
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

264

Abstract—Ant Colony Algorithms have been applied to difficult

combinatorial optimization problems such as the travelling salesman
problem and the quadratic assignment problem. In this paper grid-
based and random-based ant colony algorithms are proposed for
automatic 3D hose routing and their pros and cons are discussed. The
algorithm uses the tessellated format for the obstacles and the
generated hoses in order to detect collisions. The representation of
obstacles and hoses in the tessellated format greatly helps the
algorithm towards handling free-form objects and speeds up
computation. The performance of algorithm has been tested on a
number of 3D models.

Keywords—Ant colony algorithm, Automatic hose routing,
tessellated format, RAPID.

I. INTRODUCTION
OSE and harness routing is a significant research area in
assembly design. Many CAD and solid model

manufacturers incorporate the ability to represent these
components in their products. However, the programs
available are not always able to produce efficient routing.
Often, skilled personnel who understand the engineering
requirements, the model representations and physical
production issues fill this technical gap. This requires human
intervention to create assemblies and as CAD design tools
allow rapid design and redesign of products at speeds that
exceed the current human capacity, hose and harness routing
cannot be done efficiently. There is an unacceptable
bottleneck in meeting the customer's demand when bringing
products to the market.

Most hose routing problems are difficult combinatorial
optimization problems and combinatorial optimization
techniques such as genetic algorithms, ant colony algorithms
and simulated annealing can be used to produce a feasible set
close to the optimal solution.

Manuscript received May 31, 2006. This work was supported in part by the

EPSRC.
Gishantha Thantulage is with the Bio Inspired Intelligent System Group

(BIIS), School of Engineering and Design, Brunel University, Uxbridge,
Middlesex, UB8 3PH, UK (phone: 0044-77-1013-1968; fax: 0044-1895-
258728; e-mail: gishantha@ ieee.org).

Tatiana Kalganova and Manissa Wilson are with the School of Engineering
and Design, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK (phone
0044 1895 274 000; fax 0044-1895-258728, e-mail:
Tatiana.Kalganova@brunel.ac.uk; Manissa.Wilson@brunel.ac.uk).

In the initial stage of this research, hose routing can briefly
be defined as finding a collision free path (optimal or near
optimal) between a start point and a target point.

In this paper, two ways of representing the road map for the
ant colony algorithm are presented; one is a fixed-sized grid
map and the other consists of randomly selecting points from
the world. To handle collision detection and achieve CAD
software independency, the algorithm uses the tessellated
format for the obstacles (which is available in most CAD and
computer graphics packages) and the collision detection
library RAPID.

The structure of the algorithm is summarized in Fig. 1.

Fig. 1 Structure of the ant colony algorithm for automatic hose
routing

The rest of the paper is structured as follows. Section II

describes the ant colony algorithm. Section III provides a
description of the tessellated format (or representation) of the
CAD models and a description of the collision detection
library RAPID. Section IV describes the implementation of
the two versions of the ant colony algorithm. Section V
presents the simulation results for the two versions. The
results are discussed in Section VI and Section VII concludes
the paper.

II. ANT COLONY ALGORITHM
Ant colony algorithms were first proposed by Dorigo and

Grid Based and Random Based Ant Colony
Algorithms for Automatic Hose Routing in

3D Space
Gishantha Thantulage, Tatiana Kalganova, and Manissa Wilson

H

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

265

his colleagues [1], [4] as a multi-agent approach to difficult
combinatorial problems such as the travelling salesman
problem and the quadratic assignment problem. Later
scientists have applied them to many different discrete
optimization problems summarized in [2], [3] and [6]. In this
paper, the ant colony algorithm is applied to 3D hose routing
in assemblies using two types of road maps.

Real ants are able to find the shortest path between their
nest and a food source. Communication between the ants is
based on a pheromone trail deposited by individual ants. An
ant's tendency to choose a specific path depends on the
intensity of the pheromone trail on the path, i.e., the stronger
the pheromone trail a path has the higher the probability that
an ant will follow that particular path. Over time, the
pheromone trail evaporates and it loses intensity if no more
pheromone is laid down by other ants. If a large number of
ants choose a specific path, the intensity of this trail increases
and more ants tend to choose that path.

Fig. 2 Flowchart of the ant colony algorithm

Ants perform a complete tour (in this paper a tour is defined

as travelling from the start point to the target point) by
choosing grid points or random points according to a
probabilistic state transition rule which selects neighbouring
points that are closest to the target point and have a high
amount of pheromone. Once all the ants have completed a
certain number of turns (Nturns) a global pheromone updating
rule (global updating rule, for short) is applied (see Fig. 2). A
fraction of the pheromone evaporates on all edges (edges that
are not refreshed become less desirable); each ant that was
able to finish a complete tour, deposits an amount of
pheromone on the edges which belong to its tour in proportion
to how short its tour was (in other words, edges which belong

to many short tours receive the greater amount of pheromone).
After global updating, the current set of ants is removed from
the civilization and another set of ants starts from the start
point to explore the target point. The process is iterated until
the number of turns reaches a maximum number of turns
(MAX_TURNS). Note that, the parameter Nturns is set such that
most of the ants in the initial set are able to reach the target
point.

The state transition rule used by ant the system, called a
random-proportional rule, is given by (1) and gives the
probability with which ant k in city r chooses to move to city s
[5],

⎪
⎩

⎪
⎨

⎧
∈

= ∑
∈

otherwise

rJsif
urur

srsr
srp

k

rJu
k

k

,0

)(,
)],()].[,([

)],()].[,([
),(

)(

β

β

ητ
ητ (1)

where τ is the pheromone level, η = 1/δ is the inverse of the
distance (δ) from point s to the target point, Jk(r) is the set of
neighbour points of r that remain to be visited by ant k
positioned on the point r (to make the solution feasible), and β
is a parameter which determines the relative importance of
pheromone versus distance (β > 0).

In the ant system, the global updating rule is implemented
as follows. Ants those were able to complete their tour within
the number of allocated turns (Nturns), allow updating
pheromone levels of their visited edges according to [5],

∑
=

Δ+−←
m

k
k srsrsr

1

),(),().1(),(ττρτ (2)

where

⎪⎩

⎪
⎨
⎧ ∈

=Δ
otherwise

kantbydonetoursrif
Lsr

kk

,0

),(,1
),(τ (3)

0 < ρ < 1 is a pheromone decay parameter, Lk is the length
of the tour performed by ant k, and m is the number of ants
that were able to complete their tour within the stipulated
number of turns Nturns.

III. THE TESSELLATED FORMAT AND RAPID
The search space is represented by a 3D model. The 3D

model can be generated by using any CAD software such as
Pro/Engineer or AutoCAD. Most CAD software supports the
tessellated representation of a 3D model. Therefore, in order
to provide a CAD software independent implementation of the
algorithm, the 3D model was represented in the tessellated
format.

The .stl (STereoLithography) format [7] is an ASCII or
binary file used in manufacturing. It is a list of triangular
planes that describes a computer generated solid model. This
is the standard input for most RAPID prototyping machines. A
.stl file defines an object’s surfaces as a set of adjacent
triangles as shown in Fig. 3. The file basically contains X, Y
and Z Cartesian coordinates of each vertex of the triangles, as
well as the coordinates of the vectors normal to the triangles.
With the tessellated format, each edge is shared only by two
triangles. The tessellated model is an approximation to the real

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

266

model and the accuracy of the tessellated model depends on
the number of triangles used. In most CAD packages the
number of triangles generated for the tessellated model can be
controlled. Models were generated using the CAD package
Pro/Engineer and its programming toolkit Pro/Toolkit.

Fig. 3 Tessellated representation of objects

The proposed algorithm is based on the identification of

available paths in the given 3D model represented by .stl
format. The availability of paths can be determined by the
collision detection library RAPID.

RAPID (Robust and Accurate Polygon Interface Detection)
[8] is a C++ library developed at Department of Computer
Science, University of North Carolina, for interference
detection (or collision detection) of large environments
composed of unstructured models.
 It is applicable to polygon soups [8] - models that contain

no adjacency information and obey no topological
constraints. The models may contain cracks, holes, self-
intersections, and non-generic (e.g. coplanar and collinear)
configurations.

 It is numerically robust - the algorithm is not subject to
conditioning problems and requires no special handling of
non-generic cases (such as parallel faces).

 The RAPID, library is free for non-commercial use. It has
a very simple user interface: the user needs to be familiar
with only about five function calls.

RAPID accepts only polygonal models composed entirely
of triangles, but does not require the model to have any
particular structure. For example, some collision detection
systems require the shapes to be well-formed solids – the
surfaces must be “closed” so that there are a well-defined
inside and outside.

IV. IMPLEMENTATION
The algorithm was implemented in three steps. In the first

step, the tessellated representation of the obstacles was
obtained as a text file from the CAD package. This file was
passed to a program which incorporated the collision detection
library RAPID. The following inputs were also supplied to the
program:
 world Size of the paths to be explored, given by the

maximum and minimum of each coordinate axis - Xmin,
Xmax, Ymin, Ymax, Zmin, and Zmax,

 coordinates of the start point S(XS, YS, ZS) and target point
T(XT, YT, ZT),

 number of ants to be released,
 values for the parameters ρ (pheromone decay parameter)

and β,
 initial pheromone levels of the edges (constant),
 number of turns for which the algorithm is to be run

(MAX_TURNS),
 frequency at which the global pheromone update rule is

applied (Nturns),
 radius (r) of the hose or pipe segment.

It was not possible to find a benchmark for a comparison
study with previous work on pipe routing. Automatic pipe
routing has previously been addressed in [7]; the authors used
genetic algorithms and RAPID for pipe routing and applied
them only to one real-world application and took hours to
obtain the optimal path or near optimal path. Therefore, at the
initial stage, the implementation of the algorithm was
restricted to models specifically generated for the
experiments. Furthermore, the main goal was to conduct a
feasibility study of applying the ant colony algorithm for
automatic 3D hose/pipe routing. In future work, the algorithm
will be applied to some real-world applications.

In the second step, the program implemented three tasks.
Firstly, it created the whole road map for the two versions,

rectangular grid or randomly generated points from the world.
When connecting two points, the program checked, with aid
of the C++ library, RAPID, that the path between the two
points was collision free (the axis of the hose cylinder lies on
the line connecting the two points). For simplicity, a
rectangular hexahedron was used that was centred on the line
segment between the two points such that the cylindrical hose
could be laid within it. For the first version (fixed-size grid
map), when trying to connect a grid point to another, the
algorithm considered only north, west, south, east, top and
bottom neighbours (6-way connection) as this would reduce
the number of routes needed to be stored in the memory. The
road map was stored in a text file that can be used again if the
algorithm needs to be executed another time. For the second
version, the program generated points randomly from the
world. Then as for the first version, the algorithm tried to
connect each and every point (including the start and target
points) within the randomly generated point set.

Secondly, the program searched for optimal path or near
optimal path between the start and the target points using the
ant colony algorithm and the roads maps created earlier. If
paths contained cycles, these were removed before applying
global updating of the pheromone. Initially, a constant
pheromone value was set for each edge. Before applying
global updating, the program found the optimal path for the
current set of ants and if this was an improvement on the path
for the previous set of ants, it set this path as the optimum path
found so far.

Thirdly, at the end of MAX_TURNS, the (optimal) path
obtained for the grid-based version was further refined to
eliminate some ‘staircases’ (see Fig. 4). Again, when refining

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

267

the optimal path, before connecting two points, the algorithm
used RAPID to detect any collisions.

Fig. 4 Refining the path

In the third step, the program generated the list of points

needed for moving from the start point to the target point.

V. SIMULATIONS
Two versions of the ant colony algorithm were

implemented and their strengths and weaknesses were
investigated experimentally. The CAD Pro/Engineer package
was used for generating the 3D models and its programming
toolkit Pro/Toolkit, was used for obtaining the tessellated
format of the generated models.

The parameter settings for the ant colony algorithm were:
number of ants = 10, initial pheromone level for each edge =
100, number of turns for which the algorithm is to be run,
MAX_TURNS = 10,000, pheromone decay parameter ρ =
0.01, and β = 5.

All the simulations were conducted on a Pentium IV PC
(Processor speed = 3.0 GHz, Memory = 512 MB) in the
Microsoft Windows XP environment using Microsoft Visual
C++ (Version 6.0).

The performance of the algorithm was defined by time
(seconds) and the length of the optimal path.

For each model, the grid-based version was tested on 3
different step sizes (increment values of the x, y and z
coordinates) 10, 25, and 50. The random-based version was
tested for 100, 150, 200 and 500 random points. All the
simulations were carried out for 10,000 turns and averaged
over 10 trials.

In the figures below, the best paths obtained over 10 trials
are shown for the two versions.

A. Model 1: Hose Routing in an Environment with a Hole
in a Cube

TABLE I
COMPARISON OF GRID-BASED AND RANDOM-BASED - HOLE IN A CUBE

MODELS
 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 18081 1377 225 100 150 200 500
Avg. Length 244.32 251.66 378.80 292.70 299.00 262.49 245.22
St. Dev. (Len.) 4.21 4.35 11.24 51.20 54.00 17.51 3.40
Best (Length) 237.79 247.23 367.96 256.80 257.70 241.32 238.85
Avg. Time (s) 993.70 49.40 3.50 8.90 21.40 32.00 220.10

The proposed ant colony algorithm was tested in an
environment consisting of a cube containing a hole (see Fig.
5). Hose segments needed to be laid inside this hole in order
to obtain the optimal path.

(a) Grid-based (b) Random-based

Fig. 5 Model 1: Hole in a cube

{Xmin = -250, Xmax = 150, Ymin = -50, Ymax = 150, Zmin = -200, Zmax =
0; S = (-200, 150, -100); T = (-100, -50, -150);

Radius = 5; Nturns = 100}

Table I shows the comparison of the two versions over 10
trials for each value of the step size (version 1) and each
number of random points (version 2). According to Table I,
the optimal solution generated by the random-based version
(with 500 random points) is very close to the optimal solution
generated by the grid-based version (with step size = 10 and
18081 points). However, the average computational time
taken by the random-based version is comparatively less than
for the grid-based version (220.1 sec. against 993.7 sec.). The
random-based version is more than 4 times faster.

B. Hose Routing in an Environment with a Hole in a Cube
where the Optimal Path is Blocked by an Obstacle

In this simulation, the optimal path found in the earlier case
was blocked by a cubic obstacle and the target point was
placed behind the obstacle (see Fig. 6 and Table II).

TABLE II

COMPARISON OF GRID-BASED AND RANDOM-BASED - HOLE IN A CUBE
MODELS WHERE THE OPTIMAL PATH IS BLOCKED BY A CUBIC OBSTACLE

 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 18081 1377 225 100 150 200 500
Avg. Length 322.70 305.08 400.00 397.70 368.10 376.50 312.60
St. Dev. (Len.) 20.96 7.24 0.00 43.10 29.88 41.70 15.14
Best (Length) 290.55 299.34 400.00 339.40 329.54 324.40 291.51
Avg. Time (s) 952.20 64.40 5.00 12.30 27.30 49.90 318.30

(a) Grid-based (b) Random-based

Fig. 6 Model 2: Optimal path is blocked by a cubic obstacle

{Xmin = -250, Xmax = 150, Ymin = -50, Ymax = 150, Zmin = -200,
Zmax = 0; S = (-200, 150, -100); T = (-200, -100, -150);

Radius = 5; Nturns = 100}

The best average length for the grid-based version is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

268

obtained with step size 25 (points 1377). However, the best
path was produced with the step size 10. The average path
length of the random-based version with 500 points (312.6) is
relatively close to the average path length of the grid-based
version with step size 25 (305.08) and the lengths of the best
paths for in the both versions are very close.

This experiment shows that when selecting the right grid
(or step) size, the grid-based version performs very well even
with relatively large step sizes.

C. Hose Routing in an Environment with a U-Shape
Obstacles

In this experiment, a U-shape obstacle was placed in the
environment and the environment was made more complex by
introducing other objects. Furthermore, the start and the target
points were placed such that only one path existed between
them. Note that the z coordinates of the search space were
restricted to the top and the bottom of the obstacles (See Fig. 7
and Table III).

In this experiment, the grid-based version failed in all the
trials with the step sizes 10 and 50. However, it was
successful with step size 25 and generated the best average
length (596.28) and best optimal path lengths (551.31). This
experiment demonstrates that if the right resolution is selected,
the grid-based version performs well in terms of both optimal
length and the computational time.

TABLE III

COMPARISON OF GRID-BASED AND RANDOM-BASED MODELS WITH A U-
SHAPED OBSTACLE

 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 55451 4205 675 100 150 200 500
Avg. Length 596.28 1260.00 925.00 761.60 710.30
St. Dev. (Len.) 22.42 405.00 328.00 174.80 40.00
Best (Length) 551.31 698.00 654 619.10 608.9
Avg. Time (s)

Failed

173.25

Failed

13.20 38.10 89.70 804.60

(a) Grid-based (b) Random-based

Fig. 7 Model 3: U-shaped obstacle

{Xmin = -300, Xmax = 400, Ymin = 0, Ymax = 100, Zmin = -300, Zmax = 400;
S = (50, 25, -50); T = (350, 25, -50); Radius = 5; Nturns = 100}

D. Hose Routing in an Environment with Parallel Walls
In this experiment, two 3D points were selected and the

shortest path between them was blocked by 5 parallel walls
(see Fig. 8 and Table IV).

TABLE IV
COMPARISON OF GRID-BASED AND RANDOM-BASED MODELS CONTAINING

PARALLEL WALLS
 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 40931 3125 507 100 150 200 500
Avg. Length 1096.90 1021.90 1025.40 986.20 963.61
St. Dev.
(Len.)

91.30 41.60 57.20 45.90 9.07

Best (Length) 1007.70 968.90 963.00 938.00 948.09
Avg. Time (s)

Failed

133.67

Failed

11.10 28.30 59.40 316.70

(a) Grid-based (b) Random-based

Fig. 8 Model 4: Parallel walls {Xmin = -300, Xmax = 300, Ymin = 0,

Ymax = 100, Zmin = -300, Zmax = 300; S = (-300, 25, 0);
T = (300, 50, -25); Radius = 5; Nturns = 100}

Here also, the grid-based version failed for step sizes 10

and 50. Even though, the grid-based version was successful
with step size 25, the average length and the best length are
higher than the respective values for the random-based
version. The average computational time for the random-
based version is low for all cases except for 500 random
points.

E. Hose Routing in an Environment with a Diagonal
Empty Space

In this simulation, a diagonal empty space was placed
between two objects and the straight path between the start
point and the target point was blocked by a cubic shaped
object (see Fig. 9 and Table V). The grid-based version failed
in all 3 cases. The random-based version was successful in
each case and produced reasonable results.

TABLE V
COMPARISON OF GRID-BASED AND RANDOM-BASED MODELS WITH A

DIAGONAL EMPTY SPACE
 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 22386 1683 270 100 150 200 500
Avg. Length 320.24 313.32 327.17 295.23
St. Dev. (Len.) 13.70 9.21 20.44 9.86
Best (Length) 302.38 299.14 303.08 275.39
Avg. Time (s)

Failed Failed Failed

7.60 16.60 27.50 155.70

Random-based

Fig. 9 Model 5: Diagonal empty space

{Xmin = -50, Xmax = 350, Ymin = -50, Ymax = 150, Zmin = -200, Zmax =
50; S = (25, 0, 0); T = (180, 100, -185); Radius = 5; Nturns = 100}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

269

VI. DISCUSSION
Previously, scientists have applied the ant colony algorithm

to many real-world problems such as the travelling salesman
problem (TSP), the quadratic assignment problem, and job
shop scheduling. In this paper, it has been applied to
automatic 3D hose/pipe routing where the world is
represented as two versions, grid-based and random-based.

The problem presented in this paper and the TSP is quite
similar; however there are some differences. In the TSP, paths
must be found such that each ant must travel to each city once
and must finally come back to the start city. In the case
described in this paper, ants must start from the start point and
need to finally reach the target point. The constraints that each
ant must travel to each point and that ants must finally come
back to the start point are not imposed. However, it must be
guaranteed that when an ant has visited a point, it must not
visit that point again. To this end, cycles were removed from
the ants’ paths before applying the global updating rule. For
the TSP, the global updating rule is applied after all ants have
completed a tour (i.e., each and every ant must come back to
the start city). Hence, for the TSP, the algorithm knows when
to apply the global updating rule. In the experiments described
above, this is not always possible, as some ants may get lost.
Thus, a new parameter, Nturns, was introduced into the
algorithm. This parameter was set such that most of the ants of
the current set were able to reach the target point.

The above simulation results show the strengths and
weaknesses of the grid-based and the random-based of the ant
colony algorithm for automatic 3D hose routing. The
simulation results show that both versions can be applied for
any shape which can be generated using any CAD software.
The use of the RAPID library greatly helps the algorithm to
detect collisions when laying the hoses.

The simulation study also indicates that the proposed grid-
based and random-based versions of the ant colony algorithms
are of practical use because the required computational times
are reasonably low.

However, in the grid-based version the resolution or the
size of the grid plays an important role in the determination of
the optimal path and affects the computational time. If none of
the grid line falls on the optimal path when constructing the
road map, the algorithm fails to obtain the optimal path (See
Tables III, IV and V). Thus, selecting the right size of grid (or
step size) is important for the grid-based version.

The advantage of using the random-based version is that it
did not fail for any of the tested models and produced a
reasonably good solution to the problem. Furthermore, in the
case of grid-based version, as the step size is decreased,
amount of memory needed to store the road map increases
drastically as does computation time.

VII. CONCLUSION
In this paper, two versions of ant colony algorithm, namely

grid-based and random-based, have been proposed for
automatic 3D hose routing. For both versions the algorithm

generates the optimal set of pipe segments linking the start
and the target points. The C++ library, RAPID, is
incorporated into the program for collision detections. The .stl
format of the obstacles is passed to the algorithm as the
RAPID can only handle triangular shapes. However, the
accuracy of the collision detection depends on the number of
triangles used to approximate the obstacles. The effectiveness
of both versions of the algorithm is demonstrated by
simulation studies. The simulation results shows that proposed
algorithm can handle complex environments and any shape
that can be generated using any CAD software. The
computational efficiency suggests that the algorithm can be
applied to real-world hose/pipe routing problems.

The selection of the right resolution (or step size of the
grid) of the grid-based version plays an important part and is
dependent on the problem at hand (See Tables III, IV and V).
When the resolution increased, the algorithm requires higher
amounts of memory and more time to compute the results.
However, if the correct resolution is selected, the grid-based
version can in some cases provide the best solution

In the random-based version, the algorithm was able to find
a reasonably good solution in a reasonable time for any of the
tested models.

At this initial stage of the research, the algorithm has been
implemented only for optimizing the distance between the
start and target points. In the next stage, other hose routing
knowledge will be incorporated into the algorithm, such as,
the selection of pipe bends from a pre-specified catalogue of
angles of bends, the minimizing of the cost of pipes, the
avoidance of hot, sensitive and moving objects. Other
combinatorial optimization algorithms will also be
implemented, such as genetic algorithms and quantum-
inspired genetic algorithms for automatic 3D hose routing and
these will be compared to the results with the ant colony
algorithm presented here.

ACKNOWLEDGMENT
The authors acknowledge BIIS research group at Brunel

University, UK for providing valuable comments during the
course of this research work.

REFERENCES
[1] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The Ant System:

Optimization by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics-Part B, Vol. 26, No. 1, pp. 1-13.

[2] Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). From natural to
artificial swarm intelligence. New York: Oxford University Press.

[3] Corne, D. Dorigo, M., & Glover, F. (Eds.). (1999). New ideas in
optimization. Maidnhead, UK: McGraw-Hill.

[4] Gambardella, L.M., & Dorigo, M. (1996). Solving symmetric and
Asymmetric TSPs by ant colonies. Proceedings of IEEE International
Conference. pp. 622-627.

[5] Gambardella, L.M., & Dorigo, M. (1997). Ant Colony System: A
cooperative learning approach to the travelling salesman problem.
Evolutionary Computation, IEEE Transactions. pp. 53-66.

[6] Gambardella, L.M., & Dorigo, M. (1999). Ant algorithms for discrete
optimization. Artificial Life 5: Massachusetts Institute of Technology.
pp. 137-172.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

270

[7] Sandurkar, S., & Chen, W. (1998). GAPRUS – Genetic algorithms based
pipe routing using tessellated objects. The journal of computers in
industry.

[8] Gottschalk, S., Lin, M.C., & Manocha, D. RAPID (Robust and Accurate
Polygon Interface Detection). Available:
http://www.cs.unc.edu/~geom/OBB/OBBT.html

