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Second-order time evolution scheme for
time-dependent neutron transport equation
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Abstract—In this paper, the typical exponential method, diamond
difference and modified time discrete scheme is researched for self
adaptive time step. The second-order time evolution scheme is applied
to time-dependent spherical neutron transport equation by discrete
ordinates method. The numerical results show that second-order time
evolution scheme associated exponential method has some good
properties. The time differential curve about neutron current is more
smooth than that of exponential method and diamond difference and
modified time discrete scheme.

Keywords—exponential method, diamond difference, modified
time discrete scheme, second-order time evolution scheme.

I. INTRODUCTION

With the development of nuclear energy, the new fission-
type reactor with complex structure, strong non-uniform
medium, strong anisotropic property is given more and more
attention. Furthermore, the nuclear device has more compli-
cated characteristic, for example, width energy region, compli-
cated dynamic state. Therefore, the time-dependent transport
equation is studied to comprehend the time behavior for
neutron, photon, charged particle. To transport equation, some
research has focus on space discrete scheme[1], [8]. When we
discuss the time-dependent equation, the time discrete scheme
should be considered carefully. The reference[2] gives the
convergence property to radiation transport equation. To time
discrete scheme, there are Backward Euler method[3] with
O(Δt) and Crank-Nicolson method with O(Δt2). However,
the Crank-Nicolson method can produce numerical oscilla-
tion. The reference[4] combines the Backward Euler and
Crank-Nicolson method to avoid the numerical oscillation.
The reference[6] constructs the second-order time evolution
scheme[7] to Pn equation for radiation transport equation
which reduces the numerical oscillation.

Moreover, the finite volume method (FV M) is usually
applied to the time discrete scheme which solves the neutron
transport equation on time interval [tn+1/2, tn+3/2][5][9] to
give the numerical flux with O(Δt2) at tn+1. However, these
discrete schemes need to introduce extrapolation formula,
for example, exponential extrapolation, diamond extrapola-
tion. Furthermore these extrapolation formula seldom consider
the time step change and produce numerical oscillation for
adaptive time step. The time step is very important to time-
dependent neutron transport equation which impacts the nu-
merical precision and computing time. The time step is given
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by physical progress in a general way and the time step change
is very large(such as some magnitudes) between the whole
physical progress.

However, these simple extrapolation equations are not
adapted to complex time-dependent progress for multi-media
problem and the numerical precision is very poor for adaptive
time step problem. Therefore, the key physical quantity exists
large oscillation. In the reference[10], we construct modified
time discrete scheme and the time differential curve of neutron
number is very smooth. Through profound research, the time
differential curve of neutron current for modified time discrete
scheme still exists large oscillation which takes difficulty to
physical analyse. Therefore, we study the time discrete scheme
to give high numerical precision scheme to simulate time
differential curve of different physical quantity in particular
for neutron current.

In this paper, we construct time discrete scheme for multi-
media complex time-dependent progress and apply second-
order time evolution(SOTE) to discrete ordinates(Sn) equa-
tion for one-dimensional spherical neutron transport equation.

The remainder of this paper is organized as follows. In
Section 2, the modified time discrete scheme is presented.
In Section 3, we introduce the second-order time evolution
scheme. In Section 4, we provide numerical results for dif-
ferent scheme. In the final section, we offer a summary with
some concluding remarks.

II. MODIFIED TIME DISCRETE SCHEME

The time-dependent neutron transport equation may be
written as follows in multi-group form:

1

vg

∂ϕg

∂t
+ Ω · ∇ϕg + Σtr

g ϕg = Qg, g = 1, · · · , G. (1)

where ϕg is the angular flux of g − th group neutron, vg

is the velocity of g − th group neutron, Σtr
g is the total

macroscopic cross section of g − th group neutron, and Qg

is the sum of scattering source(Qs
g), fission source(Qf

g ) and
external source(Sg).

Qg =
1

4π

[
Qf

g + Qs
g + Sg

]
. (2)

In this paper, we focus on conservative equation for 1-
D spherical geometry transport equations in the multi-group
form:
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Σtr
g ϕg = Qg. (3)
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With the following initial and boundary conditions:

ϕg(r, μ, 0) = ϕ(0)
g (r, μ) , t = 0, 0 ≤ r ≤ rJ . (4)

ϕg(rJ , μ, t) = 0, μ ≤ 0. (5)

Where rJ is the outermost boundary point.
To spherical transport equation, the finite volume method

(FV M) is the typical method which involves the extrapolation
of angular, time, space variables. These extrapolation can
adopt the same form and also adopt different form for specific
physical problems. The classical extrapolations are exponential
method(EM ), diamond difference(DD). The time discrete
scheme should considered for adaptive time step. The time
step can be large at flat stage for physical progress and be
small at strenuous stage for physical progress. Therefore, the
adaptive time step is adopted in numerical calculation for
practical physical problem.

We general take Eq.(3) in the intervals [tn+1/2,tn+3/2] to
solve flux at tn+1. However, the time step between tn+1 and
tn+3/2 should be dynamic given by physical progress. The
time step is unknown for interval tn+3/2 to tn+1 when time
extrapolation is introduced. If taking exponential extrapolation
or diamond extrapolation for time variable, the extrapola-
tion flux can exist deviation when the time step has great
change(sometimes magnitude difference ). The modified time
discrete scheme can be adopted[10].

The modified equation( φ
n+ 1

2
∗ ) for different time discrete

scheme is described as follows.
The modified exponential method(MEM ) is

φ
n+ 1

2
∗ = [(φn)2/(φn− 1

2 )
2Δtn+1

Δtn+1+Δtn ]
Δtn+1+Δtn

2Δtn . (6)

The modified diamond difference(MDD) is

φ
n+ 1

2
∗ =

φn(Δtn+1 + Δtn)

Δtn
− φn− 1

2
Δtn+1

Δtn
. (7)

Where Δtn = tn − tn−1, Δtn+1 = tn+1 − tn.
There may appear negative flux for MDD, therefore we

take step scheme for this case. The MEM, MDD is very
simple and is easy to embed the old program.

III. SECOND-ORDER TIME EVOLUTION SCHEME

To consider the time step change in the whole phys-
ical progress adequately, we apply the second-order time
evolution(SOTE) scheme to time-dependent spherical neutron
transport equation by discrete ordinates(Sn) method. The
SOTE considers the case of adaptive time step for the whole
physical progress and needs not to introduce exponential
extrapolation or diamond extrapolation.

Now, we deduce the discrete scheme for neutron transport
equation by SOTE. The SOTE take three-level backward
difference and the specific equation is as followed[7,8]:

ϕn+1
g (r, μ) = βϕn

g (r, μ) + (1 − β)ϕn−1
g (r, μ) +

γΔtn+1
∂ϕ

(
gr, μ)

∂t
|n+1. (8)

Where β = (1+ρ)2

1+2ρ , γ = 1+ρ
1+2ρ , ρ = tn+1−tn

tn−tn−1
. To constant

time step problem, ρ = 1, β = 4
3 , γ = 2

3 .
The Eq.(8) is rewritten as follows:

∂ϕ
(
gr, μ)

∂t
=

ϕn+1
g (r, μ) − βϕn

g (r, μ) − (1 − β)ϕn−1
g (r, μ)

γΔtn+1
. (9)

Taking Eq.(9) to Eq.(8), we get the time discrete equation:

ϕn+1
g (r, μ) − βϕn

g (r, μ) − (1 − β)ϕn−1
g (r, μ)

γΔtn+1vg
+

μ

r2

∂
(
r2ϕn+1

g

)
∂r

+ Σtr
g ϕn+1

g = Qn+1
g . (10)

Divide the intervals 0 ≤ r ≤ rJ , −1 ≤ μ ≤ 1, 0 ≤ t ≤ T
by

0 = r0 < r 1
2

< · · · < rk−1 < rk− 1
2

< rk <

rk+ 1
2

< rk+1 < · · · < rK−
1
2

< rK = rJ , (11)

−1 = μ−
1
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2
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1
2
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μm+ 1
2
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1
2

< μM < μM+ 1
2

= 1, (12)

0 = t− 1
2
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2

< · · · < tn− 1
2

< tn <

tn+ 1
2

< · · · < tN−
1
2

< tN < tN+ 1
2

= T. (13)

where
rk = 1

2

(
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)
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2

(
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1
2
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2

)
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1
2

(
tn− 1

2
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2

)
.

By integrating Eq.(10) on intervals rn+1
k ≤ r ≤

rn+1
k+1 , μm−

1
2
≤ μ ≤ μm+ 1

2
, we get:
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where

V n+1
k+ 1

2

=
1

3
[(rn+1

k+1 )3 − (rn+1
k )3],
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k = (rn+1

k )2, An+1
k+1 = (rn+1
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1
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1
2
, Δtn+1 = tn+ 3

2
− tn+ 1

2
,
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2
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1
2
.

To μ = −1, the Eq.(3) is:
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Therefore, to μm = −1,the discrete equation is:

ϕn+1
g,0,k+ 1

2

− βϕn
g,0,k+ 1

2

− (1 − β)ϕn−1
g,0,k+ 1

2
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k+ 1

2

+

(
An+1

k+1 − An+1
k

)
ϕn+1

g,o,k+ 1
2
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2

+

Σtr,n+1

g,k+ 1
2

ϕn+1
g,o,k+ 1

2

= Qn+1
g,k+ 1

2

. (16)

We can know that the above equations are not closed and
should introduce the extrapolation relation for angular variable
and space variable. In this paper, we introduce the exponen-
tial extrapolation and diamond extrapolation to angular and
space variable which are named SOTE EM , SOTE DD
respectively.

The exponential extrapolation for angular variable and space
variable is given as followed:
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2
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To μm <0, we take Eq.(17), Eq.(18) to Eq.(14) or Eq.(16)
and to μm >0, we take Eq.(17), Eq.(19) to Eq.(14). Through
rearrangement, we get:
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To μm >0:
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To μm = −1, we get:
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When μm < 0, r = rJ , ϕn+1
g,m,J = 0( J indicates the point

of outside boundary condition ). In this case, to r, we will
take diamond extrapolation stead of exponential extrapolation,
namely:

ϕn+1
g,m,J−1 = 2ϕn+1

g,m,J−
1
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g,m,J = 2ϕn+1
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1
2

. (31)

The Eq.(31) and the Eq.(17) is introduced to the Eq.(14),
we get the coefficient in discrete scheme for μm < 0, r = rJ :
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Based on Eq.(20), the flux ϕ is written as:
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Furthermore, diamond extrapolation to angular variable and
space variable is:
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Where f = 1 is step scheme extrapolation. f = 2 is
diamond extrapolation.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:5, 2011

719

We take Eq.(36), Eq.(37) to Eq.(14), then we get the discrete
equation for −1 <μm < 0. Similarly, we take Eq.(36), Eq.(38)
to Eq.(14), then we get the discrete equation for μm > 0.
And we take Eq.(36), Eq.(38) to Eq.(16),we get the discrete
equation for μm = −1. Through rearrangement, we get:
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To μm = −1:
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Therefore, we get the SOTE EM and SOTE DD by
combining SOTE for time variable with EM or DD for
other variable. The discrete equation for SOTE EM is a
nonlinear equation and the discrete equation for SOTE DD
is a linear equation.

IV. NUMERICAL RESULTS

We define the undermentioned physical quantity to describe
different differential curve for time variable.

J =

∫
Ω·n>0

dΩΩϕ(rJ , Ω, E, t). (49)

This physical quantity J gives the information about outflux
at outermost boundary, which denotes the outflux current of
system particle. The influx is zero for taking void boundary
condition.

N = 4π

∫
E

dE

∫
V

r2dr
φ(r, E, t)

V
. (50)

This physical quantity N gives the information about flux at
center cell, which denotes the total number of system neutron.

λedge =
dJ

Jdt
, λcente =

dN

Ndt
. (51)

denotes the derivative of outflux current and total number of
system neutron respectively.

The problem discussed in this paper is about spherical
geometry multi-group time-dependent problem including two
media. The isotropic scattering source is employed. The
discrete angular takes S4 and the end time is 0.1μs. The
self-adaptive time step is showed in Table.I. We adopt the
original EM, DD and the modified time discrete scheme and
second-order time evolution scheme. To analyse the computing
effectiveness, we also take constant time step(10−4μs) to this
problem.

TABLE I
SELF-SELECTION TIME STEP

time interval 0—0.04 0.04—0.06 0.06—0.08 0.08—0.1
time step(μs) 0.001 0.0001 0.01 0.00001

The numerical results of neutron number for
EM, MEM, SOTE EM are showed in Fig.1 and the
corresponding λcenter , outmost current J , λedge are given
in Fig.2, Fig.3, Fig.4 respectively. Fig.5 gives the iterative
number for EM, MEM, SOTE EM . The numerical results
of neutron number for DD, MDD, SOTE DD are showed
in Fig.6 and the corresponding λcenter , outmost current J ,
λedge are given in Fig.7, Fig.8, Fig.9 respectively. Fig.10
gives the iterative number for DD, MDD, SOTE DD.

From these figures, the physical quantity of the neu-
tron number, outmost current J , λcenter , λedge for original
method(EM, DD) is more different to constant time step
when the time step has great change. However the physical
quantity to the MEM and MDD, SOTE EM, SOTE DD
is approach to the constant time step results and the λcenter

which reflects the differential property of neutron number
is smooth. However the λcenter , λedge of EM, DD exists
large oscillation for adaptive time step. The shortcoming
of MEM, MDD, SOTE DD is that the λedge has large
oscillation. To SOTE EM , the physical quantity of neutron
number, outmost current J , λcenter , λedge is very good and
the corresponding curve especially for λedge is very smooth.

To computing time, the iteration number of the
MEM, MDD is the smallest. The iteration of SOTE DD
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Fig. 1. Neutron number for EM,MEM and
SOTE EM
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Fig. 2. λcenter for EM,MEM and SOTE EM

is failure for some time point which the given max iteration
number is 2000. The weakness of SOTE EM is that the
computing time is larger than that of MEM, MDD.

V. CONCLUSION

According the character of time discrete for adaptive time
step, we study the typical EM, DD and corresponding modi-
fied time discrete scheme. We apply second-order time evolu-
tion scheme for time-dependent neutron transport equation and
construct SOTE EM, SOTE DD. The modified scheme
is simple and the iteration number is lower than others. To
MEM, MDD, the neutron number, out-current at outermost
boundary, λcenter are smooth. However,there has oscillating
for λedge. Whereas, the second-order time evolution scheme
associated exponential method(SOTE EM ) has some good
properties. The differential curve including λedge on time
about neutron current is more smooth than that of exponential
method and diamond difference and modified time discrete
scheme. The shortcoming of SOTE EM is that the iteration
number is more than other schemes and we will take accelera-
tion method such as taking effective iterative initial value[11]
to decrease the iteration number.

EM
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Fig. 3. Neutron current for EM,MEM and
SOTE EM
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Fig. 4. λedge for EM, MEM and SOTE EM
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Fig. 5. iteration for for EM, MEM and SOTE EM
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Fig. 6. Neutron number for DD, MDD and
SOTE DD
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Fig. 7. λcenter for DD, MDD and SOTE DD
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Fig. 8. Neutron current for DD, MDD and
SOTE DD
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Fig. 9. λedge for DD, MDD and SOTE DD
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Fig. 10. iteration for for DD, MDD and SOTE DD


