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Abstract—In present communication, we have developed the 

suitable constraints for the given the mean codeword length and the 
measures of entropy. This development has proved that Renyi’s 
entropy gives the minimum value of the log of the harmonic mean 
and the log of power mean. We have also developed an important 
relation between best 1:1 code and the uniquely decipherable code by 
using different measures of entropy. 
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I. INTRODUCTION 
N usual practice, coding theory deals in finding the 
minimum value of a mean codeword length subject to a 

given constraint on codeword lengths. However, since the 
codeword lengths are integers, the minimum value always lies 
between two bounds and every noiseless coding theorem 
seeks to find these two lower bounds for a given value of 
mean and a given constraint. Shannon [11] has shown that the 
minimal expected length L of a prefix code for a random 
variable X   satisfies the following result: 

                  ( ) ( ) 1H X L H X≤ < +                           (1)                                                                                                       

Where H is the entropy of the random variable. Since the 
set of allowed codeword lengths is the same for the uniquely 
decipherable and instantaneous codes, the expected codeword 
length L is the same for both sets of codes. If ip is the 

probability of the thi outcome, then Shannon [11] assigned 
the following codeword length to the   outcome of the random 
variable 

         
1logi
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where x⎡ ⎤⎢ ⎥ denotes the smallest integer greater than or 

equal to x. Shannon [11] used Kraft’s [6] inequality to prove  
 
his results and this inequality plays an important role in 
proving a noiseless coding theorem and is uniquely 
determined by the condition for unique decipherability.  

Although the main focus is on the class of uniquely 
decipherable codes, there has been some interest in the class 
of one-to-one codes. A one-to-one code is a code that 
associates a distinct codeword with each source symbol. As 
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such, unlike uniquely decipherable codes, one-to-one codes 
need not possess unique decipherability. Due to Feinstein [4], 
one chooses codeword lengths to minimize the average code 
length and this minimization is done subject to the constraint 
that the code be uniquely decipherable. Rissanen [9] derived a 
lower bound for the mean code length of all one-to-one codes 
for a random variable with n outcomes. Savari and Naheta 
[10] generalized one-to-one encodings of a discrete random 
variable to finite code alphabets and established some upper 
and lower bounds for the best one-to-one codes.  Some results 
regarding the lower bounds of expected lengths of one-one 
codes have been discussed by Cheng, Huang and Weidmann 
[3] and Cheng and Huang [2]. Some other work related with 
best one-one codes has been studied by Leung-Yan-Cheong 
and Cover [7].  

While dealing with coding theory, we usually come across 
three entities viz means, constraints and measures of entropy 
and we get the following problems: 

(i) Given a specific mean and a specific constraint, find the 
minimum value of the mean subject to the given constraint.  

(ii) Given an entropy measure and a constraint, find the 
mean codeword length for which the given entropy measure 
will give the minimum value for the given constraint.  

(iii) Given the mean codeword length and the measure of 
entropy, find a suitable constraint for which the measure of 
entropy will be the minimum value for the given mean 
codeword length. 

This paper deals with the investigations of the third class of 
problems dealing with the development of appropriate 
constraints, the results of which have been shown in section 
II. In section III, we have developed an important relation 
between best 1:1 code and the uniquely decipherable code by 
using different measures of entropy.  

II. APPROPRIATE CONSTRAINTS FOR THE GIVEN VALUES OF 
MEAN AND THE ENTROPY MEASURES  

In such problems, the mean codeword lengths and their 
minimum values have been given and we have to find the 
appropriate constraints. 

A. Suppose we want the constraint which gives Renyi’s [8] 
entropy as the minimum value of the log of the harmonic mean 
of codeword length, we proceed as under: 

Harmonic mean is given by 
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We want to minimize 

              
1

log log
n

i
D D

i i

pH
l=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑                            (4)                                                                                                            

subject to the following constraint 
       1 2( , ,..., )nf l l l k=                                                 (5)                                                                                                         

The corresponding Lagrangian is given by 

 { }
1

log
n

i
D

i i

pL f k
l

λ
=

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑  

Differentiating the above equation both sides with respect 
to il and equating to zero, we get  
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i i

pf K
l l

∂ ′=
∂

                                                           (6)                                                                                                                             

where  
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Equation (6) to have the solution, we must have  
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=                                       (7)                                                                                                                             

that is, 
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Substituting equation (8) in (6), we get 
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Integrating equation (9), we get  
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where  
'

''

2
KK = − and A is some arbitrary constant. 

From equations (5) and (10), we have 
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where  K k A′′′ = −  is a constant. 
or 
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where C is another constant given by  
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Thus, the required constraint to be found is 
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If, instead of (9), we want the solution i
i

al
p

= , then the 

constraint will be 2
1
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 ( )2logD a R P= +  

                               
Where ( )2R P is Renyi’s [8] entropy of order 2. Thus, the 

minimum value of log of harmonic mean lies between 

( )2R P and ( )2 1R P +  if a lies between 1 and D.  

B. Suppose we want the constraint which gives Renyi’s [8] 
entropy as the minimum value of the log of the power mean of 
codeword length, we proceed as under: 

Power mean is given by 
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We want to minimize 
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that is, 
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subject to the following constraint 
   1 2( , ,..., )nh l l l k=                                                   (13)                   

To solve the problem, we apply Lagrange’s method of 
maximum multipliers. The corresponding Lagrangian is given 
by 
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Differentiating the above equation both sides with respect 
to il  and equating to zero, we get: 
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Equation (14) to have the solution, we must have  
1
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=                                                                        (15)                   

that is, 
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Substituting equation (16) in (14), we get 
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Integrating equation (17), we get  
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From equations (13) and (18), we have 

  1

1

n
r

i
i

K l K−

=

′′ ′′′=∑  

where K k A′′′ = − is some constant. 
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Thus the required constraint to be found is 1
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If, instead of (15), we want the solution i
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( ) ( )1logD ra R P−= +  

where ( ) ( )1 rR P−  is Renyi’s [8] entropy of order1 r− . 

Thus, the minimum value of log of power mean lies 
between ( ) ( )1 rR P−  and ( ) ( )1 1rR P− + if a lies between 1 and 

D.  

III. RELATION BETWEEN BEST 1:1 CODE AND THE UNIQUELY 
DECIPHERABLE CODE  

In this section, we develop an important relation between 
best 1:1 code and the uniquely decipherable code by using 
different measures of entropy. 

A. A mean codeword length of order t for the best 1:1 code 
and Renyi's [8] entropy of type α  

Campbell [1] introduced a generalized mean codeword 
length of order t given by 
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Where, D represents the size of the code alphabet.  
Also,  

 
1t α

α
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and  
  , 1, 2,..,il i n= are the lengths of the codewords 

associated with the value of X. He showed that for uniquely 
decipherable codes, lower bound for ( )UDL t lies ( )R Pα  

between ( ) 1R Pα + and    
that is,                

( ) ( ) ( ) 1UDR P L t R Pα α≤ < +                                  (20)                   
where              
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is the Renyi's [8] entropy of type α . 
Let the probability distribution of the random variable X   

taking finite number of values be         
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Without any loss of generality, we can assume that 

1 2 ..... np p p≥ ≥ ≥ . Let , 1, 2,..,il i n=  be the lengths 
of the codewords in the best 1:1 code for encoding the random 
variable X , where il is the length of the codeword assigned 

to ix . 
Remark: The set of available codewords is 

{ }0,1,00,01,10,11,000,001,... . It is clear that the best 1:1 

code must have 1 2 3 ...l l l≤ ≤ ≤ . Thus, by Inspection, 
wehaveprecisely

1 2 31, 1, 2,...., log 1
2i D
il l l l ⎡ ⎤⎛ ⎞= = = = +⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

 

Where, x⎡ ⎤⎢ ⎥ denotes the smallest integer greater than or equal 

to x . 
We consider the generalized mean codeword length of 

order t for the best 1:1 code, that is 
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and find a lower bound to this. In fact, we prove the 
following result: 
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Theorem-I: For ( )R Pα as given in equation (21), the 
following estimates hold 
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and moreover, 
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Proof: From equation (22), we can have  
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                      (Using Holder's inequality) 
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Now, from equation (20), we have   
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Which gives equation (24). 

B. A 2-parameter exponentiated mean codeword length of 
order α and type β for the best 1:1 code and Kapur's [5] 
additive measure of entropy  

Kapur [5] introduced a mean codeword length of order α 
and type β, given by: 
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Where, D represents the size of the code alphabet, 
and , 1, 2,..,il i n= are the lengths of the codewords 
associated with the value of X. He showed that for uniquely 
decipherable codes, lower bound for ,Lα β  given by  
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Where, 1t α= − and this lower bound lies between  

, ( )E Pα β  and , ( ) 1E Pα β + , that is,                
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is a two parameter additive measure of entropy given by 
Kapur [5]. 

We consider 2-parameter exponentiated mean codeword 
length of order t and type β for the best 1:1 code, that is 
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 and find a lower bound to this. In fact, we prove the 
following result: 

Theorem-II: For , ( )E Pα β as given in equation (27), the 

following estimates hold 
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and moreover, 
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Proof. From equation (28), we can have  
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Now, from equation (26), we get the following result:   
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which gives equation (30). 
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