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Abstract—A multi-board run-time reconfigurable (MRTR) 

system for evolvable hardware (EHW) is introduced with the aim to 
implement on hardware the bidirectional incremental evolution (BIE) 
method. The main features of this digital intrinsic EHW solution rely 
on the multi-board approach, the variable chromosome length 
management and the partial configuration of the reconfigurable 
circuit. These three features provide a high scalability to the solution. 
The design has been written in VHDL with the concern of not being 
platform dependant in order to keep a flexibility factor as high as 
possible. This solution helps tackling the problem of evolving 
complex task on digital configurable support. 
 

Keywords—Evolvable Hardware, Evolutionary Strategy, multi-
board FPGA system.  

I. INTRODUCTION 
VOLVABLE Evolvable hardware (EHW) [1] is the 
combination of a configurable device and an evolutionary 

algorithm (EA) [2]. The EA modify the data content which 
composes the bit string of the configurable device in order to 
evolve the circuit until it fulfills a task. EHW had been 
introduced to be applied to real-world applications but up to 
date only few solutions can deal with relatively large solutions 
such as [3][12][13]. And nowadays it is mainly seen as a way 
to automatically design circuits that can be digital, mixed or 
analogue. Different types of intrinsic EHW implementations 
have been developed, some based on analogue reconfigurable 
supports made of transistors [4][5][6] or mixed support (both 
digital and analogue) application specific integrated circuits 
(ASIC) [3] others on digital support like programmable logic 
array [7] or reconfigurable systems based on processors [8] 
but most of the digital system development has been made on 
field programmable gate arrays (FGPA) and almost 
exclusively on Xilinx products. It appears that this device 
prevails among the others supports mainly due to its high 
flexibility. Indeed an FPGA can be reconfigure almost an 
infinite number of times and this for a reasonable price 
compare to an ASIC. An FPGA does not need to be design it 
is ready to be configured but FPGA are not perfect and some 
major drawbacks for EHW lie in the impossibility to 
reconfigure an FPGA from itself. The important configuration 
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time required is also a major inconvenience to have a 
successful evolution in the shortest delay. An evolution 
process in most of the case needs several trials to reach the 
final solution (cf. Section 2 for further description) therefore 
in an intrinsic EHW system each trial is downloaded inside 
the FPGA, in other words the FPGA is configured and the 
interest is to avoid wasting time during this phase. The method 
introduced by Layzell to have a configurable system on a top 
of a FPGA [9] helps bypassing these problems. The FPGA 
will not be reconfigured for each new generation but the 
virtual circuit, thus a high amount of time is gained. Some 
others systems has been carried out following this method 
such as [10][11] and as much as the authors know they 
successfully evolved small tasks (up to a ten of inputs). 
Sekanina has introduced a way to implement evolvable IP 
cores [12] thanks to a virtual reconfigurable circuit (VRC) 
constituted of configurable functional blocks (CFB). In [13] 
another VRC has been introduced where the array is infinitely 
extensible regarding the limitation that the support (i.e. 
FPGA) introduces. These two VRC are extremely promising. 
In Sekanina one a CFB has been designed as a configurable 
logic block (CLB) that is present in the Xilinx FPGA [14] so a 
set of functions can be stored inside a CFB. His VRC is made 
of an array of column of CFB and the connections between 
these columns are configurable. In Haddow et al. VRC the 
Sblock approach allows to configure any connections between 
each sblock but the functions set capacity seems to limited by 
the size of the FPGA LUT used to implement the VRC. 
Therefore if both features are merged and the possibility to 
configure each cell individually, we could reach a very 
flexible and highly scalable system. 

Section 2 explains the evolutionary algorithm used in the 
proposed system. Section 3 introduces the proposed solution 
and details the main components of it. It follows an 
implementation cost study of the proposed system in section 4 
and the document is ended by a conclusion. 

II. EVOLUTIONARY ALGORITHM 
It has been stated to use a (1+λ) evolution strategy (ES) 

because it has been extensively tested for its performances in 
[15][16][17][18] has been chosen (Fig. 1) where λ reflects the 
number of individuals composing a population. It has been 
evaluated that an ES gives good results for an evolution 
process in a small number of generations for a population 
constituted of thousands of individuals or in a much higher 
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number of generations but for a small population [19]. For 
obvious reason of overall cost the first statement cannot be 
realized. Therefore it has been established to use a small 
population and λ equals to five have shown some interesting 
results if we refer to the document previously cited. 

A. (1+ λ) Evolution Strategy 
The ES works as follow, after a first generation has been 

randomly created, each chromosome (= individual) is 
evaluated. It results one fitness value for each chromosome, 
the best of them is kept in a memory called best chromosome 
memory. The fittest chromosome is therefore tested to know if 
it fully answers to the task i.e. fitness value equals to 100%. 
Else the best chromosome is mutated five times, one time per 
new chromosome. It results a mutated population also called 
new population that replaces the previous one. The process 
carries on until the fitness value is equal to 100%, the number 
of generation reaches a maximum allowed number for 
instance 500,000 or for any other condition introduced by the 
user for instance in our case a stalling effect of the fitness 
value i.e. no improvement of the fitness value for a certain 
amount of time such as 10% of the maximum allowed number 
of generations. 

B. Fitness Evaluation 
Each time an individual have been configured by a new 

generation of population a fitness evaluation is made. This 
will indicate which chromosome gives the best answer to the 
task and help to decide if the evolution process as to carry on 
or if the answer has been found. The evaluation results from a 
comparison between a set of desired outputs and the outputs 
of each individual. 

In the proposed system each chromosome fitness values are 
computed one by one. When all of them are known, the best 
one undergoes a selection with the best chromosome fitness 

value kept in memory. The following equation (1) illustrates 
the fitness function used in the MRTR system: 
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To have a significant fitness value a set of inputs are 

applied to each individuals of the MRTR. The resulting 
outputs are compared with another set of desired outputs. 
These two different sets are located in two memories and 
organized in truth tables. The fitness value F is thereby 
expressed by the sum of all the differences d between the 
desired output e and the output given by an individual o. If the 
individual output is different than the desired one the fitness 
value does not change else it is incremented by 1. The fitness 
value is computed for all the outputs (out) of each individual 
through the two truth tables (addr). 

III. DESCRIPTION OF THE ARCHITECTURE 
A detailed description of the system and its main 

components are exposed in this section. 

A. Overview of the MRTR  
To have a flexible system it has been decided to use a 

design coded in VHDL without using any feature belonging to 
a dedicated FPGA but rather to write a code as generic as 
possible in order that the system can be implemented on most 
of the FPGA provided on the market. Moreover to keep a 
factor of scalability as high as possible the author decided to 
plan an implementation where each reconfigurable array is on 
one FPGA. It allows having a high scalability only limited by 
the size of the support. 

The multi-board run-time reconfigurable system is 
composed of: 
• an evolution strategy (ES), 
• a fitness evaluation, 
• a multiplexer block (Sort) presenting the outputs of each 

target to the ES for the fitness evaluation, 
• two memory blocks containing the values of the input 

(ITT) and output truth tables (OTT), 
• and finally five reconfigurable arrays. 

The Fig. 2 exposes the overview of the MRTR and shows 
the main data exchanges between the components that 
composed the system. 

The ES, ITT, OTT and Sort components are planned to be 
implemented on a single FPGA. Each reconfigurable circuit 
will be implemented on one FPGA. Therefore the whole 
system will contain six FPGA. Moreover the RC design has 
been carried out with the VRC as pattern. Bear in mind that 
the main drawback of this approach relies on the fact that it is 
very greedy in term of CLB. 

 

Fig. 1 (1+λ) evolution strategy 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:12, 2007

1712

 

 

B. Reconfigurable Circuit 
Each of one the five reconfigurable circuits are made as an 

array of configurable cells of r rows and c columns (see Fig. 

3). 
The Fig. 4 illustrates in detailed the specificities of the three 

kind of RCell. An RCellA is always located in the first 
column while an RCellC can solely be located in the last 

column. An RCellB has the inverse restriction it cannot be a 

cell of the first or last column of the array. The routing 
selectors create some connections with the inputs of an RCell. 
An RCellB for instance can be linked to an output of an 
RCellA or of a previous RCellB but as well to an input of the 
RC. In summary only the RCellC cannot have their inputs 
connected to the inputs of the cell array. The function selector 
has a similar role than a Xilinx FPGA LUT i.e. it can be seen 
as a small memory that contains a set of function (for instance 
AND, OR, XOR, NOT…). To configure the function of an 
RCell A or B means to choose one among the pre-loaded 
functions of their function selector. 

As it has been written in the introduction, the RCs are 
configured by the way of a bit string provided by the ES. The 
bit string organisation has to reflect the one of the RCs. The 

Fig. 5 exposes how the RCells are represented in the bit 
string. As introduced earlier in the document each cell can be 

addressed independently, partial reconfiguration. Then this 
feature is translated in the bit string by the data field called 
Address. In order to address a cell the column and row of this 
one has to be indicated in @Col and @Row. CConf1 and 
CConf2 are used to know if the routing selector is dealing 
with the outputs of the previous cell or with the inputs of the 
RC. The Functionality & routing field is used to configure 
the routing and function selectors. Input1 and Input2 are the 
configuration data of the routing selector while the function 
selector receives the data from Function. The size of each 
field has been chosen to have an interesting panel of possible 
RC shape and size for the simulations of the MRTR.  
   Therefore the full size of the bit string per chromosome will 
be a multiple of the bit string for one cell by the number  
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Fig. 2 Multi-board Run-time reconfigurable system overview. The 

reconfigurable circuits (RC) are the individuals composing the population 
and are at the number of 5. A sorting block that is in fact a multiplexer 

helps synchronizing the RC outputs sending to the ES. The fitness 
evaluation is made thanks to the application of the ITT to each RC and the 

RC outputs are compared with the OTT values (desired values) 
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any of the n inputs of the RC. An RCellB is also function configurable 
and can be linked to any cell that is located in the previous column while 

an RCellC is solely routing configurable so as to be linked to any 
outputs of the previous RCellB column and to the m outputs of the RC 
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of cell that composes the RCs. The size of a RC is obviously 
the number of row by the number of column of this one, see 
equation (2). 

 
stringbitRCellNNN colsrowsBitSize ××=            (2) 

 
where BitSizeN  is the bit string size, rowsN  and colsN  are the 
number of rows and columns in the reconfigurable target. The 
size of RCell bit string is 24 bits. 

The bit string format can easily be modified without 
interfering in the behavior of the system, by adjusting the 
mutation process to the new format. 

Each cell can be individually configured, this allows a high 
flexibility and thus it offers a good scalability. Indeed it is 
possible to increase the size of the configurable array adding 
other cells. The size limit of this array is imposed by the 
physical support therefore the size of the FPGA on which the 
array is implemented. Furthermore, this feature joined with a 
variable chromosome length permit to partially configuring an 
array as shown in Fig. 4. Bear in mind that modify the size of 
the full bit string length is not more than adding or subtracting 
some RCell bitstrings. A column of cell, a group of cell or 
some isolated cells can thus be configured. Therefore the 
finest grain of configuration is a cell. 

 

IV. ESTIMATION AND FIRST RESULTS 
In this section, different implementation cost estimation is 

introduced. It shows the versatility of the MRTR solution. 
Then it is followed by some results pre-synthesis of some 
simulations made with the MRTR. 

A. Implementation Cost  
The MRTR has two main parts: 

• the ETP which is the ES along with SORT, ITT and 

OTT, 
• and the reconfigurable circuits. 

The Table I show the amount of slices, slice flip flops and 4 
input LUTs needed to implement one RC and the ETP on a 
Xilinx XCV1000 FPGA. 

Several implementations are possible (cf. Table II) such as 
one target per FPGA which will require having five XCV1000 
(82 % of slices used) and the ETP on a XCV300 (70 % of 
slices used). It is obviously an expensive implementation 
however other solutions are conceivable for instance an 
expensive one could be to implement the whole system on a 
single FPGA i.e. XC4VLX160 (78% of slices used). Any 
other solution made of FPGA that can contain this 
configuration or an upper one is also suitable. 

B. Results of Simulation 
Some simulations have been run but none of them have 

reached the final solution yet. These simulations were: 
• RC 10 rows by 11 columns, clocks 63 MHz and 80MHz, 

1 and half multiplier i.e. 1 bit by 2 bits and results on 2 bits. 
• RC 10 rows by 11 columns, clocks 63 MHz and 80 MHz, 

2 by 2 multiplier i.e. 2 bits by 2 bits and result on 4 bits. 

 

Fig. 6 Partial configuration modes. The configuration of a single cell, of 
a column of cell, a group of cells or the whole array are the 

configuration modes offered to the user 

TABLE I 
IMPLEMENTATION COST FOR THE TWO MAIN ELEMENTS OF THE MRTR 

SYSTEM. ETP CONTAINS THE ES, THE INPUT AND OUTPUT TRUTH TABLES 
AND THE SORT BLOCK 

Block Resource Used resource 

Slices 10147 
Slice Flip Flops 7896 

Reconfigurable 
circuit 

4 Input LUTs 18053 
Slices 2093 
Slice Flip Flops 2007 

 
ETP 

4 Input LUTs 3653 
This synthesis results are for a Xilinx XCV1000 FPGA with a RC made 

of 10 rows and 11 columns of RCell with an optimation goal set on area and 
an effort set on 2. 

TABLE II 
IMPLEMENTATION COST FOR VARIOUS IMPLEMENTATION CONFIGURATIONS 
ON DIFFERENT FPGA. EACH RC ARE MADE OF 11 COLUMNS BY 10 ROWS OF 

RCELL 

TABLE III 
INITIALIZATION, SENDING AND MUTATION PROCESSES DURATIONS 
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However it is possible to give the durations of the 
initialization process, the sending process and the mutation 
process (Table III). It results that the sending of the bit string 
to the targets takes only 15% of a generation process. This 
stressed the interest of having a virtual RC in order to speed 
up the sending process. Indeed as stated in [14][20][21][22] 
the maximum frequency range allowed to configure an FPGA 
is between 50MHz and 100 MHz. Knowing that it is sent by 
bit frames with some pad bit the configuration time would be 
much higher than in the current solution (Refer to [23] for 
more detail). 

V. CONCLUSION 
A multi-board run-time reconfigurable system has been 

introduced. Several implementations were proposed. The 
variable chromosome length, the multi-board approach, and 
the partial configuration of the reconfigurable circuit offer 
interesting features to obtain a scalable solution in order to 
evolve relatively complex tasks. The authors are currently 
working on the implementation of the system on FPGA. 
Nevertheless the intermediate results of the simulations are 
showing us the legitimacy of the solution. Indeed the speed 
effectiveness and the flexibility and scalability are drastically 
increased compared to the existing intrinsic digital EHW 
solutions comporting a virtual RC and an eventual intrinsic 
EHW working on FPGA without virtual RC. 
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