest acquiring these features by applying feature
selection methods. We compare three different feature selection
techniques for the dimensionality reduction and identification of the
most prominent features to capture efficiently the computer behavior
in the context of worm activity. Additionally, we explore three
different temporal representation techniques for the most prominent
features. In order to evaluate the different techniques, several
computers were infected with five different worms and 323 different
features of the infected computers were measured. We evaluated
each technique by preprocessing the dataset according to each one
and training the ANN model with the preprocessed data. We then
evaluated the ability of the model to detect the presence of a new
computer worm, in particular, during heavy user activity on the
infected computers.

Keywords—Artificial Neural Networks, Feature Selection,

Temporal Analysis, Worm Detection.

I. INTRODUCTION
HE detection of malicious code transmitted over computer
networks has been substantially researched during the past

years. Commonly, the term “malicious code” (malcode) refers
to different types of codes, such as executables or scripts,
which contain some code having a malicious purpose. One

Manuscript received August 30, 2006.
This work was supported by Deutsche Telekom Co.
Dima Stopel (corresponding author) is an M.Sc. student, Deutsche

Telekom Laboratories at Ben-Gurion University, Be’er Sheva, 84105 Israel.
(phone: +972-54-5959320; email: stopel@cs.bgu.ac.il).

Zvi Boger, president of OPTIMAL – Industrial Neural Systems Ltd., Be’er
Sheva, 84243 Israel (e-mail: zboger@bgu.ac.il).

Robert Moskovitch, Ph.D. student, Deutsche Telekom Laboratories at Ben-
Gurion University, Be’er Sheva, 84105 Israel; email: robertmo@bgu.ac.il

Yuval Shahar, Deutsche Telekom Laboratories at Ben-Gurion University,
Head of the Department of Information Systems Engineering, Ben-Gurion
University of the Negev, Be’er Sheva, 84105 Israel (e-mail:
yshahar@bgu.ac.il).

Yuval Elovici, Deutsche Telekom Laboratories at Ben-Gurion University,
Head of the Software Engineering program, Ben-Gurion University of the
Negev, Be’er Sheva, 84105 Israel (e-mail: elovici@inter.net.il).

type of malcode is worms, which actively propagate,
exploiting vulnerability in the operating system, through
communication protocols. Other types of malcode are viruses,
which inject their code into an innocent file (a host) and are
activated whenever the file is executed. Unlike worms, viruses
require user intervention to propagate. Other recently
disseminated malicious codes include Trojans, which are
computer programs that have a useful functionality but also
have some hidden malicious goal, and backdoors, which
enable remote access and control with the aim of gaining full
or partial access to the infected system.

Nowadays, known malcodes are mainly detected and
removed by antiviruses. Antiviruses search the executables for
known patterns, also called signatures. Antiviruses are
helpless when facing an unknown malicious executable. After
the appearance of the new worm, a new signature is created by
the antivirus system company. The antivirus signature base is
periodically updated. However, since worms spread rapidly,
the signature update action is often taken too late, and
expensive damage may already have been done by the worm.
Trojans and backdoors have other malicious motivations, such
as economic, terrorist, or criminal. They are commonly
installed on a relatively small number of hosts, and thus do not
attract the attention of antivirus systems and remain
undetected. For example, a student can demonstrate a problem
he encountered in his homework using a portable memory
device on his/her professor's computer. During this
demonstration the student installs a backdoor that allows him
to access the professor's computer and search for a copy of an
upcoming examination.

A recent survey of intrusion detection [1] suggests using
artificial intelligence (AI) techniques to recognize malicious
software (malware) in single computers and in computer
networks. It describes the research done in developing these
AI techniques, and discusses their advantages and limitations.
One of the critical requirements of such an AI technique is
that it operates efficiently in real-time.

One of the AI techniques mentioned in this survey is
Artificial Neural Networks (ANN). Other research studies
referenced in the survey used the Self Organizing Map (SOM)
method [2]-[4], the main challenge of which as reported by
the authors was overcoming the high dimensional inputs.
Linear techniques, such as Principle Component Analysis
(PCA), Singular Value Decomposition or Support Vector

Improving Worm Detection with Artificial
Neural Networks through Feature Selection and

Temporal Analysis Techniques
Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, and Yuval Elovici

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2888

Machine [5], [6] are used to reduce the input dimensionality
and may result in a less accurate modeling.

Other aspects discussed in the survey [1] were the detection
of an intrusion or a malware presence by analyzing executable
files on local storage devices [7], analyzing the content of the
packets sent or received by the computer [8,2], or looking at
the system calls that were invoked by processes running on
the system [9].

In this study a different approach is suggested. The
detection of the presence of a malware in a computer is
performed by analyzing the overall computer behavior. We
define the computer behavior by a variety of different values
which can be measured in the computer while it is operating.

The main ANN advantages are a high level of accuracy in
real-time operation, low CPU resources utilization during the
classification phase, and the ability to generalize, in order to
detect and identify, any previously unseen classes. The fact
that worms propagate very fast on networks makes them one
of the most challenging malwares. Fast detection of computers
infected with worms is critically important on local networks.
For these reasons we propose employing ANN for the
detection of worm activity in real time.

It was already shown in our previous work that the
detection of new worms using ANN techniques is possible
and effective [10]. However, continuous monitoring of large
number of measured features may demand a significant part of
the computational resources. In this work we reduce the
number of features significantly by using various feature
selection techniques, while increasing the detection accuracy.
We use the Causal Indices (CI) technique to estimate the
contribution of each input feature to each classification output.
Additionally, we evaluate the effect of several temporal
analysis preprocessing techniques on the detection problem.

The structure of this paper is as follows: In section II the
classification, feature selection and temporal analysis methods
are described. In section III we describe the creation of the
datasets we used in the study. In section IV we present the
techniques we used to evaluate the different methods, and we
describe the CI technique in this section. Section V describes
the experimental sequence and the purpose of each particular
experiment. In section VI we present the results of the
experiments. In section VII we discuss the experiment results
and conclude with recommendations for further research.

II. CLASSIFICATION, FEATURE SELECTION AND TEMPORAL
ANALYSIS METHODS

A. Classification Method
We used a typical feed forward neural network, together

with the Levenberg-Marquardt training method [11]. The
number of hidden neurons was set empirically to six.

B. Feature Selection Techniques
Generally, there are two different approaches to feature

selection: the wrapper and the filter approach. The wrapper
approach searches for the optimal subset of features of a given
dataset, for a specific classification algorithm. The main

drawback of this approach is the relatively long computation
time. The filter approach ranks the features according to a
certain measure independent of any classification algorithm.
Thus, after the calculation of ranks, one can use any subset of
features based on their ranks.

For features selection we used three different filter
techniques. These techniques are described below.

1) The relation between the inputs and the hidden neuron’s

relative variance
This knowledge extraction and dimensionality reduction

technique involves ranking the inputs according to their
relevance to the ANN prediction accuracy. It is based on the
observation that in a trained ANN model a less relevant input
contributes a small proportion of the variance in the hidden
layer neuron’s activities. This may be the result of either the
small relative variance of the input value or the small final
connection weights to all hidden neurons assigned to this
input by the trained ANN.

 The contribution of an input i to the total variance of the
hidden layer inputs is presented in (1). The (WH)i

 T is the i’th
row of the transpose of WH, i.e., the i’th column of the input-
to-hidden connection weights expressed as a row vector; R is
the covariance matrix for the network inputs x, estimated from
the training set.

T
iH

T
iHiI RWWV)()(= (1)

The relative contribution of an input i to the variance of the

hidden layer inputs is calculated using (2). In (2) j is the index
of each one of the n hidden neurons.

∑
=

= n

j
jI

iIrel
iI

V

V
V

1
)(

)(
)((2)

The less contributing inputs can be discarded and the ANN

re-trained with the reduced input set, often yielding better
prediction accuracy. This technique is described in detail in
[12].

2) The Fisher score ranking
The Fisher score ranking technique calculates the

difference, described in terms of mean and standard deviation,
between the positive and negative examples relative to a
certain feature. Equation (3) defines the Fisher score, in which
Ri is the rank of feature i, describing the proportion of the
substitution of the mean of the feature i values in the positive
examples (p) and the negative examples (n), and the sum of
the standard deviation. The bigger the Ri, the bigger the
difference between the values of positive and negative
examples relative to feature i; thus, this feature is more
important for separating the positive and negative examples.
This technique is described in detail in [13].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2889

nipi

nipi
iR

,,

,,

σσ

μμ

+

−
= (3)

3) Gain Ratio Filter
The Gain Ratio measure is based on the Information Gain

(IG) measure, which is based on measuring the relative
entropy reduction. This method requires discretization to be
applied to the continuous data in advance. Equation (4)
defines the classic entropy measure, in which S is the entire
dataset, C is the class attribute, and Sc is a subset of S in which
the value of C is c.

S
S

S
S

SE c

Cc

c
2log)(∑

∈

−= (4)

Equation (5) defines the IG rank. IG shows how much

information we gain by splitting the dataset relative to
attribute A. In this equation, V(A) is the set of unique values of
attribute A, and Sv is the subset of S in which the value of
attribute A is v.

)()(),(
)(

v
AVv

v SE
S
S

SEASIG ∑
∈

−= (5)

The problem of the IG method is that it gives higher ranks

to attributes with a large number of unique values, i.e., V(A) is
high. Gain Ratio overcomes this bias by using an extra term
which represents the way an attribute splits the data. Equation
(6) defines this special term and (7) defines the ranking of
Gain Ratio.

S
S

S
S

ASSI v

AVv

v
2

)(

log),(∑
∈

−= (6)

),(
),(),(

ASSI
ASIGASGR = (7)

When SI(S,A) is zero, it is defined as equal to IG(S,A).

Additional information about this technique can be found in
[14].

C. Temporal Analysis Techniques
Since worm propagation involves a temporal characteristic,

we thought about improving the detection accuracy by
considering the temporal dimension. We present three
temporal analysis techniques which use different types of
sliding windows. We evaluated these temporal techniques
using the reduced datasets that are based on the most-
contributive features selected at the feature selection stage.
The challenge here is to represent the temporal dimension

authentically while using a static classification algorithm. All
three techniques are described below.

1) Simple sliding window
This technique proposes constructing a single window from

the given dataset. Given a window size k, the new instance
will include k original sequential instances. For example, with
a dataset having instances [1,2,3,4,5] and window size k=3 we
create three instances: [1,2,3], [2,3,4], and [3,4,5],
respectively. However, note that the current instance will
include k multiplied by n attributes, where n is the number of
attributes in an original instance.

2) Simple exponential compression
While being simple, the drawback of the simple sliding

window representation is that the number of instances in each
window grows linearly with the size of the window (k).
Working with many instances could be problematic due to the
long computation times. The simple exponential compression
(SEC) technique overcomes this problem by averaging the
“older” instances. The number of averaged instances will be
2n where n is the place in the window starting with zero. For
example, with a dataset [1,2,3,4,5,6,7] and a window size of 3
the resulting one instance will look as follows: [7, avg(5,6),
avg(1,2,3,4)] where 7 is the “youngest” original instance.
Generally speaking, each instance represents precisely the
current features values, and in a more abstractive and
summarized representation, the earlier values. Thus, the
number of original instances the window covers grows
exponentially with the size of the window (k).

3) Poisson exponential compression
We propose a technique that we have named Poisson

exponential compression (PEC). The PEC technique is similar
to SEC in the way that the instances are compressed in an
exponential rate. However, this technique does not show
precisely the “youngest” instances but the instances with
higher Poisson probability density function (PDF). Poisson
PDF is presented in (8). k is the index of the instance starting
from the “youngest,” λ is a constant and was 2 in the
experiment, and e is the base of the natural logarithm.

λλ −= e
k

kR
k

!
)((8)

The motivation for using such a technique was the

hypothesis that the most important instance in the window is
not necessarily the “youngest.” The amount of averaged
instances in place n is still 2n. For example, having a dataset
[1,2,3,4,5,6,7] where 7 is the “youngest” instance, we can
calculate the array of ranks, using the Poisson PDF, which
will be [0.01,0.04,0.09,0.18,0.27,0.27,0.14]. Now, given a
window size of 3, the resulting one instance will look as
follows: [6, avg(5,4), avg(1,2,3,7)].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2890

III. DATASET DESCRIPTION
Since no public standard dataset was available for this

study, we had to create our own dataset. We created a
computer network environment consisting of a variety of
computers (configurations). We injected worms into the
network environment, and monitored various computer
features in each of the infected and non-infected computers.

The computer network environment consisted of seven
computers, which contained heterogenic hardware, and a
server simulating the Internet.

We used the MS Windows performance tool, which enables
monitoring of system features that appear in these main
categories: Internet Control Message Protocol (ICMP),
Internet Protocol (IP), Memory, Network Interface, Physical
Disk, Processes, Processor, System, Transport Control
Protocol (TCP), Threads, User Datagram Protocol (UDP).
We also used VTrace [15], a software tool which can be
installed on a PC running Windows. VTrace collects traces of
the file system, the network, the disk drive, processes, threads,
inter-process communication, writable objects, cursor
changes, windows, and the keyboard. The Windows
performance tool was configured to measure the features
every second and store them in a log file as vectors. VTrace
stored time-stamped events, which were collected into a
second file. Both files were merged and contained a vector of
323 features for every second.

In order to perform the evaluation in a realistic
environment, we considered three major aspects: computer
hardware configuration, constant background application
requiring high computational resources, and user activity. For
each dataset related to an aspect the data were collected when
each one of the five worms was injected separately, for a
constant length of time. In addition there was a time period in
which no worm was activated. In the rest of the paper we will
refer to this clean period as a state named "Clean." The
resulting datasets were combined into a single dataset.

Computer hardware configuration: Both computers ran MS
Windows XP, since we considered it to be the most commonly
used operating system. There were two configurations: old,
using a PC based on Pentium III 800 MHz CPU, bus speed
133 MHz and memory 512 Mb, and new, using a PC based on
Pentium IV 3 GHz CPU, bus speed 800 MHz and memory 1
GB.

Background application activity: There were two
configurations: with background application activity and
without. We ran the WEKA mathematical processing
application software [16] which mainly effected the following
features: Processor Time (usage of 100%); Page Faults/sec;
Avg Disk Bytes/Transfer; Avg Disk Bytes/Write; Disk
Writes/sec.

User activity: A user opened several applications, including
Internet Explorer, Word, Excel MSN messenger, and
Windows Media Player in a scheduled order. There were two
configurations: with user activity and without. The exact
schedule of the user activity is described in Table I.

TABLE I
USER ACTIVITY SCHEDULE

Time period User operations
0-5 minutes - Opening 10 MS Word instances

- Downloading two files simultaneously
5-10 minutes - Opening 5 instances of MS Excel

- Generating random number in MS Excel
- One file downloading
- Listening to internet radio

10-15 minutes - Opening 12 instances of MS Word
- Downloading one file

15-20 minutes - Opening 9 instances of MS Excel
- Generating random numbers in MS Excel
- Browsing the internet (using MS IE)

In each time period all the user operations were performed simultaneously.

During the evaluation we used five different real worms.

The description of each one is presented below.

1. Dabber.A (Daber.A)
This worm scans networks for random IP addresses,

searching for victim machines that have the ftp component of
the Sasser worm installed on port 5554.

When the worm finds a suitable victim machine, it sends a
vulnerability exploit to it to infect the system. It then launches
the command shell on port 8967. It also installs a backdoor on
port 9898 to receive external commands.

2. W32.Sasser.D (Sasser.C)
This worm spreads by generating random IP addresses

using 128 threads. The IP addresses are generated so that 48%
of them should be close to the current computer by using the
current computer's IP and 52% of them completely random. It
connects to the remote computer using TCP port 445 and if
the connection is established, a remote shell is opened. The
remote shell is used to connect to the infected computer's FTP
server and transfer the worm.

3. W32.Deborm.Y (DebormY)
This worm scans the local network and tries to propagate to

other computers on the local network. It attempts to share C$
(C drive) using the accounts of the administrator, owner or
guest (it succeeds if a certain account does not have a
password).

4. W32.Korgo.X (PadobotKorgoX)
This worm generates random IP addresses and exploits the

LSASS Buffer overrun vulnerability using TCP port 445. If it
succeeds in taking over a computer, the newly infected
computer will send a request to download the worm from the
infecting computer by using a random TCP port.

5. Slackor.A (Slackor.A)
When the Slackor worm is run, it sends a SYN TCP packet

to randomly generated IP addresses through port 445 to search
for the systems using Server Message Block (SMB). It then
attempts to connect to the Windows default shares on these
systems by using the username and password pair that it
carries. If successful, it tries to copy the worm to the system.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2891

IV. EVALUATION TECHNIQUES

A. Evaluation Measures
In order to perform the comparisons of the methods

described, we employed the commonly used evaluation
measures: True Positive Rate (TPR), shown in equation (9),
False Positive Rate (FPR), shown in equation (10), and
Accuracy, shown in equation (11). TP is the number of true
positive examples. FP is the number of false positive
examples. TN is the number of true negative examples. FN is
the number of false negative examples.

)/(FNTPTPTPR += (9)

)/(TNFPFPFPR += (10)

FNFPTNTP
TNTPAccuracy

+++
+

= (11)

Additionally we used Receiver Operating Characteristic

(ROC) curves in order to evaluate different methods. An ROC
curve is a graphical representation of the trade off between the
false negative and false positive rates for every possible cut
off. Equivalently, the ROC curve is the representation of the
tradeoffs between Sensitivity and Specificity.

B. Causal Indexes Analysis
The Causal Indexes (CI) method estimates the influence of

each input feature on the classification output. The quasi-
quantitative influence of each input on each output is
calculated based on the connection weights of a trained ANN
[17]. The CI is calculated as the sum of the product of all
“pathways” between each input to each output:

∑
=

⋅=
n

j
jkijik wwCI

1

 (12)

Equation (12) presents the basic formula of the CI, from

input i to output k. wij is the connection weight from input i to
the hidden neuron j. wjk is the connection weight from hidden
neuron j to output k. The product of these is computed for all
the n hidden neurons. The CI reveals the influence direction
(positive or negative) and the relative magnitude of the
relationship of any input and any output.

V. EXPERIMENTAL SEQUENCE
We performed two types of experiments. First, we

evaluated several feature selection methods, as a
preprocessing stage. Second, we evaluated several temporal
representations.

A. Feature Selection Experiments
The aim of these experiments was to find the best of the

three different feature selection methods: Hidden neurons

relative variance based method, Fisher’s score, and Gain
Ratio. Gain Ratio improved the performance of ANN as a
classification method in [18] more than any other feature
selection method. In addition to these three feature selection
methods, we used a common feature extraction method known
as Principal Component Analysis (PCA) for comparison. For
each feature selection method we chose six different subsets
of features ranked by this method: top5, top10, top20, top30,
top50, and full. We did the same for PCA by choosing the
most significant principal components. Each of the sets
contained respectively top 5, 10, 20, 30, 50, and 323 features.
Thus, the total amount of subsets obtained was 4x6=24. For
each subset we performed five different experiments. In each
experiment one of the five different worms was removed from
the training set. During each experiment we trained the ANN
using a dataset constructed from the instances of four worms
and 80% of the clean instances. The test set contained only
instances of the fifth worm and an additional 20% of clean
instances. Thus, the total number of experiments in this
section was 4x6x5=120. Note that the test sets on which the
ANN was tested contained only a new worm, which did not
appear in the training set.

B. Temporal Analysis Experiments
After the best feature selection algorithm was identified, we

examined the potential of improving the detection
performance by using different temporal representation
techniques. We used three techniques: Simple sliding window,
Simple exponential compression, and Poisson exponential
compression, which were explained earlier in section II.C.
Using the best feature selection algorithm, we chose the 20
best attributes. We used the reduced dataset to create three
different datasets by applying three different temporal
representation techniques. With each one of these datasets we
performed five experiments, by moving one worm, out of five,
from the training set to the test set. As in the feature selection
case, we included 20% of clean examples in the test set. Thus,
the total number of experiments was 3x5=15. The sliding
window size in all experiments was 5; thus the input vector
size was constant and equal to 20x5=100.

VI. RESULTS

A. Feature Selection Results
The worm classification results using the feature selection

techniques are summarized in Table II. Each cell represents
five different experiments, one for each missing worm. The
values in the cells are the detection accuracy averages of these
five experiments. It can be seen that Fisher’s score method
outperformed the other techniques.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2892

TABLE II
WORM CLASSIFICATION WITH FEATURE SELECTION RESULTS

 Top5 Top10 Top20 Top30 Top50 Full Avg

R.V. 0.67±
0.35

0.71±
0.35

0.85±
0.14

0.56±
0.31

0.77±
0.23

0.64±
0.23

0.70±
0.28

Fisher 0.90±
0.05

0.87±
0.14

0.84±
0.21

0.80±
0.23

0.81±
0.19

0.61±
0.35

0.81±
0.21

GR 0.81±
0.24

0.86±
0.23

0.87±
0.20

0.86±
0.20

0.60±
0.34

0.43±
0.22

0.74±
0.24

PCA 0.57±
0.34

0.71±
0.37

0.56±
0.37

0.72±
0.28

0.74±
0.32

0.63±
0.34

0.66±
0.34

R.V. stands for hidden neurons relative variance method.

Surprisingly, the best accuracy was achieved by using only

five attributes selected by the Fisher’s score method. The
average accuracy of new worm detection using these attributes
is 0.90 as shown in Table II. These five attributes are
presented in Table III. They are related to memory
management, and number of system context switches.

TABLE III

BEST FIVE FEATURES SELECTED BY FISHER’S SCORE

Attribute № Attribute name Fisher’s
score

1 Perf_MemoryPool_Paged_Allocs 23.80
2 Perf_MemoryCache_Bytes 17.09
3 Thread_Total_Context_Switches_per_sec 15.24
4 SystemContext_Switches_per_sec 14.54
5 Perf_MemorySystem_Driver_Total_Bytes 13.66

In Fig. 1 the averaged ROC curves of each one of four

feature selection methods are presented. It is obvious that the
separation level of Gain Ratio is significantly lower than that
of the other three techniques. However, the separation levels
of the hidden neurons Relative Variance technique and
Fisher’s score technique are very close to the separation level
of PCA.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Rel Var
Fisher
GainRatio
PCA

Fig. 1 Averaged ROC curves for four different feature selection

techniques

The areas under the ROC curves are presented in Table IV.

Despite the fact that Fisher’s score attained the best accuracy
value, the Relative Variance method of selecting the reduced
feature set has the best separation level.

TABLE IV
THE AREAS UNDER THE ROC CURVES

Relative Var. Fisher’s score Gain Ratio PCA
0.90 0.86 0.77 0.86

B. Causal Index Analysis Results
The CIs were calculated from the ANN model that used the

five best features selected by the Fisher’s score method. The
results are presented in Table V where CIs higher than 5 are
marked bold and defined high, and those lower than -5 are
underlined and defined low. The attribute numbers are related
to these in Table III and the worm numbering is presented in
Section III.

TABLE V
CI VALUES OF TOP 5 ATTRIBUTES

Att.
№ Clean Worm

№ 1
Worm
№ 2

Worm
№ 3

Worm
№ 4

Worm
№ 5

1 2.82 -7.23 -12.82 -7.41 9.67 -4.17
2 6.44 6.86 11.51 -8.99 -6.56 -6.21
3 -17.20 18.76 -7.65 -7.70 -3.13 -1.91
4 -15.16 15.57 -16.40 -8.30 1.13 -1.39
5 -10.85 -0.38 -14.50 2.62 6.68 -3.84

If a certain CI is positive with a relatively high magnitude,

then the related input influences the related output in the same
direction, i.e., if the input is high the output will rise also.
Alternatively, if the CI is negative with a relatively high
magnitude, then the related input influences the related output
in the opposite direction, and thus if it is high the output will
be relatively low.

From the CI’s presented in Table V the following "rules"
can be formulated:

• If 2 is high and ,3,4,5 are low, then Clean
• If 2, 3 and 4 are high and 1 is low, then DabberA
• If 2 is high and 1,3,4,5 are low, then SasserC
• If 1, 2, 3 and 4 are low, then DabormY
• If 1 and 5 are high and 2 is low, then Padobot
• If 2 is low and 1,3,4,5 are average then SlakorA

C. Temporal Analysis Results
The evaluation results of different temporal preprocessing

techniques are presented in Table VI. Each cell in this table
represents the averaged accuracy of five experiments, one for
each missing worm. Simple Window showed the best results
in this category, achieving an accuracy of 0.85. As already
mentioned, we took 20 best attributes selected by Fisher’s
score as raw data and preprocessed them with different
preprocessing techniques. Thus, it is interesting to compare
the accuracy of Simple Window technique, 0.85, to the
accuracy of regular Fisher’s score with 20 attributes, 0.84.
Although there is an increase in the accuracy, it is very minor.
Such a phenomenon can be explained by the fact that it takes a
very short time for a worm to initialize and after the
initialization phase it starts to operate in a constant manner.
Thus, in this case, the temporal preprocessing does not help
much, but only adds attributes, thus making the ANN more

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2893

complicated for training.

TABLE VI
TEMPORAL ANALYSIS RESULTS

 Averaged accuracy
Without temp. preprocessing 0.84±0.21
Simple Window 0.85±0.17
Simple Exponential 0.83±0.24
Poisson Exponential 0.81±0.23

VII. DISCUSSION AND CONCLUSION
 In this paper we presented three different feature

selection techniques for selecting computer behavior features
that can be used for detecting the presence of worms. We
showed that the accuracy of worm detection may increase
when the detection process is using only the most important
features. We presented the five most important attributes and
derived different rules, related to these attributes, from the
trained ANN by using the Causal Indices method.
Additionally, we used three temporal preprocessing
techniques to see whether they are able increase the accuracy
of the detection.

We showed that Fisher’s score, despite its simplicity,
appears to be a good feature selection method for computer
behavior data. It demonstrated the best accuracy and minimal
standard deviation using only the top five features.
Additionally, we showed that preliminary temporal processing
does not increase the detection accuracy significantly and may
even decrease it. This may happen due to the fact that the
initialization period of the worm is very short and after this
period of time worm operation is stable and temporal
preprocessing becomes irrelevant.

For future work, we propose the evaluation of the system
using additional types of malwares such as Viruses, Trojans
and so on.

ACKNOWLEDGMENT
This work was done as a part of a Deutsche-Telekom Co.

/Ben-Gurion University joint research project.
We would like to thank Clint Feher, for providing the worm

software and for creating the large number of security datasets
we used in this study.

REFERENCES
[1] P. Kabiri and A.A. Ghorbani, "Research on intrusion detection and

response: A survey," International Journal of Network Security, vol.
1(2) Sept. 2005, pp. 84-102.

[2] S. Zanero and S.M. Savaresi, “Unsupervised learning techniques for an
intrusion detection system,” Proc. 2004 ACM symposium on Applied
Computing, 2004, pp. 412–419.

[3] H.G. Kayacik, A.N. Zincir-Heywood and M.I. Heywood “On the
capability of an SOM based intrusion detection system,” Proc. Int. Joint
Conf. Neural Networks Vol. 3, 2003, pp. 1808–1813.

[4] J. Z. Lei and A. Ghorbani, “Network intrusion detection using an
improved competitive learning neural network,” Proc. Second Annual
Conf. Communication Networks and Services Research (CNSR04),
2004, pp. 190–197.

[5] P. Z. Hu and Malcolm I. Heywood, “Predicting intrusions with local
linear model,” Proc. Int. Joint Conf. Neural Networks, Vol. 3, 2003, pp.
1780–1785.

[6] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection using
neural networks and support vector machines,” Proc. High Performance
Computing Symposium - HPC 2002, pp 178-183.

[7] I. Yoo. “Visualizing windows executable viruses using self-organizing
maps,” Proc. 2004 ACM Workshop on Visualization and Data Mining
for Computer Security. 2004.

[8] U. Ultes-Nitsche and I. Yoo. “An Integrated Network Security
Approach: Pairing Detecting Malicious Patterns with Anomaly
Detection,” Proc. Conference on Korean Science and Engineering
Association in UK.

[9] Z. Liu, S.M. Bridges and R.B. Vaughn “Classification of anomalous
traces of privileged and parallel programs by neural networks,” Proc.
FuzzIEEE 2003, pp. 1225-1230.

[10] D. Stopel, Z. Boger, R. Moskovitch, Y. Shahar and Y. Elovici.
"Application of Artificial Neural Networks Techniques to Computer
Worm Detection," Proc. International Joint Conference on Neural
Networks, Vancouver, 2006.

[11] M.B. Hagan, M.T. Menhaj. "Training feed forward networks with the
Marquardt algorithm," IEEE Transactions on Neural Networks, Vol.
5(6), 1994, pp. 989-993.

[12] Z. Boger. “Selection of the quasi-optimal inputs in chemometric
modeling by artificial neural network analysis,” Analytica Chimica Acta
490(1-2) (2003) 31-40

[13] T. Golub, D. Slonim, P. Tamaya, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E.
Lander. “Molecular classification of cancer: Class discovery and class
prediction by gene expression monitoring,” Science, 286:531-537, 1999.

[14] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[15] J. Lorch, A. J. Smith. “The VTrace tool: building a system tracer for

Windows NT and Windows 2000,” MSDN Magazine, 15(10):86–102,
October 2000.

[16] I.H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco,
2005.

[17] K. Baba, I. Enbutu, M. Yoda. "Explicit representation of knowledge
acquired from plant historical data using neural network," Proc.
International Joint Conference on Neural Networks, Vol. 3 (1990) 155-
160

[18] (342/2006) R. Moskovitch, I. Gus, S. Pluderman, D. Stopel, C. Glezer,
Y. Shahar, Y. Elovici. “Detection of Unknown Computer Worms
Activity Based on Computer Behavior using Machine Learning
Techniques,” Department of Information System Engineering, Ben-
Gurion University of the Negev, Israel (2006)

