
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

255

 

 

  
Abstract—Designing, implementing, and debugging concurrency 

control algorithms in a real system is a complex, tedious, and error-
prone process.  Further, understanding concurrency control 
algorithms and distributed computations is itself a difficult task. 
Visualization can help with both of these problems. Thus, we have 
developed an exploratory environment in which people can prototype 
and test various versions of concurrency control algorithms, study 
and debug distributed computations, and view performance statistics 
of distributed systems. In this paper, we describe the exploratory 
environment and show how it can be used to explore concurrency 
control algorithms for the interactive steering of distributed 
computations. 
 

Keywords—Consistency, Distributed Computing, Interactive 
Steering, Simulation, Visualization  

I. INTRODUCTION 
NTERACTIVE computational steering provides users with 
the opportunities to tackle new problems in a way that helps 

them to learn about the computation in a highly engaging, 
interactive, visual environment.  Causal consistency is an 
important feature of interactive steering of distributed 
computations, as it is often required to maintain the 
correctness of the computation.  However, due to the 
asynchronous nature of distributed computations, it is difficult 
to coordinate steering changes across processes to guarantee 
that the changes are applied consistently at all processes.     

To address the problem of consistent steering, we designed 
a new approach known as optimistic steering. In contrast to a 
pessimistic approach, which requires that processes agree 
upon and halt at a consistent cut prior to applying an update, 
the optimistic approach permits steering changes to be applied 
at a process without concern for or knowledge of the state of 
any other process.  However, this requires checkpointing, 
consistency verification, and logging, as well as rollback and 
re-execution in the case that inconsistency is found.     

We are working to design and implement the consistency 
algorithms that permit optimistic, interactive steering.  
However, the monitoring and visualization system in which 
these algorithms are to be deployed is very large, making it 
difficult to prototype, implement, and debug these algorithms 

 
Manuscript received March 29, 2006.   
Jinhua Guo is with Department of Computer and Information Science, 

University of Michigan, Dearborn, MI 48128 USA (phone: 313-583-6439; 
fax: 313-593-4256; e-mail: jinhua@umich.edu).  

 

in situ, given the complex interactions and low-level, systems-
specific code with which these algorithms must be integrated.  
Thus, it is desirable to have an environment in which we can 
quickly prototype the algorithms and verify their correctness, 
but at a higher, more abstract level.  We have developed such 
an environment, which simulates the execution of a distributed 
computation and its interactions with the interactive steering 
system. This environment serves as a prototyping system for 
purposes of development, through which we may develop and 
debug algorithms for optimistic interactive steering, which 
include modules for detection of inconsistency, verification of 
consistency, checkpointing, message logging, rollback, and re-
execution.   

This exploratory environment also has a visualization 
component, which is used for debugging, verification, and 
illustration of the optimistic steering algorithms.  The 
debugging and verification of the distributed consistent 
steering algorithms can also be a very challenging task.  
Because they can involve a large amount of distributed state 
and complex interactions among program processes and 
control processes.  In such cases, visualization may be used to 
illuminate the execution of the algorithm and help find 
problems in the implementation.  Further, it is also very 
difficult to explain the steering algorithms to others who do 
not have the direct experience with the systems. In this case, 
visualization may be useful in demonstrating the workings of 
the algorithms. Visualization may also facilitate comparisons 
between different algorithms, or between different 
implementations of the same algorithm. 

In the remainder of this paper, we first give an overview of 
the Pathfinder system for monitoring and interactive steering, 
and describe the optimistic steering strategy.  We then present 
the Exploratory Environment, which consists of simulation 
and visualization components. Finally, we explain the 
workings of the two consistency verification algorithms and 
their visualizations.  

II. THE PATHFINDER SYSTEM 
We have designed and implemented an interactive 

monitoring and steering system that allows a user to pose 
queries and visualize program data in a real-time fashion.  
Through this system, the user may monitor attributes and 
variables of the distributed computation.  This system, known 
as Pathfinder, serves as the base upon which optimistic 
steering is implemented, see Fig. 1.  In this section, we 
describe the components of the Pathfinder system and their 

An Exploratory Environment for Concurrency 
Control Algorithms 

Jinhua Guo 

I 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

256

 

 

function, and explain how optimistic steering can be 
integrated into these components.  Through the integrated 
system, users may dynamically manipulate program variables 
or adjust resource allocation, without compromising the 
correctness of the underlying computation.     
 

 
 

Fig. 1 the Pathfinder System 
 

A. Monitoring 
The Pathfinder system is constructed in three parts: 

Interaction Managers (IM), a Snapshot and Steering Manager 
(SM), and a Presentation Manager (PM), as seen in Fig. 1.  
The IM exists as an instrumentation layer that resides between 
the process and its communication environment.  The IM 
collects local snapshots (sets of local variable values) and 
transaction labeling information, then sends both to the SM.  
Transaction labeling information includes information about 
the processes that participate in each transaction (membership) 
and the dependence relationships between transactions 
(ordering) [7].     

The SM serves as a central observer.  The SM is 
responsible for merging local snapshots from the IMs to 
produce consistent global snapshots based on the transaction 
labeling information [4].  For these global snapshots to 
accurately reflect the state of the distributed computation, 
local snapshots must be grouped together and ordered in a 
manner that does not violate the causal relationships in the 
distributed computation. 

Finally, the global snapshots are sent to the PM to be 
visualized.  The PM oversees the decoding of global 
snapshots into animation actions, the control of visualizations, 
and the interpretation of user interactions with the 
visualizations into monitoring directives.    

B. Optimistic Steering 
The conservative steering approach avoids inconsistent 

steering by strictly adhering to the causality constraint.  The 
steering changes can be applied only when a global consistent 
steering point is reached or detected.   This typically involves 
blocking the computation before a consensus decision is 
made.   
In contrast to the conservative approach, the optimistic 
approach to steering assumes that the next steerable points are 
consistent, and invokes the steering change at the next 

steerable point at each involved process without concern for 
or knowledge of the state of any other process.  This 
eliminates the need for blocking steered processes.  However, 
the optimistic steering approach must detect any inconsistent 
steering transaction and provide a checkpointing/rollback 
mechanism to restore the computation to a correct state if the 
steering transaction is inconsistent.   

A user can issue a steering request at any time during the 
computation.  Upon receiving a steering request from the user, 
the SM sends out the steering command to the involved 
processes. Processes receiving a steering command from the 
SM apply the steering changes at the next steerable points and 
then report back to the SM.  The processes need not know the 
states of other processes involved in the steering transaction.  
Upon receiving acknowledgements from all the processes 
involved in the steering transaction, the SM carries out a 
consistency check.  Based on the local steering times and 
other transaction membership information, the SM can 
determine if the steering update was applied consistently.  If 
the steering transaction is consistent, the SM will broadcast an 
OK message to each process. Upon receiving the OK 
message, the processes enter a normal state, cease logging and 
delete all logs. If an inconsistency is detected, the SM issues a 
rollback command to each process and provides the correct 
steering time to all the processes involved in the inconsistent 
steering.  Upon receiving a rollback command from the SM, 
the processes that were affected by the steering transaction 
will roll back to their previous checkpoints, execute forward, 
and then reapply the steering changes at the consistent point 
specified by the SM.   

Note that the consistency check and application execution 
are concurrent.  While the SM is verifying the consistency of a 
steering transaction, the application continues its execution. In 
optimistic steering, the overhead of state saving and some 
logging will be incurred for each steering transaction; 
however, rollback and re-execution will be incurred only in 
the case of inconsistent steering. 

Local checkpointing, rollback and direct steering changes, 
such as manipulating program variables or adjusting resource 
allocation, are performed by the IMs.  The SM is responsible 
for coordinating global steering activities.  The detection of 
inconsistency, verification of consistency and calculation of 
the earliest consistent steering time of a steering transaction all 
require knowledge of all participating processes.  Therefore, 
the SM performs all these operations.  The UI provides the 
interface through which users may issue steering commands to 
the computation at runtime. 

III. THE EXPLORATORY ENVIRONMENT  
The Exploratory Environment (EE) is designed to quickly 

prototype the abovementioned optimistic steering approach, 
verify its correction, and evaluate its performance.   

The Exploratory Environment consists of two operational 
components: a Simulator and a Visualizer, as in Fig. 2. The 
Simulator models the Interaction Manager (IM) and Snapshot 
Manager (SM) components found in the Pathfinder system. 
The Visualizer provides graphical representations of the state 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

257

 

 

of the Simulator based on information it receives from the 
Simulator at run time or from log files generated by the 
Simulator.  

 

 

A. The Simulator 
The Simulator uses Java threads to simulate the processes in 

a distributed system. Channel objects simulate the 
communication channels between different application 
processes.  Each process is wrapped with an IM. All incoming 
and outgoing messages go through the IMs, which are also 
responsible for applying steering changes, taking checkpoints, 
logging in-transit messages, and carrying out rollback 
commands. The SM plays a central role, as it is responsible 
for issuing steering commands, detecting inconsistency, 
verifying consistency and sending out rollback orders when 
necessary. 

The application processes may be in one of two states: 
normal or tentative.  Initially, a process is in the normal state.  
A process’s state changes to tentative when its execution is 
affected by a steering change. Immediately before a process 
changes its state to tentative, it must take a checkpoint. 
Additionally, the process begins logging messages received 
from normal processes. Similar to the process states described, 
application messages may be in one of two states: normal or 
tainted. A tainted message signals that the sending process is 
in a tentative state. Therefore, processes receiving tainted 
messages should also checkpoint and enter a tentative state. 
Normal messages received by a tentative process are logged. 
Tainted messages will be resent during rollback recovery and 
thus need not be logged. This process/message state model 
guarantees that all local checkpoints belong to a consistent 
global checkpoint. The state of a process is simply the state of 
its corresponding Java object. Therefore, local checkpointing 
can be easily implemented. Similarly, messages are also 
implemented as Java objects. The message log is implemented 
as a queue of these objects.    

Orthogonal to the notion of message state is the notion of 
message type. Two types of messages exist in this system: 
application messages and control messages. Application 
messages are exchanged between application processes while 
control messages are exchanged between IMs and the SM. 
Control messages can also be further grouped into steering 
messages, TLP messages, OK messages and rollback 
messages.  

Upon receiving a steering request from the user, the SM 
sends out the steering command to the involved processes. 
Processes receiving a steering command from the SM apply 
the steering action at the next eot (end of transaction) event 
and then report back to the SM.  The processes need not know 
the states of other processes involved in the steering 
transaction. Upon receiving acknowledgements from all the 
processes involved in the steering transaction, the SM carries 
out a consistency check. Based on the local steering times and 
information available from TLP messages, the SM can 
determine if the steering update was applied consistently.  If 
the steering transaction is consistent, the SM sends out an OK 
message to all affected processes. Upon receiving the OK 
message, the processes enter a normal state, cease logging and 
delete all logs. If an inconsistency is detected, the SM issues a 
rollback command and provides the correct steering time to all 
the processes involved in the inconsistent steering. Upon 
receiving a rollback command from the SM, the processes roll 
back to their previous checkpoints, execute forward, and then 
reapply the steering changes at the consistent point specified 
by the SM.  

To facilitate the testing of algorithms, the Simulator can 
produce either a consistent or an inconsistent steering 
transaction. During program execution, significant events such 
as message send and receive events, steering events, 
checkpoint events, message logging events and eot events, 
along with process states, will be recorded in a trace file or 
directly sent to the Visualizer.  Visualization of these event 
traces and process states can help in developing, debugging 
and understanding the algorithms. 

B.  The Visualizer 
The Visualizer has two components: a graphical User 

Interface (UI) and an Organization Manager (OM). The UI 
presents visualizations, as seen in Fig. 3. Up to four views 
may be simultaneously displayed side-by-side. In addition, 
overlapped views can be brought to the front by minimizing 
the obstructing views. Event trace records are displayed in a 
text panel near the bottom. Controls for panning, zooming, 
speed control, etc. are arranged around the canvas.  

As the backend of the Visualizer, the OM provides modules 
that implement the display control functions. The user can 
choose to invoke a single view at a time or multiple views at 
the same time. Understanding a complex distributed system 
entails understanding a variety of distinct behaviors and the 
relations among them. A single view provides the opportunity 
for the user to observe particular aspects of the execution in 
great detail, while multiple views correlate different 

Fig. 2 The Exploratory Environment 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

258

 

 

perspectives to generate a comprehensive global view. Each 
view is easy to comprehend in isolation, and the composition 
of several views can be more informative than the sum of their 
individual contributions. One of the benefits of using multiple 
views is that each view is usually conceptually simpler and 
easier to implement. Our emphasis is on providing multiple 
visualizations that, when executing simultaneously, will help 
to show the most important aspects of program behavior. A 
Single/Multiple View module controls which of the views 
should be invoked, in what order, and how the data should be 
transferred to different views. 

When multiple visualizations are running at the same time, 
information density becomes very high. Information density is 
a three-dimensional measure that includes not only the size 
and color of the images, but also the time interval during 
which the changing display is viewed. A rapid and animated 
information display can easily overwhelm some users. A 
Temporal Control Module controls the display speed. Users 
can start, stop or step through the visualization according to 
their needs. 

An Online/Post-mortem module connects the Visualizer 
with the data source selected by the user. Online visualization 
provides the benefit of an up-to-the-moment view of the 
computation’s progress, while post-mortem visualization 
gives the user repeatable displays.   

A Data-Image Mapping module maps the data to specific 
images according to predefined mapping rules. Colors, shapes 
and positions are the most important factors in the mapping 
rules, each of which conveys some specific information of the 
data being visualized. Shapes serve as the visual means for 
primary categories while colors are used for subdivisions of 

the same category. For instance, ovals are used to represent 
messages with yellow ovals for application messages, green 
ovals for TLP messages, pink ovals for steering messages and 
red ovals for rollback messages.  

Three kinds of visualizations have been developed in this 
environment: program visualization, performance 
visualizations, and algorithm visualizations. In the following 
sections, we describe the visualizations provided with the 
Exploratory Environment and show how they can be useful in 
understanding, debugging, and performance analysis of 
concurrent control algorithms. 

IV. PROGRAM VISUALIZATION 
Four program visualization displays are available: the 

Timestamp Ordering View, the Logical Time Ordering View, 
the Transaction Membership View, and the Transaction State 
View.  

For purposes of illustration, consider a simple calculation. 
At each transaction, process P1 sends three numbers x2, x3, x4 
to P2, P3 and P4, respectively.  P2, P3, and P4 do a simple 
computation y = a * xn and then send y back to P1, which adds 
up all three y to get sum.  Initially, a is set to 1. The first 
steering action sets a to 3 and the second steering action sets a 
to 5.  The state of the computation is consistent if a is the 
same across all processes at any instant.       

First we start up the Visualizer and select the views we 
wish to display by selecting the checkboxes beside the icons 
on the left border (see Fig. 3). Then we start up the Simulator. 
From the Visualizer’s “Connection” menu, we select “Online” 
and then visualization begins. 

As shown in Fig. 3, multiple views are displayed in smaller 

Fig. 3 Multiple Views Displayed in the UI 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

259

 

 

windows, or a single view can occupy the entire window. We 
can resize, relocate, minimize, maximize or close any of the 
windows at any time. Trace records are displayed in a 
scrollable text box at the bottom of the screen.  

In this case, we select all the views at once and choose to 
log the trace. In doing so we can examine the views one by 
one in great detail by maximizing one view at a time, switch 
between and correlate the different views, and re-run the 
visualization with the same program trace repeatedly at a later 
time.                   

We begin our detailed examination with the Timestamp 
Ordering View and the Logical Time Ordering View. Both of 
these views are event-based and use the same set of icons to 
represent program events. Ovals represent messages and lines 
are drawn between a pair of send-receive event icons. An oval 
becomes hollow when its message is received. Small 
rectangles represent starting and ending events, with blue 
rectangles for end-of-transaction events, red rectangles for 
rollback events and pink rectangles for steering start events. 
Checkpoints are represented by cyan ticks. The two views 
both have an event selector on their right side. The user can 
check or uncheck any of the checkboxes to obtain a variety of 
event combinations. Some combinations of event selection 
can reveal patterns that may be missed otherwise.  

The Timestamp Ordering View (upper left in Fig. 3) is 
displayed as a time-space diagram with the x axis indicating 
the elapsed time. Icons for events with the same timestamp 
that happened at different processes are aligned vertically 
while icons for events with the same timestamp that happened 
at the same process are overlapped with one another. To view 
the details of the overlapped event icons, we can zoom in to 
enlarge the icons and stretch out the distances between them.  

From the Timestamp Ordering view, we can obtain 
information on the time of the occurrence of events as well as 
the starting and ending times of transactions. We can also 
compute how much time elapsed between events. Timestamps 
are assigned by the IMs and are not necessarily synchronized 
across processes, but instead represent the local clock times at 
individual processes.  

The Logical Time Ordering View (lower left in Fig. 3) 
organizes and displays the events according to their logical 
times. The logical time of a process advances only when an 
event occurs, so this view eliminates long gaps between 
events and highlights patterns. The logical time ordering is a 
consistent ordering, as it enforces the “happened-before” [5] 
constraint: icons for send events must precede icons for 
corresponding receive events.  As [3] noted, the advantages of 
this ordering are that it “can produce valid, comprehensible 
visualizations in the absence of high-resolution, global 
timestamps and that it can, to the extent possible, maintain 
perspective on the duration of inter-event periods.” 

The Transaction Membership view (lower right in Fig. 3) 
displays transactions as columns of yellow rectangles. Each 
process that participated in a transaction is represented with a 
yellow rectangle aligned vertically with its fellow member 
processes. On each yellow rectangle is a number showing the 

logical time at which the process participated in the 
transaction. This view is based on a highly specialized 
ordering that captures the inter-process communications of the 
computation. This ordering conveys the information about 
which processes were involved in a transaction and at what 
time they were involved. 

In addition, the Transaction Membership View illustrates 
how the computation was done. At each transaction, P1 
updates x2, x3, x4 and sends them to P2, P3, and P4 respectively, 
thus involving all four processes in each transaction. Note that 
a transaction does not necessarily involve all processes.  

The Transaction State View (upper right in Fig. 3) has a 
“watch” menu at its top-left corner. The user can pull down 
the menu and see a list of the observable variables. He can 
select a variable to watch at any time during the execution. 
The values of the variable are displayed on the white 
rectangles representing the processes in a transaction. At the 
bottom of the view, the name of the variable under 
observation is displayed. 

By comparing the Transaction Membership View to the 
Logical Time Ordering View, we can gain some 
understanding about how transactions are specified. In Fig. 3, 
we see that all four processes participated in the first two 
transactions. The Transaction Membership view confirms the 
above conclusion. The Transaction Membership view is 
especially helpful in preparation for understanding the 
concurrency control algorithms since both of the algorithms 
are based on transactions. 

The Transaction State view is a visual aid in finding out if a 
steering transaction is inconsistent. Fig. 3 displays a snapshot 
of the State view immediately after the first steering 
transaction, which sets a to 3, was carried out and before the 
rollback began. We can see that the value of a was changed to 
3 at process P2, while it remained 1 at P3 and P4. This was 
caused by the inconsistent steering transaction. Therefore, the 
computation will need to bring back to a consistent state by 
rollback and re-apply the steering changes at the earliest 
consistent time. 

V. PERFORMANCE VISUALIZATION 
The Performance View contains four smaller windows, as 

seen in Fig. 4.  The top-left window shows the distribution of 
the program events in a pie chart. Colors are related to specific 
events and have their unique meanings across different views. 
For example, yellow is always associated with application 
messages, green with TLP messages, and pink with steering 
messages. A key, not seen here, is displayed to the user.  
Below the pie charts, the total number of events is displayed. 
The bottom-left window displays the distribution of events 
among different processes. The horizontal line at the bottom 
of the window is marked with event numbers. The information 
provided by this view can be used to evaluate load balancing 
and communication patterns. For example, P1 has a greater 
number of events than any other process, which shows that 
this process communicates more. The top-right window shows 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

260

 

 

the latency of steering transactions. At the bottom of the 
window is a timeline running from the left to the right. 
Steering transactions are displayed in pink bars with their 
starting and ending times correlated to the timeline. 
Immediately after each bar is the textual display of the latency 
time for that specific steering transaction. In this case, only 
two steering transactions were applied. The first steering 
transaction took 2580 milliseconds while the second one 
required 2520 milliseconds. Such information is very useful in 
evaluating the two concurrency control algorithms. The 
bottom-right view presents information about rollbacks. The 
two pies in the window represent two sets of data about the 
rollbacks. The left pie chart shows the ratio of rollback time to 
the total program execution time while the right pie chart 
shows the percentage of steering transactions that required 
rollback. As shown in Fig. 4, all the steering transactions so 
far are inconsistent, so the rollback percentage is 100%. Note 
that this is not typical of the expected ratios for optimistic 
steering. 

VI. ALGORITHM VISUALIZATION 
The Exploratory Environment uses algorithm visualization 

for two purposes: (1) to help algorithm developers design and 
test concurrency control algorithms for Pathfinder; and (2) to 
help users understand both these algorithms and distributed 
computations in general. Two views have been created for the 
concurrency control algorithms that we developed in this 
environment: the History-based Algorithm View and the 
Vector-time-based Algorithm View. 

A. The History Based Algorithm 
The history-based algorithm [6] depends on a specific 

subset of computation history. It compares the time stamps of 
a steering transaction with the time stamps of the program 
transactions in the history. If a steering transaction can be 
placed between program transactions, then it is said to be 

consistent. Key data structures and concepts related to this 
algorithm are described below. 

TLP Table: A TLP table stores a subset of the 
computational history.  Fig. 5 shows the graphical 
representation of a TLP table. Table elements represent the 
logical local time at which a process participated in a 
transaction. Each row represents a transaction. A “-” indicates 
that a process is not involved in that transaction. Time runs 
from top to bottom.  

Steering Transaction: Computational steering can be 
viewed as the modification of the local states of one or more 
processes. Each modification is a steering change or a steering 
event. A steering transaction is a set of steering events issued 
by the user in a single request. In the visualization, a steering 
transaction is represented as a row of pink rectangles. Each 
pink rectangle has on it a number showing the logical time at 
which the steering event was applied.  

Consistent Steering: A steering action is considered 
consistent if and only if a steering transaction is not 
concurrent with any program transaction with which its 
process set intersects. In other words, a steering transaction is 
considered inconsistent if some of its timestamps are earlier 
while others are later than the corresponding time stamps in a 
program transaction. 

The Earliest Consistent time: If a steering transaction is 
inconsistent, we must calculate the earliest time at which these 
steering changes can be consistently applied. This is the time 
of the earliest consistent cut after the initial steering 
transaction. We need to roll back the steered processes to the 
checkpoint taken prior to steering, execute forward to the 
calculated time, apply the steering changes, and continue 
executing forward. By doing so, the computation will be 
brought back to a consistent state and the steering will be 
carried out in a way closest to the user request. 

Consistency Validation: A vector is maintained to store the 
consistent times at which a steering action can be applied. In 
Fig.5 this vector is represented as a row of green rectangles at 
the top of the display, labeled as “CV”. Validation begins with 
the most recent transaction in the history. The logical times for 
each of the program transactions are compared with the 
logical times of the steering transaction. For a program 
transaction Ti, if its logical times are all equal to or greater 
than those of the steering transaction, we know that the 
steering transaction happened before Ti. Then the non-null 
values of Ti are written to the consistency vector. Working 
back through the history, the vector is updated with the non-
null values of each transaction whose logical times are equal 
to or greater than those of the steering transaction. If some or 
all of the logical times in a program transaction are earlier 
than their counterparts in the steering transaction, this 
transaction is concurrent with or happened before the steering 
transaction. In this case, a flag is set for each process in the 
program transaction indicating that no earlier steering event 
time for those processes could logically occur.   

The comparison goes on with each program transaction 
until one of the two conditions is realized:   

Fig. 4    the Performance View Window 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

261

 

 

(1) All the processes in the steering transaction have been 
flagged; or (2) All the transactions in the TLP table have been 
checked. 

The vector now contains the local times for the earliest 
consistent steering transaction.  

The Simulator sends the TLP table and the steering 
transaction to the Visualizer as the algorithm begins to run. 
The Simulator records the result of each comparison in a 
vector and sends it to the Visualizer. A result vector contains 
the transaction ID and one or more of the three code words: 
TRUE, FALSE and AFFECTED, where   

FASLE indicates that the logical time of the process is 
equal to or greater than its counterparts in the steering 
transaction; 

AFFECTED indicates that the logical time of the process is 

less than its counterpart in the steering transaction; and 
TRUE indicates that the logical time of the process is equal 

to or greater than its counterpart in the steering transaction but 
some of its fellow processes in the same transaction or some 
of the logical times for this process in later transactions has 
been marked as AFFECTED.  

Fig.5 shows the screen shots of the animated visualization 
of the algorithm applied to a small TLP table. In Fig. 5, (a) is 
the screen shot after the comparisons with T9 and T8 have 
been done and while T7 is being processed. Note that CV has 
been updated to reflect the times in T9 and T8, and will soon 
be updated to reflect the consistent cut at T7. Screen shots (b) 
and (c) represent the algorithm after comparisons with T6 and 
T5, respectively. Again, note that the vector was updated for 
every transaction found to have happened after the steering 

(a) (b)

(c) (d)  

Fig. 5 The History-based Algorithm: Screen Shots of a Sample Run 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

262

 

 

transaction; (d) is the final screen shot when the algorithm 
reached its end. Note in T3, P4 has a smaller logical time than 
its counterpart in the steering vector. A flag is raised for P4 
(indicated by the black color) and P3 is marked as TRUE 
(indicated by gray color). All the three processes in T2 are 
marked as TRUE because P3 in T2 is causally related to P3 in 
T3, which is already marked as TRUE. The comparison 
stopped at T1 when all the processes had flags on and 
coincidentally when all the transactions in the TLP table had 
been checked. 

B. Vector Time Based Algorithm 
Unlike the bottom-up algorithm that takes a steering 

transaction as a whole and relies on the history of inter-
transactional relations between a steering transaction and the 
program transactions, the vector-time based algorithm [1] 
focuses on the relations among the steering events in a 
steering transaction.  In the vector time based algorithm, the 
consistency of a steering transaction is detected by directly 
comparing the vector timestamps of steering events.  Further, 
the earliest consistent transaction can be obtained by checking 
the vector time of each steering event in a steering transaction.  
The following are the key data structures and concepts that 
need to be captured in the visualization of the vector-time 

based algorithm: 
Steering Event and its Vector Time: In the vector time 

based algorithm, each process is associated with a vector 
clock V of size n, where n is the number of processes in the 
system.  Each element in the vector corresponds to a process 
in the system.  The value of V[i] denotes the number of past 
local transactions at that process as known by this process.  
The vector time of a steering event in process Pi is the vector 
time that results from the occurrence of steering event in 
process Pi.  A detailed description of transaction-based vector 
time can be found in [1]. 

The Transaction-based vector time is represented as a 
column of numbers in a time-space diagram, as seen in Fig. 6. 
A steering event is displayed as a pink rectangle with its 
vector time shown in pink numbers along the conceptual time 
line. 

Consistent Steering: In the vector time algorithm, we decide 
whether or not two steering events are concurrent by checking 
if there exist any causal relations among the steering events in 
the steering transaction. The lack of causal relations among 
the steering events indicates that the steering changes were 
applied at a consistent cut; otherwise, the steering transaction 
is deemed inconsistent. 

(a) (b)

(c) (d)  

Fig. 6 Vector Time Based Algorithm: Screen Shots of a Sample Run 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

263

 

 

With the help of the visualization, we can gain knowledge 
about the processes by checking their positions in the steering 
transaction. A line is drawn to connect two steering events if a 
causal dependency exists. If the lines cut through a 
transaction, then we know that this steering transaction is 
inconsistent. 

The Earliest Consistent Time: If the steering events in a 
steering transaction are not concurrent, we know that there 
exists some causal relation between at least two of the steering 
events. To avoid violating such causal relations, the simplest 
method is to apply the steering action at the later time of the 
two. If we can find the latest time for each process involved in 
the steering transaction and apply the steering at that time, the 
new steering transaction will be consistent and it will be the 
earliest consistent transaction, as any steering transaction 
applied before it is inconsistent.   

Let V(ei) denote the vector time of a steering event in 
process i.  Let SP denote the set of processes that participate 
in a steering transaction.  Let SV be a time vector and SV[i] 
denote the local time at which the steering event actually 
happened at process Pi for all i ∈ SP, .  Let CV be a time 
vector and CV[i] denote the time at which the steering event 
could be consistently applied at process Pi for all i ∈ SP.  
Then,  

[ ] ( ) 5.0][max +⎥⎦
⎥

⎢⎣
⎢=

∈

ieViCV k
SPk

, for all i  ∈  SP 

IF CV[i] = SV[i], for all i ∈ SP, then the steering is 
consistent, otherwise not.   

Taking the vector times for the steering events in Fig. 6: 
V(e1)={0.5, 0, 0, 0, 0, 0}, V(e2 )= {1, 1.5, 0, 0, 0, 0}, V(e4)= 
{1, 2, 1, 1.5, 0, 0}, V(e5)= {1, 2, 2, 2, 1.5, 1}, then we have 
the earliest consistent time CV = {1.5, 2.5, -, 2.5, 1.5, -}.  
Comparing the steering transaction SV= {0.5, 1.5, - , 1.5, 1.5, 
-} with the earliest consistent transaction, we find that the 
steering transaction was applied at a time earlier than the 
earliest consistent time, which indicates that the steering 
transaction is not consistent.  Note that, for the processes that 
did not participate in the steering transaction, a null sign “-” is 
placed at its position as a placeholder. 

To improve performance, we compute the earliest 
consistent transaction first and then compare it with the 
steering transaction. If they are identical, then the steering 
transaction is consistent; otherwise, it is inconsistent. 

The animated visualization of the algorithm captures all the 
important steps in the verification of consistency, the detection 
of inconsistency, and the computation of the earliest consistent 
times. Fig. 6 displays 4 screen shots from a run of the vector-
time-based algorithm where (a) shows the transactions and 
steering events, (b) displays the vector times for the steering 
events, (c) adds the information of a cut, and (d) was captured 
after the earliest consistent times were computed. 

VII. CONCLUSIONS 
The primary goal of this research is to build an exploratory 

environment for the development and understanding of 

concurrency control algorithms. We prototyped and 
experimented with versions of these algorithms, compare their 
performance, and thoroughly test the algorithms in the 
Exploratory Environment before we implemented these 
algorithms in the Pathfinder system. To accomplish this goal, 
we built a simulation of the Pathfinder system and a 
visualization component to monitor and visualize the 
computation process as well as the execution of the algorithms 
in the simulation.  

This approach has been very effective.  We have 
successfully integrated the consistent interactive steering 
algorithms, including the history-based algorithm and the 
vector-based algorithm, into the Pathfinder system [1].   

In this paper, we have seen that the visualization can be 
very useful for understanding the execution of distributed 
algorithms. Visualization can provide support for program 
debugging and correctness verification. It can also be 
employed to demonstrate and teach the workings of 
algorithms and to compare the behavior of different 
algorithms.  

REFERENCES 
[1] J. Guo, “Consistent, Interactive Steering of Distributed Computations: 

Algorithms and Implementation,” Ph.D. Dissertation, Department of 
Computer Science, University of Georgia, 2002. 

[2] D. Hart and E. Kraemer. "Consistency Considerations in the Interactive 
Steering of Computations", International Journal of Parallel and 
Distributed   Systems and Networks, 2(3), 1999, pp 171-179. 

[3] E. Kraemer and J. T. Stasko. “Creating an accurate portrayal of 
Concurrent Executions” IEEE Concurrency, 6(1), 1998, pp 36-46. 

[4] E. Kraemer, D. Hart, and G-C. Roman, “Balancing Consistency and Lag 
in Transaction-Based Computational Steering,” Proceedings of the 
Thirty-First Annual Hawaii International Conference on System 
Sciences, pp 137-147, 1998. 

[5] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed 
System”, Communications of the ACM, 21(7): 558-565, 1978. 

[6] D.W. Miller, J. Guo, E. Kraemer and Y.Xiong, “On-the-fly Calculation 
and Verification of Consistent Steering Transactions”, IEEE/ACM Super 
Computing 2001 (SC2001), Denver, CO. 

[7] H. Vuppula, E. Kraemer, and D. Hart, “Algorithms for Collection of 
Global Snapshots: An Empirical Evaluation,” Proceedings of the ISCA 
Conference on Parallel and Distributed Computing, pp 197-204, 2001. 

 
 
Jinhua Guo is the director of Vehicular Networking Systems Research 
Laboratory and an Assistant Professor in the Department of Computer and 
Information at the University of Michigan-Dearborn, USA.  He received his 
Ph.D. in Computer Science from the University of Georgia in 2002.  He 
received the B.Eng. and the M.Eng. in Computer Science from Dalian 
University of Technology, China in 1992 and 1995, respectively.  His current 
research interests include wireless networks and mobile computing, vehicular 
networks, mobile agents, and distributed systems.  He is a member of ACM 
and IEEE. 


