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Modelling the Occurrence of Defects and Change
Requests during User Acceptance Testing

Kevin McDaid, and Simon P. Wilson

Abstract— Software developed for a specific customer under con-
tract typically undergoes a period of testing by the customer before
acceptance. This is known as user acceptance testing and the process
can reveal both defects in the system and requests for changes to
the product. This paper uses nonhomogeneous Poisson processes to
model a real user acceptance data set from a recently developed
system. In particular a split Poisson process is shown to provide an
excellent fit to the data. The paper explains how this model can be
used to aid the allocation of resources through the accurate prediction
of occurrences both during the acceptance testing phase and before
this activity begins.

Keywords— User acceptance testing. Software reliability growth
modelling. Split Poisson process. Bayesian methods.

I. INTRODUCTION

THE testing of modern software systems to remove re-
maining defects is a difficult and costly business. Under

the traditional Waterfall development methodology, it begins
with unit testing and progresses to integration testing to ensure
the separate components interface correctly. It is usual to
finish with a prolonged amount of system testing where a
combination of testing methods can be used. These seek to
remove remaining defects and to establish that the system
complies with the requirements for the software.

In the case of a system developed for a single customer,
known as bespoke software, it is also standard to include a
final testing phase immediately before release, conducted col-
laboratively by the customer and the developing organization,
to ensure that the product complies with the requirements from
the customer’s perspective. This is known as User acceptance
Testing. A detailed description of this activity can be found
in [1] and [2]. This phase can reveal defects or errors in
the software. Unlike traditional system testing, it can also
reveal issues that are effectively additional to or changes to
the requirements. These are known as change requests and the
developing organization would normally charge the customer
the cost of implementing these changes to the system.

The best practice of Software Reliability Engineering, as
detailed in [3], has developed a range of probabilistic models
to predict the reliability of a system during operation using the
occurrence time of defects during testing. These are known
as Software Reliability Growth models (SRGM’s) and they
have focussed almost exclusively on defect data form the
system testing phase. This paper examines the application of a
particular class of models, known as nonhomogeneous Poisson
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processes, to defect and change request data occurring during
user acceptance testing of a recently developed commercial
bespoke distributed database system. Building on these models
the paper proposes a split Poisson process model to represent
the data.

In addition to predicting the achieved reliability of a soft-
ware system, test and project managers can use SRGM’s to
predict the number of defects that will occur over a future time
period. This can allow for more accurate resource allocation
and possibly, depending on the exact release criteria used by
the firm, support the decision when to terminate the system
testing phase of the lifecycle ([4], [5]).

Of course, accurate predictions early in the testing process
are of most value to project and test managers. Unfortunately,
during the initial stages of system testing the amount of
defect data available is limited and standard approaches to
fitting SRGM’s, such as maximum likelihood methods, can be
problematic ([6], [7], [8]). This paper addresses this problem in
the context of user acceptance testing using Bayesian methods
that combine the limited existing defect data with the expert
opinion of key personnel. In this way improved estimates for
the parameters of the SRGM’s can be obtained, which in
turn can lead to better defect and change request occurrence
predictions.

The traditional approach to software development relies
heavily on the system testing phase to ensure the released
product is highly reliable. Experience has shown that without
substantial testing at this stage it is likely that the product
will most likely contain a large number of faults with the
potential to lead to regular failure during operation. This in
turn will result in high post-release costs and a significant
loss of consumer confidence. Thus, it is important to allocate
a significant amount of time to the activity of system testing.
However, it is also important to avoid over testing the product.
This can result in a piece of software which, although very
reliable, may be overpriced and possibly obsolete. On the
whole it is crucial for the test manager to achieve a balance
between under testing and over testing. This is also an issue for
the customer organization who must decide how long to allow
for the user acceptance testing phase. In fact the decision is
more complicated in their case as they must also allow for the
difference between the cost of implementing change requests
before and after acceptance of delivery of the product.

This paper contributes to the existing knowledge base in a
number of ways. It develops and assesses, based on real data,
an original model for an under-researched problem, namely
the occurrence of defects and change requests during user
acceptance testing. It demonstrates its application to prediction
before and during the testing process through the combination
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of defect data with expert knowledge.
The paper is summarized as follows. Section II introduces

the area of Software Reliability Engineering and explains
briefly nonhomogeneous Poisson process models and their
application to defect data. The rationale for their use with
defect and change request data arising from user acceptance
testing is also explained. A split Poisson process models is
developed and compared with independent Poisson process
models for defects and change request. The comparison is
made on the basis of real data which is also detailed in this
section. Section III explains how to apply the models to the
prediction of occurrences. A Bayesian model is developed to
ensure that stable predictions can be made throughout the user
acceptance testing phase. The quality of these predictions are
assessed. The method used to elicit expert opinion is also
explained. IV concludes the work with a short summary.

II. A PROBABILITY MODEL FOR OCCURRENCES DURING

USER ACCEPTANCE TESTING

This section introduces the data under examination and
introduces a number of nonhomogeneous Poisson processes
to model the occurrence of change request and defects.

A. User Acceptance Testing Data

The system under investigation was developed using a V-
model approach by a large software company for a govern-
ment department. The on-line system, supported by significant
batch and database facilities, included a range of functionality
from basic detail capture to complex rule-based calculations.
Development required approximately 3,500 person days of
effort over a period of eighteen months involving 29 different
personnel. A more detailed description is provided in [9] and
[10].

The available data for the software system is taken from
the pre-release system testing and user acceptance testing
phases and the post-release operational phase. In this paper
we examine the occurrences over the user acceptance testing
period only. Before considering the application of software
reliability growth models we must establish a suitable unit of
time. A difficulty arises here due to the lack of information on
the time spent by personnel testing the system. The analysis
in this paper uses calendar days as the unit of time, with
days where UAT testing did not take place excluded from the
analysis. While weekend and Christmas periods were clear
cases of inactivity, every effort, including examination of time
sheets and discussions with senior staff, has been made to
exclude days when testing activity did not take place.

The data gathered during the user acceptance testing phase
distinguishes between defects and change requests, where
change requests are user-suggested changes to the system.
Defects and change requests when taken together are termed
issues. Figure II-A shows a plot of the occurrence of defects
and change requests over time, where time is the standardized
time as described earlier. Note that in the first 50% of the time
(45 days) 72% of the issues were found (237 out of 329). Also
note that the data fails to show any continuity between system
and user-acceptance testing. The rate of defect occurrence at
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Fig. 1. Cumulative occurrence of software defects and change requests.

the end of the system testing phase is more than twice that
at the start of the user acceptance testing phase reflecting the
different testing strategies. In system testing, effort is focused
on the revelation of the highest possible number of failures
whereas in user acceptance testing the emphasis is on the
verification of the system through the application of real inputs
by potential users.

To finish this subsection we note that the user acceptance
testing was conducted by the customer with the help of the
developers. This raises the question as to whether the testing
can be considered as statistical or based on a more structured
coverage approach. While there is little information available
on the exact inputs applied, the fact that this testing was driven
by the customer using real data would indicate that the method
may be closer to statistical rather than a structured coverage-
based approach. That said, other research, [11], supports the
use of the class of models we consider in Section II-B for
defect data arising through testing strategies that involve the
selection of inputs to maximize some measure of achieved
coverage.

B. Nonhomogeneous Poisson Process Model

Numerous probabilistic models are available in SRE for the
purpose of reliability and defect occurrence prediction. These
models are usually classified as data-domain or time-domain
models, ([12] and [13]), with each category containing several
sub-categories. A widely accepted group of these models
are the class of non-homogeneous Poisson processes (NHPP)
where the total number of defects expected is finite. These
were adopted from hardware reliability models between the
early 1970s and the mid 1990s. Of these models four have
achieved prominence, namely the Goel and Okumoto [14]
model and Yamada S-Shaped model [15], each based on two
parameters, and the three parameter Weibull and Log-logistic
models [11]. The mean value functions for each of these is
shown in Table I.

A relatively simple explanation of the Goel-Okumoto model
is possible through the mean value function presented, which
gives the cumulative number of defects that would be expected
to occur before each time point, T . For the Goel-Okumoto
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TABLE I

MEAN VALUE FUNCTIONS FOR GOEL-OKUMOTO, S-SHAPED, WEIBULL

AND LOGLOGISTIC MODELS

Model Mean Value Function, m(T )

Goel-Okumoto a(1 − e−bT )
Yamada S-shaped a(1 − (1 + bT )e−bT )

Weibell a(1 − e−bT c
)

Log-logistic a

(
(bT )c

1+(bT )c

)

model the mean value function has two parameters (a and b).
Typically, these are estimated from the occurrence times of
defects during testing. For this form the average number of
defects discovered by time T , m(T ), is of course increasing
over time but the rate of increase, representing the rate at
which new defects come to light, slows with the highest rate
value at the beginning of testing. The other models differ
from the Goel-Okumoto in shape as the rate of occurrence ini-
tially increases before then decreasing. For the Goel-Okumoto
model the a parameter represents the number of defects that
would be found were testing to continue at infinitum. The b
parameter represents the rate at which defects come to light.
More specifically, it gives (approximately) the proportion of
the remaining defects that would be discovered in a single unit
of testing.

The NHPP software reliability models contain many as-
sumptions, some of which are unrealistic, including the instant
and perfect repair of defects. However, in practice, [16] is a
good example, the models has been found to provide a good
mechanism for modelling software failure data. Estimation
of the parameters of these models is normally performed by
maximizing the likelihood or density function which, in the
case of ungrouped data, can be written as

f(t1, t2, . . . , tn) = e−m(T )
n∏

i=1

Λ(ti), (1)

where Λ(t) is the rate function found by differentiating the
mean value function and T is the time at which testing is
censored with n occurrences at t1, t2, . . . , tn before this point.

In the case of the Goel-Okumoto model with parameters a
and b the specific form is

(ab)ne−a(1−e−bT )e−b
∑n

i=1
ti . (2)

The maximum likelihood value for the a parameter is given
by

a =
n

1 − e−bT
, (3)

where the value for b is found by numerically solving the
following:

n

b
=

n∑
i=1

ti +
nTe−bT

1 − e−bT
. (4)

However, as other authors have documented ([6] and [17]),
there can be significant issues with this approach. Specifically,

there are combinations of defect occurrence values for which
the maximum likelihood estimates for the Goel-Okumoto
model do not exist. This situation occurs most often during
the early stages of testing. However, a further problem arises
where, although the maximum likelihood estimates for the
parameters can be derived, the resulting values are unrealistic.
This again predominantly occurs early in testing and often
yields very high values for the a parameter in the case of the
Goel-Okumoto and the Yamada S-shaped model. We highlight
this problem in Section III through the real industry example.
Note that this drawback also applies to the Weibull and Log-
logistic models.

Importantly, the mean value functions for the NHPP models
discussed above can all be written in the form a[C(t)] where a
is the number of defects that may be discovered were testing
to continue at infinitum and C(t) can be thought of as the
percentage coverage achieved over time. It is this structure
that is used in [11] to argue that these models are suitable for
application in the case where the defect data arises through
testing that is coverage-based rather than operational profile
based. We now turn our attention to the fitting of these models.

C. Independent Poisson Process Model

The simplest approach to modelling the occurrence of defect
and change request data would assume that the processes
were independent and fit nonhomogeneous Poisson process
models to the defect and change request data separately. We
have fitted the four models to each of the series. The Goel-
Okumoto, Weibull and Log-logistic models result in very
similar maximum likelihood values with the S-shape model
performing relatively poorly. Of these, the Goel-Okumoto
model requires one fewer parameters and should thus be
considered as the best choice to model each of the defect and
change request data sets. A formal calculation of the Akaike
Information Criterion (AIC) supports this conclusion. It is not
surprising that the Goel-Okumoto model is chosen given the
shape of the curves. Figure II-C shows the data and the fitted
Gole-Okumoto models. It is clear that the model represents
the actual data reasonably well with some problems with the
fit to the data during the period from day 20 to 60.

Based on the maximum likelihood methods the model
values were found to be a=266 and b=0.017 for the defects
and a=143 and b=0.022 for the change requests. The relative
values for the rate parameters indicate that the user acceptance
testing phase may be more successful at revealing change
requests than revealing failures. The question we next consider
is whether a simpler model using three rather than four
parameters can be found to fit the data.

D. Split Poisson Process Model

Previously we fitted independent Poisson process models to
the defect and change request data. A closer examination of
the user acceptance testing process may reveal clues as to a
potential alternative model. Within the process it seems that
when an issue arose it was later classified as a defect or a
change request. This would indicate an underlying process
where the occurrences are separated into two types. We
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Fig. 2. Cumulative occurrence of software issues over time during the user
acceptance testing phase with fitted independent Goel and Okumoto models.

assume a probability, θ, that the occurrences are of type I
(defects) and 1− θ that the occurrences are of type II (change
requests). If this value of θ does not change over time then
this is the case of a split Poisson process. Suppose defects
occur at times t1, t2, . . . , tn and change requests at times
s1, . . . , sm before censoring time T then the density function,
f(t1, t2, . . . , tn, s1, . . . , sm), is given by

[
(ab)n+me−a(1−e−bT )e−b(

∑
t+

∑
s)

]
[θn(1 − θ)m] , (5)

which can also be written in the following form

[
(θab)ne−θa(1−e−bT )e−b(

∑
t)

]
×[

((1 − θ)ab)me−(1−θ)a(1−e−bT )e−b(
∑

s)
]
. (6)

This shows that the occurrence of defects and change re-
quests can be treated as independent nonhomogeneous Poisson
processes with mean value functions given by θa

(
1 − e−bT

)
and (1 − θ)a

(
1 − e−bT

)
respectively. This is a well-known

result from Poisson process theory and implies in this study
that the occurrence of defects follows a Goel-Okumoto model
with parameters aθ and b, and the occurrence of change
requests follows an independent (given model parameters)
Goel-Okumoto model with parameters a(1 − θ) and b.

The structure of the density function in Equation 5 im-
plies that the maximum likelihood estimates for the a and
b parameters can be found using the solution presented in
Equations 3 and 4. The maximum likelihood estimates for θ
is the proportion of defects in the data, namely n

n+m . We fit the
split Poisson process model to the data and display the result in
Figure 3. The common rate parameter is estimated as 0.0185
with the overall a parameters given by 406 with θ = 0.63
yielding a values for the defects and change requests given
by 255 and 150 respectively. Crucially, the AIC value for this
model is 173.75 which is less than the value of 174.76 for
the four parameter Goel-Okumoto models presented earlier.
This provides some indication that the benefit of a reduced
parameter model (three as opposed to four) outweighs the
reduction in fit of the model. Having established the model we
will show shortly how it can be use for prediction purposes.
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Fig. 3. Software issues over time with fitted split Poisson process model.

As the mean value function for the four models presented in
Table I can be written as a[C(t)] it is relatively straightforward
to develop a split process in the case of each of these models.

III. PREDICTION OF DEFECT AND CHANGE REQUEST

OCCURRENCE

The power of a model is in its potential to provide accurate
predictions for future occurrences. In this section we examine
how this can be achieved both before and after the user
acceptance testing phase.

A. Issues with Early Prediction

As mentioned earlier, estimation of the parameters of these
models is normally performed using maximum likelihood
methods. It is well known ([6], [17]) that there can be
significant issues with this approach as there are combinations
of defect occurrence values for which the maximum likelihood
estimates for the Goel-Okumoto model do not exist. A fur-
ther problem arises where, although the maximum likelihood
estimates for the parameters can be derived, the resulting
values are unrealistic. These difficulties are most likely to
occur early in testing and often result in very high values
for the a parameter. We illustrate this process in Figure 4
where the split Poisson process model is fitted based at the 20
and 30 percent time points using the data available up to that
point. The figure shows the poor performance of the predicted
cumulative number of defects and change requests following
that point. Note that it is not possible to fit the data using
occurrences up to the 10 % point.

A further criticism of the maximum likelihood approach is
the fact that it ignores the expert knowledge of key project
personnel accumulated over possibly years of involvement
with the industry and organization in question. This knowledge
should influence the selection of the parameters and should in
particular protect against the selection of extreme values for
the parameters. The approach also suffers from the lack of a
mechanism to predict the occurrences prior to the commence-
ment of testing, when predictions are of most value to the firm.
To counter both these drawbacks we next present a Bayesian
version of the split Poisson process model and apply it to the
prediction problem.
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Fig. 4. Prediction at 20 and 30 percent points using maximum likelihood

B. Bayesian Split Poisson Process Model

Assuming the split Poisson process model in the previous
section, we adopt a Bayesian model by placing prior distribu-
tions on the model parameters, a, b and θ. Independent prior
gamma distributions are placed on the a and b parameters
with a prior beta distribution placed on the θ parameter. These
assumptions are flexible and allow us to incorporate a wide
variety of prior knowledge.

Specifically, we assumes that the a is represented by a prior
gamma distribution with parameters τ and λ, b by a prior
gamma distribution with parameters α and µ and θ by a prior
beta distribution with parameters ω and ρ. The choice of a
prior gamma distribution is consistent with [18] and [?]. Thus
the prior structure is as follows

f(a, b, θ|τ, λ, α, µ, ω, ρ) = f(a, b|τ, λ, α, µ)f(θ|ω, ρ)

=
aτ−1e−λaλτ

Γ(τ)
bα−1e−µbαµ

Γ(α)
Γ(ω)Γ(ρ)θω−1(1 − θ)ρ−1

Γ(ω + ρ)
(7)

As the prior and density functions for the proportion para-
meter, θ and the Goel-Okumoto model parameters a and b can
be separated we can use available results to generate prediction
methods for the number of defects and change requests based
on the posterior distribution.

We next illustrate how to evaluate the number of defects
that would be expected to occur after T1 units of acceptance
testing, assuming T (T ≤ T1) units of testing has already
taken place resulting in n defects at times t1, t2, . . . , tn and
m change requests at s1, . . . , sm. This is developed as

E(N̄D(T1)|t̃, s̃, τ, λ, µ, α, ω, ρ)
= Ea,b,θ(E(N̄D|a, b, θ))
= [Eθ(θ)]

[
Ea,b(N̄D,CR(T1))

]
= [Eθ(θ)]

[
Ea,b(ae−bT1)

]
=

[∫
θ

θf(θ|ω, ρ)
]
×[∫

a,b

f(a, b|t̃, s̃, τ, λ, µ, α)(ae−bT1)dadb

]

=
[

ω + n

ω + ρ + n + m

]
×

[
1

(1 + λ)Y

]
×

∞∑
i=0

Γ(n + m + τ + i + 1)
i!(1 + λ)i(

∑
t +

∑
s + µ + T1 + iT )n+m+α

,

(8)

where

Y =
∞∑

j=0

Γ(n + m + τ + j)
j!(1 + λ)j(

∑
t +

∑
s + µ + jT )n+m+α

,

and N̄D,CR(T1) represents the combined number of defects
and change requests occurring after time T1. The prediction
for the number of defects before testing begins at which point
only prior information is available can be shown to be

E(N̄D(T1)|τ, λ, µ, α, ω, ρ) =
[

ω

ω + ρ

]
τ

λ

(
µ

µ + T1

)α

(9)

The prediction for the number of change requests, corre-
sponding to Equation 8, has an identical second term with the
first term given by ρ+m

ω+ρ+n+m . Note that the expansion of the
Ea,b(N̄D,CR(T1)) term in Equation 8 follows from work in
[18]. The fact that the posterior distribution for the proportion,
θ, follows a beta distribution with parameters ω+n and ρ+m
is used to expand the Eθ(θ) term

C. Assessment of Predictions

We next apply the Bayesian split Poisson process model to
the data presented previously. We assume two separate sets of
prior values for the model parameters, one which represents
the situation where the expert opinion is very close to the
true values and the second where the prior opinion yields
estimates for a and b which are higher than the ideal values and
the prior values for the beta distribution represent a uniform
distribution. The second set illustrates the situation where
the expert provide poor, yet not completely unrealistic, prior
information. Table II shows the two selected parameter sets.
The mean and standard deviation of the prior distributions are
also presented as, for comparison purposes, are the maximum
likelihood estimates based on all the available defect and
change request data.

The predictions for the remaining number of defects and
change requests based on the 20 and 30 percent points are
presented in Figure 5. These predictions, for both sets of
parameters, are a significant improvement on those presented
in Figure 4.

IV. CONCLUSION

This work develops a relatively simple model for the
occurrence of change requests and defects during the user
acceptance testing phase for a bespoke piece of software.
This can be of benefit to development firms in their efforts to
forecast the required resources to support the repair of defects
and the implementation of change requests. We illustrate the
issues with prediction using the model and develop a Bayesian
model to overcome these problems and at the same time allow
for the incorporation of expert opinion. Similarly, the split
nonhomogeneous Poisson process model can also be of benefit
to the customer organization who can use it to predict the total
cost and to decide how long to conduct user acceptance testing
before accepting the product for operation.
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TABLE II

PRIOR PARAMETERS SELECTIONS COMPARED WITH MAXIMUM

LIKELIHOOD ESTIMATES

Set 1 Set 2
τ 400 60
λ 1 0.1
Mean a 400 600
SD a 20 77
MLE a 406 406
α 20 3
µ 1000 100
Mean b 0.02 0.03
SD b 0.0045 0.017
MLE b 0.0185 0.0185
ω 6 1
ρ 4 1
Mean θ 0.6 0.5
SD θ 0.15 0.29
MLE θ 0.63 0.63
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Fig. 5. Predictions at 20 and 30% points using Bayesian split Poisson process.
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