
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1874

Abstract—The model-based approach to user interface design

relies on developing separate models that are capturing various
aspects about users, tasks, application domain, presentation and
dialog representations. This paper presents a task modeling approach
for user interface design and aims at exploring the mappings between
task, domain and presentation models. The basic idea of our
approach is to identify typical configurations in task and domain
models and to investigate how they relate each other. A special
emphasis is put on application-specific functions and mappings
between domain objects and operational task structures. In this
respect, we will distinguish between three layers in the task
decomposition: a functional layer, a planning layer, and an
operational layer.

Keywords—task modeling, user interface design, unit tasks,
basic tasks, operational task model

I. INTRODUCTION
ODEL-based approaches to user interface design are
creating a promising framework for the development of

interactive systems able to run in different contexts of use.
Rather than starting from scratch, this approach makes it
possible to develop separate models, which are capturing
context variations, and to manipulate them in order to migrate
from one context to another.

Models are used to capture design knowledge needed for
the construction of the future user interface (UI). Main
concepts abstracted into these models refer to users, tasks,
application domain, presentation and dialog. User, task and
domain models may be termed as contributing models since
they are influencing the UI design process. In this respect,
they are used for the derivation of presentation and dialog
models. Model-based approaches, which are giving the task
model a leading role among the other models, are also referred
to as task-based approaches.

A key ingredient to the success of model-based approaches
is the mapping problem related to the handling of
relationships between models throughout the development life

Manuscript received March 31, 2005. This work was supported in part by

the PN 202/2003 national research project and FP6-507609 European research
project (SIMILAR).

Costin Pribeanu is with the National Institute for Research and
Development in Informatics – ICI Bucureşti, Bd. Mareşal Averescu No. 8-10,
011455 Bucharest, Romania (phone: +40-(0)21 3160736; fax: +40-(0)21
3161030; e-mail: pribeanu@ici.ro.

cycle. These relationships or mappings are of particular
importance when we want to run a target application in
different contexts of use while preserving usability.

According to the ISO 9241-11:1998 standard [6], usability
is defined as the extent to which a product could be used by
specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use. In the
same standard, the context of use is defined by users, tasks,
equipment (hardware, software and materials), and the
physical and social environments in which a product is used.
Since usability is evaluated in context, it is important for
designers to rely on a flexible task representation, able to
capture context variations.

Several approaches to task modeling have been proposed
that are aiming to answer the needs for developing context-
sensitive user interfaces. Most of them are addressing the
mappings between task and platform models, such as [14] and
[15], in order to build user interfaces that are preserving
usability along a wide range of computer devices. In this
respect they are complementary to other approaches
developed in the past (see, for example [1] and [11]) aiming at
the derivation of user interfaces from domain models.

This aims at presenting a layered approach to task modeling
in the framework of model-based design of user interfaces.
We will address the mapping problem as a rationale for the
proposed task model structure. The basic idea of our approach
is to identify typical configurations in both task and domain
models, to investigate how they relate each other and how
these configurations could be used for the design of user
interfaces.

The rest of this paper is organized as follows. In section II,
we will discuss some related work with a focus on the
mapping problem. In section III, we will briefly discuss some
application-domain concepts in order to investigate the
relation between application functions, tasks and domain
objects. Then we will describe our task modelling framework
and discuss its benefits for user interface design. The paper
ends with conclusion in section V.

II. RELATED WORK
The mapping problem has been defined in [10] as a key

problem for the gradual transformation of models from
abstract to concrete level as well as for the mapping on the
same level of abstraction. Previous work in this area
highlights the concern for preserving consistency between
models along the progression from one model to another [3],

Task Modeling for User Interface Design: A
Layered Approach

Costin Pribeanu

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1875

elaboration of graceful degradation rules for multi-target user
interfaces [5] as well as development of a description
language and tools supporting the specification transitions [8].

A problem with the mapping between models is that they
require a detailed representation of model components along
the development process. This means that we need to consider
at least three aspects when exploring the mapping space: (a)
the model type (e.g. domain, task, presentation, and platform);
(b) the hierarchical structure of each model (e.g. dialog unit,
interaction object), and (c) the progression level along the
development life cycle. Up to now, only interface models have
defined transitions from abstract to final representations of the
design.

The last two dimensions seem to be most neglected in
existing approaches. The problems are mainly located in task
and domain models since it is not clear how they relate each-
other and which are the transitions they have to undergo in
order to effectively support the design process.

TABLE I
TASK CATEGORIES IN CTTE

Abstract Interaction Application User Cooperative

Another important problem in model-based approaches is
the tools needed to assist designers in building models and
handling mappings. In order to handle relationships between
models a compatibility between representations is required.

The Concur Task Tree Notation (CTT) has been
implemented in the CTT Environment (CTTE) [9], which is
providing with a graphical notation for task representation
(see Table 1) and temporal operators (see Table 2).

There are some restrictions in combining binary and unary
operators. For example, the combination T1*>>T2 is not
allowed, since T2 will be never performed. Also, optional
tasks are not allowed in the left and right side of the operators
|>, [> and [].

CTTE enables the designer to create task trees and to
specify task properties such as task type, frequency, and
estimated execution time. An important feature is the XML
output capability that makes CTTE a useful tool for the
handling of mappings between the task model and other

models.

TABLE II
TEMPORAL OPERATORS IN CTTE

Binary operators
Choice T1 [] T2
Order independecy T1 |=| T2
Interleaving T1 ||| T2
Synchronization T1 |[]| T2
Enabling T1 >> T2
Enabling with info passing T1 []>> T2
Disabling T1 [> T2
Suspend / resume T1 |> T2

Unary operators
Optional [T1]
Iteration T1*

The temporal priority (from higher to lower) is given

below:
[], |=|, |||, |[]|, [> and |>, >>, []>>.

CTT notation has been integrated in Teresa [10], a task-
based design tool offering facilities for the computer-aided
design of UIs.

III. THE APPLICATION DOMAIN MODEL
A. Application functions
The application domain model also referred to as domain

model or concepts model defines the concepts related to the
domain of the target application. Two components have a
particular importance for the user interface design: the
application functions and data model. Each function
corresponds to a business goal, which is accomplished by
carrying on one or several user tasks.

This mapping is often neglected in the development of
interactive systems, although it provides with an important
bridge between software engineering and human-computer
interaction.

In order to present our work we will use an example. The
purpose of the application is the management of data about
products, clients and orders in a trade company. The mapping
could be expressed as a task model represented in Figure 1 by
using the CTT graphical notation.

Fig. 1 Mapping of application functions onto user tasks

Only high level tasks are represented in Figure 1 Tasks on

the first level of decomposition correspond to business goals.

They are further decomposed in user tasks required to
accomplish these goals. Since the representation in Figure 1 is
mapping application functions onto user tasks, we will term it

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1876

as the functional layer of the task model.
This mapping is producing the initial representation of tasks

that are relevant for the target application. For the sake of
simplicity, we will focus on the task “New order” represented
in Fig. 3. The task goal is to record new orders submitted by
clients.

A. The Data model
The data model is capturing representations of domain

objects (entities), relationships between domain objects and
domain object attributes. The conceptual data model is
depicted in Figure 2 according to an entity-relationship-
attribute (ERA) formalism produced by the DB-MAIN tool
[4]. This formalism has been chosen for its expressiveness in
representing relations and its capabilities to output both a SQL
and XML specifications of the model.

As pointed out by Thevenin and Coutaz [14], the domain
concepts could be ranked upon the degree of importance for
the application domain and the centrality for the user task. For
example, the order, client and product are central entities for
the task „Record orders”.

Fig. 2 The conceptual data model

In turn, the centrality of objects is determining the centrality
of relationships and roles. Central relationships are the
relations a central object has with other objects in a task. In
order to have a complete mental model, it is important for the
user to understand the relationship between domain objects. In
this respect, the user should perceive all products which have
been specified in an order (perceiving the 1-N relationship) in
order to have a feedback on task completion. In a similar vein,
it is useful to visualize the client data (perceiving of the 1-1
relationship) in order to be sure that a customer has been
specified.

A binary relation has two roles and each role has its own
cardinality expressed as an interval (e.g. 0-1 or 1-N). The
relevant cardinality is different and depends on the centrality
of the object responsible for that role. For example, the
relevant role in the relation « Sending » is « sent-by »,
denoting that an order is sent by only one client. Similarly, in
the « Ordering » relation the relevant role is « orders » with
the cardinality 1: N, meaning that several products are
requested by an order.

As it was pointed out in [12], cardinality of roles is
important since it reveals repetitive tasks and helps in task

decomposition. Two examples are represented in Figure 3:
• The task „Record order”, which is explicitly, started by

the task “Take order” (in a work session we might have
no order).

• The task “Product data”, which is implicitly started (an
order should specify at least one product).

A task enables the user to perform operations on domain
objects. The operations may be performed at collection level
(create new objects, delete or associate existing objects) or
object level (modify the object attributes). The data model
elements are selected according to task goals. In this respect,
tasks are filtering the data model elements that are further
needed for the user interface design.

IV. THE LAYERED TASK MODEL
A. Layers in task decomposition
As pointed out by activity theory [7], tasks are goal driven,

being performed consciously, while actions are depending on
operational conditions of the task and become automatic by
practice.

This distinction is important since it reveals several layers
in the task structure: a functional / planning layer that does not
depend on the target platform and an operational layer.
However, the operational conditions are a concept that has
been further refined for UI purposes [12] by addressing two
kinds of variation:
• Variations in using an interaction object: different actions

required to manipulate the same interaction object. In this
case, the activity is driven by requirements to adjust the
work, like articulator actions (e.g. scrolling a list).

• Variations in the platform used to carry on a task: the
same goal could be achieved using different user
interfaces. This situation corresponds to tasks that are
driven by operational goals in a given context of use.

The first case corresponds to operational conditions and is
beyond the scope of our task modeling approach. The second
case corresponds to the operational task model layer.
Therefore we will consider that the activity is also goal-
driven, like for the functional and planning layers, but goals
have a different relevance.

B. Criteria for task decomposition
Task modeling is an iterative process of identification and

description of tasks. Several criteria could be applied for task
decomposition but their relevance is varying according to the
task model layer:
• Functional: tasks associated with the same business goal.

This criterion applies for task decomposition at functional
level for the mapping of application functions to user
tasks.

• Semantic: task performing an operation onto the same
domain object. This criterion is applied to separate tasks
which refer to the same object or to the same operation
(add new, delete) or to the same interaction method (when
several methods are available to accomplish a goal). It is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1877

relevant for both functional and operational level and
helps in the identification of unit tasks.

• Task object: tasks performing operations with the same
interaction object or external object. The criterion is
relevant for the operational level and helps in the
identification of basic tasks.

• User and work: tasks are performed by the same user
(playing a given role) and are denoting a similar work
(manual, interactive, communication). The criterion is
mainly relevant for cooperative tasks.

• Temporal: tasks denoting specific temporal constraints
(like repetitive or optional performance). The criterion is
relevant for the representation of temporal constraints
among tasks.

C. The planning layer
The second layer in the task model is represented in Figure

3 and shows how users are planning task performance by
decomposing a task in sub-tasks and giving an ordering
preference for each of them.

Fig. 3 Decomposition for the task “Record order”

Usually, this specification results from early task analysis

and represents “what-to-do” knowledge. In our design
framework, this layer is the result of decomposition of the
functional tasks, which are represented in Figure 1. The
decomposition stops at unit task level, defined by Card,
Moran & Newell [2] as tasks the user really wants to perform.

The planning layer serves for the representation of
procedures used to accomplish a goal. As such, they could
capture context variations related to the relevance of tasks for
a specified context of use, as well as for their temporal
ordering.

In our example we assumed that the client is ordering
products via a phone call. In this case, the client is first asked
if he is an old client and remembers his id. If he doesn’t
remember or the search operation fails, he is asked to tell his
name. If the search by name also fails, then the operator
prefers to consider him a new client and to postpone the
referential integrity problem with the data base. This way, the
time call is not affected by misunderstanding / misspelling
issues which might often occur during a phone

communication. On another hand, the operator productivity is
maintained at a reasonable level.

Therefore the “Client data” task in Figure 3 has been
modeled with the operators “enabling with information
passing” (e.g. T1 []>>T2) and “optional” ([T]).

However, the order could be received by task. In this case,
the task is no longer co-operative so the operator could clearly
decide the client status. This situation is modeled like in
Figure 4. In this case, only the task of editing the client
address remains optional.

Fig. 4 Decomposition for the task “Client data”

Decomposition at planning level makes it possible to handle

various context situations and also to provide with a task
representation for each interaction method when several ways
to accomplish a goal are possible (e.g. search by id vs. search
by name).

D. Decomposition at operational level
The third layer represents the operational structure of unit

tasks. The decomposition of a unit task stops at basic task
level, which has been defined as the lowest task level that is
using a single interaction object or a single external object or
serves a communicational goal [12].

 Basic tasks are interaction driven and represent the “how-
to-do-it” knowledge, since they show how a unit task will be
actually carried on, by using various interaction techniques.
According to the interaction object type, we distinguish
between information control and function control basic tasks.

The task model is used as a mediator for the mapping
between domain and presentation models. An information
control basic task is carried on by using an information control
abstract interaction object (AIO) in order to access attribute
data. Available commands on the target platform are mapped
onto function control basic tasks in the task model and
abstract interaction objects in the presentation model.

The operational structure for the unit task „Product data” is
presented in Figure 5 and consists of two function control
basic tasks (ok and cancel) and seven information control
basic tasks. In the CTT notation, interaction objects used for
data entry are represented as interaction tasks while those that
only display information on the screen are represented as
application tasks.

A problem with the decomposition at operational level is
related to the definition of unit tasks. Unit tasks have a given
relevance for the user and do not depend on a given platform.
However, it is possible for a unit task to invoke the execution

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1878

of another unit tasks. For example, selecting a product from a
category is a task the user really wants to perform since it
makes the product specification easier. On another hand,
finding a product is also a unit task having its own operational
structure, like shown in Figure 5.

Fig. 5 Operational structure for the unit task “Product data”

The operational task model suggests a first level grouping

of AIOs. AIO groups are providing with a first level of
structuring the interface. As such, they are serving as basic
building blocks for the user interface design in a task-based
approach.

AIO configurations are the lowest level units of the
interface that have associated both a unit task goal and a
temporal relation (the ordering of basic tasks).

V. CONCLUSION AND FUTURE WORK
A shortcoming of many approaches is that they start with

the data model and not with the task model. As we shown in
this paper, the task model is filtering for relevance the data
model elements, which are further, needed in the design of
user interfaces.

In this paper we presented a task modeling approach for
user interface design. We identified three decomposition
levels, which are relevant in task modeling for user interface
design:
• A functional level that results from mapping application

functions onto user tasks.
• A unit task level that results from the decomposition of

functional tasks regardless the constraints imposed by a
target hardware and software platform.

• A basic task level that results from the decomposition of
unit tasks, which are, carried on by using interaction
techniques available on a target platform.

We have also identified several task-domain mappings that
are useful for the model-based derivation of the presentation:
• Unit tasks – domain objects: operations performed onto

domain objects are modeled as unit tasks in the task
model.

• Basic tasks – domain object attributes / available
commands: operations performed onto domain object
attributes are mapped are mapped onto information

control basic tasks while available commands on the
target platform are mapped onto function control basic
tasks. In turn, basic tasks are further mapped onto abstract
information object in the presentation of the user
interface.

REFERENCES
[1] Balzert,H., Hofman, F., Kruschinschi, V., Niemann, C. (1996) The

JANUS Application Development Environment - Generating more than
the user interface. Proceedings of CADUI’96. Presses Universitaires de
Namur. 183-206.

[2] Card, S. K., Moran, T. P. and Newell, A.: The psychology of human-
computer interaction. Lawrence Erlbaum Associates. (1993).

[3] Clerckx, T., Luyten, K. & Coninx, C.: The mapping problem back and
forths: Customizing dynamic models while preserving consistency. In
Palanque Slavic and Vinckler (Eds), Proceedings of Tamodia 2004.
(2004) 99-104.

[4] Englebert, V., Hainaut, J.-L.: GRASYLA: Modeling case tools GUIs in
metacases. Proceedings of CADUI 1999 (Louvain-la-Neuve, 21-23
October). Kluwer Academics, Dordrecht (1999) 217–244.

[5] Florins, M. & Vanderdonckt, J.: Graceful degradation of user interfaces
as a design method for multiplatform systems. Proceedings of IUI’2004.
ACM Press (2004) 140-147

[6] ISO 9241-11:1998 Information Technology – Ergonomic requierings for
office work with visual display terminals (VDTs) – Guidance on
usability.

[7] Leont’ev, A.N., Activity, consciousness and personality, Englewood
Cliffs, Prentice Hall, (1978).

[8] Limbourg, Q. & Vanderdonckt, J.: Addressing the mapping problem in
user interface design with USIXML. In Palanque, Slavic and Vinckler
(Eds), Proceedings of Tamodia 2004 (2004) 155-164.

[9] Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTree: a
Diagrammatic Notation for Specifying Task Models. In: Proceedings of
IFIP TC 13 Int. Conf. on Human-Computer Interaction (Syndey, June
1997). Chapman & Hall, London (1997), 362–369

[10] Paternò, F. , Santoro, C. :One Model, Many Interfaces. Proceedings of
CADUI'2002, Kluwer Academics, Dordrecht. 143-154.

[11] Pisano,A., Shirota, Y. & Iizawa, A. “Automatic generation of graphical
user interfaces for interactive database applications”. Proceedings of
CIKM ’93. ACM Press. .344-355.

[12] Pribeanu, C. & Vanderdonckt, J.: Exploring design heuristics for user
interface derivation from task and domain models. Proceedings of
CADUI'2002, Kluwer Academics, Dordrecht (2002) 103-110.

[13] Puerta, A.R. & Einsesnstein: J. Towards a general computational
framework for model-based interface development systems. Proceedings
of IUI’99 (5-8 January 1999). ACM Press. (1999). 171-178.

[14] Seffah, A. & Forbig, P. “Multiple User Interfaces: Towards A Task-
Driven And Patterns-Oriented Desigm Model”. In Forbig et al. (Eds.)
Proceedings of DSV-IS 2002, Springer, 2002. 118-132

[15] Souchon, N., Limbourg, Q., Vanderdonckt J. “Task Modelling in
Multiple Contexts of Use” In Forbig et al. (Eds.) Proceedings of DSV-IS
2002, Springer, 2002.

[16] Thevenin, D. & Coutaz, J. : Plasticity of User Interfaces: Framework and
Research Agenda. Proceedings of INTERACT’99, IOS Press
Amsterdam, (1999.

