
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1710

Abstract—A multi-board run-time reconfigurable (MRTR)

system for evolvable hardware (EHW) is introduced with the aim to
implement on hardware the bidirectional incremental evolution (BIE)
method. The main features of this digital intrinsic EHW solution rely
on the multi-board approach, the variable chromosome length
management and the partial configuration of the reconfigurable
circuit. These three features provide a high scalability to the solution.
The design has been written in VHDL with the concern of not being
platform dependant in order to keep a flexibility factor as high as
possible. This solution helps tackling the problem of evolving
complex task on digital configurable support.

Keywords—Evolvable Hardware, Evolutionary Strategy, multi-
board FPGA system.

I. INTRODUCTION
VOLVABLE Evolvable hardware (EHW) [1] is the
combination of a configurable device and an evolutionary

algorithm (EA) [2]. The EA modify the data content which
composes the bit string of the configurable device in order to
evolve the circuit until it fulfills a task. EHW had been
introduced to be applied to real-world applications but up to
date only few solutions can deal with relatively large solutions
such as [3][12][13]. And nowadays it is mainly seen as a way
to automatically design circuits that can be digital, mixed or
analogue. Different types of intrinsic EHW implementations
have been developed, some based on analogue reconfigurable
supports made of transistors [4][5][6] or mixed support (both
digital and analogue) application specific integrated circuits
(ASIC) [3] others on digital support like programmable logic
array [7] or reconfigurable systems based on processors [8]
but most of the digital system development has been made on
field programmable gate arrays (FGPA) and almost
exclusively on Xilinx products. It appears that this device
prevails among the others supports mainly due to its high
flexibility. Indeed an FPGA can be reconfigure almost an
infinite number of times and this for a reasonable price
compare to an ASIC. An FPGA does not need to be design it
is ready to be configured but FPGA are not perfect and some
major drawbacks for EHW lie in the impossibility to
reconfigure an FPGA from itself. The important configuration

Manuscript received June 1, 2006. This work was supported in part by the

EPSRC under grant number GR/S17178/.
C. Lambert, T. Kalganova, E. Stomeo and M. Wilson are with the School

of Engineering and Design, Brunel University (phone +44 1895 266 752; e-
mail: Tatiana.Kalganova@brunel.ac.uk).

time required is also a major inconvenience to have a
successful evolution in the shortest delay. An evolution
process in most of the case needs several trials to reach the
final solution (cf. Section 2 for further description) therefore
in an intrinsic EHW system each trial is downloaded inside
the FPGA, in other words the FPGA is configured and the
interest is to avoid wasting time during this phase. The method
introduced by Layzell to have a configurable system on a top
of a FPGA [9] helps bypassing these problems. The FPGA
will not be reconfigured for each new generation but the
virtual circuit, thus a high amount of time is gained. Some
others systems has been carried out following this method
such as [10][11] and as much as the authors know they
successfully evolved small tasks (up to a ten of inputs).
Sekanina has introduced a way to implement evolvable IP
cores [12] thanks to a virtual reconfigurable circuit (VRC)
constituted of configurable functional blocks (CFB). In [13]
another VRC has been introduced where the array is infinitely
extensible regarding the limitation that the support (i.e.
FPGA) introduces. These two VRC are extremely promising.
In Sekanina one a CFB has been designed as a configurable
logic block (CLB) that is present in the Xilinx FPGA [14] so a
set of functions can be stored inside a CFB. His VRC is made
of an array of column of CFB and the connections between
these columns are configurable. In Haddow et al. VRC the
Sblock approach allows to configure any connections between
each sblock but the functions set capacity seems to limited by
the size of the FPGA LUT used to implement the VRC.
Therefore if both features are merged and the possibility to
configure each cell individually, we could reach a very
flexible and highly scalable system.

Section 2 explains the evolutionary algorithm used in the
proposed system. Section 3 introduces the proposed solution
and details the main components of it. It follows an
implementation cost study of the proposed system in section 4
and the document is ended by a conclusion.

II. EVOLUTIONARY ALGORITHM
It has been stated to use a (1+λ) evolution strategy (ES)

because it has been extensively tested for its performances in
[15][16][17][18] has been chosen (Fig. 1) where λ reflects the
number of individuals composing a population. It has been
evaluated that an ES gives good results for an evolution
process in a small number of generations for a population
constituted of thousands of individuals or in a much higher

Multi-board Run-time Reconfigurable
Implementation of Intrinsic Evolvable Hardware

Cyrille Lambert, Tatiana Kalganova, Emanuele Stomeo, and Manissa Wilson

E

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1711

number of generations but for a small population [19]. For
obvious reason of overall cost the first statement cannot be
realized. Therefore it has been established to use a small
population and λ equals to five have shown some interesting
results if we refer to the document previously cited.

A. (1+ λ) Evolution Strategy
The ES works as follow, after a first generation has been

randomly created, each chromosome (= individual) is
evaluated. It results one fitness value for each chromosome,
the best of them is kept in a memory called best chromosome
memory. The fittest chromosome is therefore tested to know if
it fully answers to the task i.e. fitness value equals to 100%.
Else the best chromosome is mutated five times, one time per
new chromosome. It results a mutated population also called
new population that replaces the previous one. The process
carries on until the fitness value is equal to 100%, the number
of generation reaches a maximum allowed number for
instance 500,000 or for any other condition introduced by the
user for instance in our case a stalling effect of the fitness
value i.e. no improvement of the fitness value for a certain
amount of time such as 10% of the maximum allowed number
of generations.

B. Fitness Evaluation
Each time an individual have been configured by a new

generation of population a fitness evaluation is made. This
will indicate which chromosome gives the best answer to the
task and help to decide if the evolution process as to carry on
or if the answer has been found. The evaluation results from a
comparison between a set of desired outputs and the outputs
of each individual.

In the proposed system each chromosome fitness values are
computed one by one. When all of them are known, the best
one undergoes a selection with the best chromosome fitness

value kept in memory. The following equation (1) illustrates
the fitness function used in the MRTR system:

F = ∑ ∑
= =

y

addr

x

out
d

0 0

 where d =
⎩
⎨
⎧

=
≠

eoif
eoif

1
0

 (1)

To have a significant fitness value a set of inputs are

applied to each individuals of the MRTR. The resulting
outputs are compared with another set of desired outputs.
These two different sets are located in two memories and
organized in truth tables. The fitness value F is thereby
expressed by the sum of all the differences d between the
desired output e and the output given by an individual o. If the
individual output is different than the desired one the fitness
value does not change else it is incremented by 1. The fitness
value is computed for all the outputs (out) of each individual
through the two truth tables (addr).

III. DESCRIPTION OF THE ARCHITECTURE
A detailed description of the system and its main

components are exposed in this section.

A. Overview of the MRTR
To have a flexible system it has been decided to use a

design coded in VHDL without using any feature belonging to
a dedicated FPGA but rather to write a code as generic as
possible in order that the system can be implemented on most
of the FPGA provided on the market. Moreover to keep a
factor of scalability as high as possible the author decided to
plan an implementation where each reconfigurable array is on
one FPGA. It allows having a high scalability only limited by
the size of the support.

The multi-board run-time reconfigurable system is
composed of:
• an evolution strategy (ES),
• a fitness evaluation,
• a multiplexer block (Sort) presenting the outputs of each

target to the ES for the fitness evaluation,
• two memory blocks containing the values of the input

(ITT) and output truth tables (OTT),
• and finally five reconfigurable arrays.

The Fig. 2 exposes the overview of the MRTR and shows
the main data exchanges between the components that
composed the system.

The ES, ITT, OTT and Sort components are planned to be
implemented on a single FPGA. Each reconfigurable circuit
will be implemented on one FPGA. Therefore the whole
system will contain six FPGA. Moreover the RC design has
been carried out with the VRC as pattern. Bear in mind that
the main drawback of this approach relies on the fact that it is
very greedy in term of CLB.

Fig. 1 (1+λ) evolution strategy

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1712

B. Reconfigurable Circuit
Each of one the five reconfigurable circuits are made as an

array of configurable cells of r rows and c columns (see Fig.

3).
The Fig. 4 illustrates in detailed the specificities of the three

kind of RCell. An RCellA is always located in the first
column while an RCellC can solely be located in the last

column. An RCellB has the inverse restriction it cannot be a

cell of the first or last column of the array. The routing
selectors create some connections with the inputs of an RCell.
An RCellB for instance can be linked to an output of an
RCellA or of a previous RCellB but as well to an input of the
RC. In summary only the RCellC cannot have their inputs
connected to the inputs of the cell array. The function selector
has a similar role than a Xilinx FPGA LUT i.e. it can be seen
as a small memory that contains a set of function (for instance
AND, OR, XOR, NOT…). To configure the function of an
RCell A or B means to choose one among the pre-loaded
functions of their function selector.

As it has been written in the introduction, the RCs are
configured by the way of a bit string provided by the ES. The
bit string organisation has to reflect the one of the RCs. The

Fig. 5 exposes how the RCells are represented in the bit
string. As introduced earlier in the document each cell can be

addressed independently, partial reconfiguration. Then this
feature is translated in the bit string by the data field called
Address. In order to address a cell the column and row of this
one has to be indicated in @Col and @Row. CConf1 and
CConf2 are used to know if the routing selector is dealing
with the outputs of the previous cell or with the inputs of the
RC. The Functionality & routing field is used to configure
the routing and function selectors. Input1 and Input2 are the
configuration data of the routing selector while the function
selector receives the data from Function. The size of each
field has been chosen to have an interesting panel of possible
RC shape and size for the simulations of the MRTR.
 Therefore the full size of the bit string per chromosome will
be a multiple of the bit string for one cell by the number

Output Truth Table
Memory

Input Truth Table
Memory

RC #1

RC #2

RC #3

RC #4

RC #5

Evolution Strategy

Cell Configuration
Data

Cell
Configuration
Addresssing

Desired output values

Target output values

Input
values

RC 1
Output
values

RC 2
Output
values

RC 3
Output
values

RC 4 Output
values

RC 5 Output
values

Sort

Fig. 2 Multi-board Run-time reconfigurable system overview. The

reconfigurable circuits (RC) are the individuals composing the population
and are at the number of 5. A sorting block that is in fact a multiplexer

helps synchronizing the RC outputs sending to the ES. The fitness
evaluation is made thanks to the application of the ITT to each RC and the

RC outputs are compared with the OTT values (desired values)

RCellA

RCellA

RCellA

RCellB

RCellB

RCellB

RCellC

RCellC

RCellC

RCellB

RCellB

RCellB

n
in

pu
ts

m
 o

ut
pu

ts

RCellA

RCellB

Function and
routing

configurables
RCellC

Routing
configurable

Fig. 3 Reconfigurable circuit overview. 3 types of reconfigurable cell
(RCell). An RCellA is function configurable and can be connected to

any of the n inputs of the RC. An RCellB is also function configurable
and can be linked to any cell that is located in the previous column while

an RCellC is solely routing configurable so as to be linked to any
outputs of the previous RCellB column and to the m outputs of the RC

Function
selector

Routing
selector

1

1

RCellA

Function
selector

Routing
selector

1

1

RCellB

1

Function
selector

Routing
selector

1

1

RCellA

Function
selector

Routing
selector

1

1

RCellB

1

n Inputs
n

1

1

Routing
selector

Routing
selector

1

1

RCellC

RCellC
Fig. 4 Configurable circuit architecture made of 3 columns and 2 rows

with n inputs and 2 outputs. The inputs and outputs are all on 1 bit

Input2 Function

4 bits5 bits5 bits

CConf1 CConf2 @Col @Row

1 bit 1 bit 4 bits 4 bits

= 24 bits

Functionality & routing Address

Input1

Fig. 5 Bit string representation of a configurable cell (RCell) also called
RCell bit string. This organisation is common to the three types of cell

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1713

of cell that composes the RCs. The size of a RC is obviously
the number of row by the number of column of this one, see
equation (2).

stringbitRCellNNN colsrowsBitSize ××= (2)

where BitSizeN is the bit string size, rowsN and colsN are the
number of rows and columns in the reconfigurable target. The
size of RCell bit string is 24 bits.

The bit string format can easily be modified without
interfering in the behavior of the system, by adjusting the
mutation process to the new format.

Each cell can be individually configured, this allows a high
flexibility and thus it offers a good scalability. Indeed it is
possible to increase the size of the configurable array adding
other cells. The size limit of this array is imposed by the
physical support therefore the size of the FPGA on which the
array is implemented. Furthermore, this feature joined with a
variable chromosome length permit to partially configuring an
array as shown in Fig. 4. Bear in mind that modify the size of
the full bit string length is not more than adding or subtracting
some RCell bitstrings. A column of cell, a group of cell or
some isolated cells can thus be configured. Therefore the
finest grain of configuration is a cell.

IV. ESTIMATION AND FIRST RESULTS
In this section, different implementation cost estimation is

introduced. It shows the versatility of the MRTR solution.
Then it is followed by some results pre-synthesis of some
simulations made with the MRTR.

A. Implementation Cost
The MRTR has two main parts:

• the ETP which is the ES along with SORT, ITT and

OTT,
• and the reconfigurable circuits.

The Table I show the amount of slices, slice flip flops and 4
input LUTs needed to implement one RC and the ETP on a
Xilinx XCV1000 FPGA.

Several implementations are possible (cf. Table II) such as
one target per FPGA which will require having five XCV1000
(82 % of slices used) and the ETP on a XCV300 (70 % of
slices used). It is obviously an expensive implementation
however other solutions are conceivable for instance an
expensive one could be to implement the whole system on a
single FPGA i.e. XC4VLX160 (78% of slices used). Any
other solution made of FPGA that can contain this
configuration or an upper one is also suitable.

B. Results of Simulation
Some simulations have been run but none of them have

reached the final solution yet. These simulations were:
• RC 10 rows by 11 columns, clocks 63 MHz and 80MHz,

1 and half multiplier i.e. 1 bit by 2 bits and results on 2 bits.
• RC 10 rows by 11 columns, clocks 63 MHz and 80 MHz,

2 by 2 multiplier i.e. 2 bits by 2 bits and result on 4 bits.

Fig. 6 Partial configuration modes. The configuration of a single cell, of
a column of cell, a group of cells or the whole array are the

configuration modes offered to the user

TABLE I
IMPLEMENTATION COST FOR THE TWO MAIN ELEMENTS OF THE MRTR

SYSTEM. ETP CONTAINS THE ES, THE INPUT AND OUTPUT TRUTH TABLES
AND THE SORT BLOCK

Block Resource Used resource

Slices 10147
Slice Flip Flops 7896

Reconfigurable
circuit

4 Input LUTs 18053
Slices 2093
Slice Flip Flops 2007

ETP

4 Input LUTs 3653
This synthesis results are for a Xilinx XCV1000 FPGA with a RC made

of 10 rows and 11 columns of RCell with an optimation goal set on area and
an effort set on 2.

TABLE II
IMPLEMENTATION COST FOR VARIOUS IMPLEMENTATION CONFIGURATIONS
ON DIFFERENT FPGA. EACH RC ARE MADE OF 11 COLUMNS BY 10 ROWS OF

RCELL

TABLE III
INITIALIZATION, SENDING AND MUTATION PROCESSES DURATIONS

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1714

However it is possible to give the durations of the
initialization process, the sending process and the mutation
process (Table III). It results that the sending of the bit string
to the targets takes only 15% of a generation process. This
stressed the interest of having a virtual RC in order to speed
up the sending process. Indeed as stated in [14][20][21][22]
the maximum frequency range allowed to configure an FPGA
is between 50MHz and 100 MHz. Knowing that it is sent by
bit frames with some pad bit the configuration time would be
much higher than in the current solution (Refer to [23] for
more detail).

V. CONCLUSION
A multi-board run-time reconfigurable system has been

introduced. Several implementations were proposed. The
variable chromosome length, the multi-board approach, and
the partial configuration of the reconfigurable circuit offer
interesting features to obtain a scalable solution in order to
evolve relatively complex tasks. The authors are currently
working on the implementation of the system on FPGA.
Nevertheless the intermediate results of the simulations are
showing us the legitimacy of the solution. Indeed the speed
effectiveness and the flexibility and scalability are drastically
increased compared to the existing intrinsic digital EHW
solutions comporting a virtual RC and an eventual intrinsic
EHW working on FPGA without virtual RC.

REFERENCES
[1] Yao, X., Higuchi, T.: Promises and Challenges of Evolvable Hardware.

IEEE Trans. Systems, Man and Cybernetics, Part C, Vol. 29 (1999) 87 –
97

[2] Goldberg, D. E.: Genetic Algorithm in Search, Optimization and
Machine Learning. Addison-Wesley Publishing Company, Incorporated,
Reading, Massachusetts (1989)

[3] Macias, N. J.: The PIG Paradigm: the Design and Use of a Massively
Parallel Fine Grained Self-Reconfigurable Infinitely Scalable
Architecture. Proc. of the First NASA/DoD Conf. on Evolvable
Hardware, 19-21 (1999) 175 – 180

[4] Ozsvald, I.: Short-Circuiting the Design Process: Evolutionary
Algorithms for Circuit Design Using Reconfigurable Analogue
Hardware. Masters Thesis (1998)

[5] Stoica, A., Keymeulen, D., Vu, D., Zebulum, R., Ferguson, I., Daud, T.,
Arsian, T., Xin, G.: Evolutionary Recovery of Electronic Circuits from
Radiation Induced Faults. CEC2004 conf. on Evolutionary Computation,
Congress on, Vol.: 2, 19-23. Vol.2 (2004) 1786 – 1793

[6] Langeheine, J., Meier, K., Schemmel, J., Trefzer, M.: Intrinsic Evolution
of Digital-to-Analog Converters Using a CMOS FPTA Chip. Proc. of
the Sixth NASA/DoD Conf. on Evolvable Hardware, 24-26 (2004) 18 –
25

[7] Torresen, J.: Evolving Both Hardware Subsystems and the Selection of
Variants of Such Into An Assembled System. In proc. of 16th European
Simulation Multiconference. Darmstadt, Germany (2002) 451 – 457

[8] Baumgarte, V., May, F., Nückel, A., Vorbach, M., Weinhardt, M.:
PACT XPP - A self-Reconfigurable Data Processing Architecture.
Presented at ERSA, Las Vegas, NV, (c) CSREA Press (2001)

[9] Layzell, P.: Reducing Hardware Evolution’s Dependency on FPGAs. In
proc. of MicroNeuro’99, 7th International Conference on
Microelectronics for Neural, Fuzzy and Bio-inspired Systems, IEEE,
Computer Society, CA (1999) 171 – 178

[10] Friedl, S., Sekanina, L.: The First Circuits Evolved in a Physical Virtual
Reconfigurable Device. In: Proc. of the 7th IEEE Workshop on Design
and Diagnostics of Electronic Circuits and Systems, Bratislava, SK,
SAV. ISBN 80-969117-9-(2004) 35 – 42

[11] Glette, K., Torresen, J.: A Flexible On-Chip Evolution System
Implemented on a Xilinx Virtex-II Pro Device. ICES (2005) 66 – 75

[12] Sekanina, L.: Towards Evolvable IP Cores for FPGAs. Proc. of the Fifth
NASA/DoD Conf. on Evolvable Hardware, Los Alamitos, USA, ICSP,
ISBN 0-7695-1977-6 (2003) 145 – 154

[13] Tufte, G., Haddow, P. C.: Towards Development on a Silicon-based
Cellular. Computing Machine, Natural Computing. Vol. 4, Issue 4
(2005) 387 – 416

[14] Xilinx: Virtex 2.5V FPGA Detailed Functional Description. Version
2.8.1 (2002)

[15] Bäck, T., Hoffmeister, F., Schwefel, H. P.: A survey of evolutionary
strategies. In R. Belew and L. Booker, editors, Proc. of the 4th
International Conference on Genetic Algorithms, San Francisco, CA,
1991. Morgan Kaufmann (1991) 2 – 9

[16] Schwefel, H. P.: Numerical Optimization of Computer Models. John
Wiley & Sons, Chichester, UK (1981)

[17] Miller, J.: An Empirical Study of the Efficiency of Learning Boolean
Functions Using a Cartesian Genetic Programming Approach. In Proc.
of the Genetic and Evolutionary Computation Conference. Volume 1,
Orlando, USA (1999) 1135 – 1142

[18] Kalganova, T., Miller, J.: Evolving More Efficient Digital Circuits by
Allowing Circuit Layout Evolution and Multi-objective Fitness. Proc. of
the First NASA/DoD Conf. on Evolvable Hardware, IEEE Computer
Society (1999) 54 – 63

[19] Kalganova, T.: Evolvable Hardware Design for Combinational Logic
Circuits. PhD thesis, School of Computing, Napier University,
Edinburgh, UK (2000)

[20] Xilinx: Virtex-E 1.8V FPGA Detailed Functional Description. Version
2.8 (2006)

[21] Xilinx: Virtex-II Complete Data Sheet. Version 3.4 (2005)
[22] Xilinx: Virtex-4 Data Sheet: DC and Switching Characteristics. Version

2.12 (2006)
[23] Lambert, C., Kalganova, T., Stomeo, E.: FPGA-based Systems for

Evolvable Hardware. ICCS'06 Vienna, Austria, Volume 12, ISBN 975-
00803-1-9 (2006)

Emanuele Stomeo received a Laurea degree in electronic engineering from
Politecnico di Torino, Turin, Italy in 2003. He is currently working towards a
PhD in computer science and engineering at Brunel University, West London,
UK. From 2000 to 2003 he studied at RWTH Aachen University, Germany
where he pursued specializations in image processing and digital design.

He carried out his Master Thesis work at Philips Research Laboratories,
Aachen, Germany in 2002-2003. He is currently a member of the Bio-Inspired
Intelligent Systems Research Group at Brunel University, West London, UK.

His research interests are in evolvable hardware, evolutionary computation,
design of digital circuits and bioengineering applications.

Tatiana Kalganova received MSc degree from Belarusian State University of
Informatics and Radioelectronics, Belarus in 1994 and PhD degree from
Napier University, UK in 2000.

In August 2000 she has joined Electronic and Computer Engineering
Department, Brunel University. Her research interests are evolvable hardware,
ant colony algorithms, scalability in AI systems.

She was awarded a personal grant from the Education Ministry of the
Republic of Belarus for distinctive achievements in the field of exact sciences
in 1997, and a grant from the International Soros Science Education Program
(ISSEP) for distinctive achievements in the field of exact sciences in 1996.

Cyrille Lambert received a diplôme d’éducation supérieure spécialisée in
microelectronic engineering from Pierre et Marie Currie University, Paris,
France in 2000.

After spending three years in the industry as a digital design engineer he
joined in 2003 the computer science and engineering department at Brunel
University, West London, UK. He is currently working toward the PhD.
degree as a member of Bio-Inspired Intelligent Systems at Brunel University,
West London, UK.

He carried out his Master Thesis work at the Swiss Centre for Electronics
and Microtechnology, Inc., Neuchâtel, Switzerland in 1999-2000.

