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Abstract—Tribological behavior and wear regimes of ascast 

and heattreted Al-Cu-Mg matrix composites containing SiC 
particles were studied using a pin-on-disc wear testing apparatus 
against an EN32 steel counterface giving emphasis on wear rate as 
a function of applied pressures (0.2, 0.6, 1.0 and 1.4 MPa) at 
different sliding distances (1000, 2000, 3000, 4000 and 5000 
meters) and at a fixed sliding speed of 3.35m/s. The results showed 
that the composite exhibited lower wear rate than that of the matrix 
alloy and the wear rate of the composites is noted to be invariant to 
the sliding distance and is reducing by heat treatment. Wear 
regimes such as low, mild and severe wear were observed as per the 
Archard’s wear calculations. It is very interesting to note that the 
mild wear is almost constant in all the wear regimes. 

 
Keywords—Aluminum, matrix, regimes, wear.  

I. INTRODUCTION 
LUMINUM matrix composites (AMCs) are becoming 
potential engineering materials offering excellent 

combination of properties [1-2]. Because of their excellent 
combination of properties, AMCs have been emerged as 
advanced materials for several applications in automobile, 
aerospace, defense and other engineering sectors [2-6]. 
Indeed, these promising new materials have found wide 
range of application in automobile industries in the recent 
years in order to improve the fuel efficiency. Out of different 
automobile components, AMCs have been found to be a 
more promising material, in brake drum, cylinder blocks, 
cylinder liners etc. [1-6]. In aerospace industries, Al 
composites are used essentially in structural applications 
such as helicopter parts, rotor vanes in compressors and in 
aero-engines [5]. The performance of these components is 
based primarily on their wear and friction characteristics. In 
recent times, attention is being paid to the use of high 
strength Al-Cu-Mg alloys for structural applications in 
aerospace and general engineering sectors etc. Attempts have 
been made to examine the effect of sliding distance on wear 
behavior of as cast and heatreated aluminum alloy 
composites [5, 6]. 

As for the mechanical and physical factors (such as sliding 
velocity and normal load), showed wear mechanism and 
wear map of MMCs Miyajima et.al [7].  Alpas and Zhang [8] 
investigated the effect of particle reinforced MMCs under 
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different applied load and identified three different wear 
regimes. At low load regime (regime I), the particles support 
the applied load. The wear resistance of MMCs is in order of 
magnitude better than aluminum alloy. At regime II, wear 
rates of MMCs and Al alloy were similar. At high load and 
the transition to severe wear (regime III), the surface 
temperatures exceed a critical value. And reinforcements 
increased the transition load to severe wear. Rao et.al [9] 
clearly demonstrated the strong interaction between load and 
sliding velocity in causing wear of a material. Wilson and 
Alpas [10] represented wear mechanism maps for A356 
alloy/SiC composites. According to these investigators, four 
wear regimes were observed in the composites and the alloy 
depending on speed and applied load. They are mild wear, 
mixing and oxidative wear, delamination wear and severe 
wear. Alpas and Zhang [8] noted three distinct regions of 
wear as a function of load. In the low load regime, the type 
of wear is designated as oxidative wear in which the oxide 
Al surface layer is removed during sliding process. In the 
medium load regimes, the wear of material is designated as 
mild wear in which the loss of material is dictated by 
asperity-to-asperity contact. However, in high load regime, 
the wear of material is controlled essentially by subsurface 
deformation and fracturing of the surface as proposed by Suh 
[11]. In general, it is observed that the wear of the composite 
is reported less as compared to that of the alloy.  

 Das et.al [12] demonstrated that the Heattreated 
composites were found to possess superior wear properties 
as compared with those of diecast composites and matrix 
alloys.  Lin et.al [13] reported that the tribological behavior 
of the composites in the T6 heat-treated condition is better 
than in the annealed condition or than that of the 
unreinforced alloy. The wear weight loss is reduced with 
increasing content of graphite particulates and sliding speed. 
Hassan et.al [14] demonstrated that the wear loss of the 
copper containing alloys was less than that for the copper 
free alloys. It was observed that the volume losses in wear 
test of Al–Mg–Cu alloy decrease continuously up to 5%. 
Also it was found that the silicon carbide particles play a 
significant role in improving wear resistance of the Al–Mg–
Cu alloying system. Singh et.al [15] observed that the 
composite exhibited lower wear rate than that of the matrix 
alloy. Increasing applied load increased the wear rate. In the 
case of the composite, the wear rate decreased with speed 
except at higher pressures at the maximum speed; the trend 
reversed in the latter case. Jha et.al [16], the effects of 
varying sliding speed and distance, applied pressure and 
material characteristics, as well as the amount of graphite, on 
the dry sliding behaviour have been evaluated. The wear 
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(d) 

 

 
(e) 

Fig. 3 Wear rate vs. applied pressure diagram for alloy and 
composite (a) Distance: 1000 m (b) Distance: 2000 m (c) Distance: 
3000 m (d) Distance: 4000 m and (d) Distance: 5000 m;  (Sliding 

Velocity : 3.35 m/s) 

IV. DISCUSSION 
Wear volume of a material as a function of hardness and 

applied pressure is expressed by Archard’s [20] wear 
equation  

Q = KW/H                                   (1) 
 

Where Q = volume removed from the surface by wear per 
unit sliding distance, H = indentation hardness of the softer 
surface, W = normal pressure applied between the surface, K 
is Archard’s wear coefficient is dimensionless always less 
than unity. The value of K provides valuable means of 
comparing severity of different wear processes. For sliding 
wear of metals typical values of K for the mild wear of 
metals are 10-4 to 10-6, while K becomes 10-3 to 10-2 for 
severe wear. 

Sliding wear is related to asperity to asperity contact. In 
the initial stage asperities of the softer materials get 
deformed or fractured and as time progressed there is a 
possibility of obtaining smoother surface. It is also reported 
that material from the softer surface may be transferred to 
the harder one and vise a versa. Thus, with increasing in 
sliding distance effective contact area, surface roughness and 
surface chemistry etc. changes, which lead to variation in 
wear rate with sliding distance. However, different kinds of 
trend of variation in wear with sliding distance is reported by 

different investigators [8-12]. Wang and Rack [21] observed 
that mixed behavior of wear rate of AMCs with sliding 
distance depending on speed, type and orientation of 
reinforcement. According to these investigation AMCs 
exhibit steady state wear rate within the entire range of 
sliding distance (up to 3000 m) when the sliding speed is less 
than 0.36 m/s. At higher sliding speed they examined 
unsteady state wear rate up to sliding distance of 1000m. On 
the contrary, the alloy exhibit steady state wear rate 
irrespective of the sliding speed. Wilson and Alps [10] also 
examined unsteady wear rate followed by a steady state wear 
rate. But the critical distance i.e. the transition from unsteady 
state to steady state depends on the applied load. Abrasion 
due to entrapped ceramic particles or harder debrises from 
counter steel part leads to severe wear but after a critical 
sliding distance, formation of transferred layer and its 
subsequent deformation is the dominating wear mechanism. 
At slower speed, abrasion induced wear mechanism is 
dominating due to less rise in temperature and thus less 
possibility of formation of transformed layer over the 
specimen (Oxide layer or mixed layer). Lower steady state 
wear rate may also be due to subsurface work hardening. 
Thus fracture and fragmentation of transferred layer and 
subsurface cracking greatly control the steady state wear. 
How and Baker [22] reported steady state wear rate 
decreases with sliding distance in AA 6061-10vol.% saffil 
fibre composites irrespective of applied load. Similar 
behaviour was also reported by Sannino and Rack [23] in Al 
2001- 20vol. % SiCp composite. This is attributed to the fact 
that delamination of subsurface layers generating loose 
debrises which gives turbulent friction at the interfaces and 
this may be the dominating wear mechanism. However, after 
prolonged duration transferred layer may be discontinued 
and locally fused to cause adhesion kind of wear. Because of 
combined action of load, sliding speed and sliding distance 
subsurface micro cracks are generated which finally leads to 
removal of wear debris. As a result, it is expected that the 
wear rate will increase with increase in sliding distance. 
However, as the sliding distance increases the subsurface 
deformation also increases which leads to alignment of 
stronger precipitates along the sliding direction. With further 
increase in sliding distance, the temperature rise increases to 
a critical value at which specimen surface gets oxidized. This 
oxidized surface either gets fragmented or become stable to 
some extent. The fragmented oxide particles sometimes act 
as lubricating agent and thus these oxide layers reduce the 
effective wear rate. Furthermore the fragmentation and 
compaction of wear debris, counter surface material and thin 
oxide layers leads to formation of mechanically mixed layer 
which protects the specimen surface from wear. However, 
further increasing sliding distance leads to increasing 
temperature which leads to subsurface softening and because 
of plastic incompatibility and thermal mismatch the 
mechanically mixed layer (MML) gets fractured and 
subsequently removed from the specimen surface. Thus at 
longer sliding distance it is expected that the formation and 
removal of MML is taking place simultaneously and the rate 
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of removal and the rate of growth of MML might be same 
and thus the wear rate remain unchanged with sliding 
distance. At the point of seizure the MML either becomes 
unstable because of greater degree of temperature rise in the 
subsurface which resulting in higher degree of thermal as 
well as plastic incompatibility between MML and 
subsurface. As a result, the MML gets widely fractured and 
subsequently removed leading to exposure of highly viscous 
subsurface materials, which gets adhered with the counter 
surface. This leads to sudden increase in wear rate, which is 
identified as seizure or onset of seizure of the specimen.  

V. CONCLUSIONS 
The wear rate of the alloy and composite are varying with 

applied pressure. The rate of wear of the composite is 
suppressed due to addition of SiC. The rate of wear was also 
low in case of alloy and composite for further heattreatment. 
As per Archard’s wear equation three wear regimes were 
identified such as low, mild and severe wear. At low load 
conditions (low wear regime), the SiC particles support the 
applied load. The wear resistance of composite is in order of 
magnitude better than alloy. At medium load condition, the 
rate of wear of alloy and composites were showing similar 
behavior. At higher load condition, the transitions to severe 
wear showing different characteristics at the onset of seizing 
of the sample. 
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