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Mechanical quadrature methods and their
extrapolations for solving first kind boundary

integral equations of anisotropic Darcy’s equation
Xin Luo, Jin Huang and Chuan-Long Wang

Abstract—The mechanical quadrature methods for solving the
boundary integral equations of the anisotropic Darcy’s equations with
Dirichlet conditions in smooth domains are presented. By applying
the collectively compact theory, we prove the convergence and
stability of approximate solutions. The asymptotic expansions for the
error show that the methods converge with the order O (h3), where
h is the mesh size. Based on these analysis, extrapolation methods
can be introduced to achieve a higher convergence rate O (h5).
An a posterior asymptotic error representation is derived in order to
construct self-adaptive algorithms. Finally, the numerical experiments
show the efficiency of our methods.

Keywords—Darcy’s equation, anisotropic, mechanical quadrature
methods, extrapolation methods, a posteriori error estimate.

I. INTRODUCTION

CONSIDER the Darcy’s equation
2∑

j=1

κj∂
2u

∂2x2
j

= 0, in Ω (1)

with the Dirichlet boundary condition as follows:

u(x)|∂Ω = ū, on ∂Ω (2)

where Ω ⊂ R
2 is a two-dimensional bounded region with the

boundary ∂Ω, which is a smooth closed curve. As usual, we
use x = (x1, x2) ∈ R

2 to denote the Cartesian co-ordinates of
the points in the Euclidean space R

2. Here, u is the potential
function, parameters κ1 and κ2 are positive constants, and
ū(x) is a known function on ∂Ω. The Darcy’s equation often
plays an important role in porous media flow[1] or in heat
conduction[2].

In this paper, we assume that κ1 �= κ2. Under this assump-
tion, Eq. (1) is also called anisotropic Darcy’s equation. By
means of the potential theory, the solutions of the Dirichlet
problem (1) can be represented as a single-layer potential of
the form

u(y) =
∫

∂Ω

G2(x, y)w(x)dsx, y = (y1, y2) in Ω, (3)

where dsx denotes the arc length element at a point x =
(x1, x2) ∈ ∂Ω, and G2(x, y) is the fundamental solution of Eq.
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(3), namely, G2(x, y) = − (κ1κ2)
−1/2

2π ln(
∑2

j=1
(xj−yj)

2

κj
)1/2.

The reformulated problem then becomes the first kind bound-
ary equation (BIE) as follows:

∫

∂Ω

G2(x, y)w(x)dsx = ū, y = (y1, y2) on ∂Ω. (4)

The flux w(x) =
∑2

j=1 κj
∂u
∂xj

νxj is an unknown to be sought,
where νxj is the direction cosine of the normal ν to the
boundary ∂Ω with respect to xj . Eq. (4) is the weakly singular
BIE system of the first kind, whose solution exists and is
unique as long as C∂Ω �= 1 [6], where CΓ is the logarithmic
capacity (i.e., the transfinite diameter). As soon as w(x) is
solved from (4), u(y) (y ∈ Ω) can be calculated by (3).

The kernels of (4) have singularities at the points x = y
, which degrade the rate of convergence. Several numerical
methods have been proposed to overcome this difficulty, such
as the Galerkin method (GM)[13], the collocation method
(CM)[7], and the quadrature method[5]. However, these meth-
ods do not provide a good accuracy in the solution near
the singular points. For example, the accuracy of Galerkin
methods[13] is only O (hτ ) (0 < τ < 2) and the accuracy of
collocation methods[7] is even lower.

In this article, the mechanical quadrature methods (MQMs)
are proposed to calculate weakly singular integrals by Sidi’s
quadrature rules[3], and the extrapolation methods (EMs)[4] are
applied to improve the accuracy of solutios. Once discrete
equations on some coarse meshes are solved in parallel, the
accuracy of numerical solutions can be greatly improved by
EMs.

This paper is organized as follows: in Section II, we
present the MQMs, and prove the convergence and stability of
MQMs. in Section III, we construct the EMs, and we provide
the asymptotic expansion of errors and an a posterior error
estimate. Two numerical examples are provided to verify the
theoretical results in Section IV, and some useful conclusions
are listed in Section V.

II. MECHANICAL QUADRATURE METHODS
A. Existence and Convergence of MQMs Solutions

Assume that the smoothed boundary ∂Ω has the following
parametrization

x = (x1(s), x2(s)) : [0, 2π] → ∂Ω.

with [(x′
1(s))

2 + (x′
2(s))

2]1/2 > 0. Let z(s) =
(κ−1/2

1 x1(s), κ
−1/2
2 x2(s)). Then the integral equation (4) can
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be split into a singularity part and a compact perturbation part

(A + B)v = f, (5)

where v(t) =
∣
∣x′(t)

∣
∣w(x(t)), f = (κ1κ2)1/2ū(s) and

(Av)(s) =
∫ 2π

0

a(s, t)v(t)dt, (6)

with a(s, t) == − 1
2π ln

∣
∣2e−1/2sin s−t

2

∣
∣,

(Bv)(s) =
∫ 2π

0

b(s, t)v(t)dt, (7)

with b(s, t) = − 1
2π ln

∣
∣z(s)− z(t)

∣
∣. A is an isometry operator

from Ht to Ht+1 for any number t, that is, ‖Av‖t+1 =
‖v‖t

[12].
Let h = 2π

n (n ∈ N) be the mesh width and tj = jh (j =
0, 1, · · · , n) be nodes. For the integral operators B with
periodic kernels, we can construct the Nyström approximation
by the midpoint or the trapezoidal rule [8], which has the error
bounds O (h2l), l ∈ N . For the logarithmically singular
operators A, by the Sidi’s quadrature formula [3], we can
construct the Fredholm approximation

(Ahv)(si) = − h

2π

[ n∑

j=0,i �=j

ln
∣
∣
∣
∣2e−

1
2 sin

(i − j)h
2

∣
∣
∣
∣v(tj)

]

− h

2π
ln
∣
∣
∣
∣2πe−

1
2

h

2π

∣
∣
∣
∣v(si), i = 0, · · · , n, (8)

which has the following error bounds[12]:

En(A) =
−2
π

2l−1∑

μ=1

ζ
′
(−2μ)
(2μ)!

[v(s)](2μ)

∣
∣
∣
∣
s=si

h2μ+1 + O(h2l),

(9)
where En(A) = (Ahv)(si)−(Av)(si), and ζ(z) is a Riemann
function.

Consider the discrete approximation of (5)

(Ah + Bh)vh = fh, (10)

where vh = (vh
0 , vh

1 , · · · , vh
n)T , Ah = [a(si, tj)]ni,j=0, Bh =

[b0(si, tj ]ni,j=0, and fh = (f(x(t0)), · · · , f(x(tn)))T with
f(x(si)) = ū(x(si)). Obviously, (10) is a linear equation
system with n unknowns. Once vh is solved from (10), the
solution of (3) u(y) (y ∈ Ω) can be computed by

uh = − h

2π
√

κ1κ2

n∑

j=0

[
ln(

2∑

j=1

(xj − yj)2

κj
)1/2

]∣∣
∣
∣x

′(sj)
∣
∣
∣
∣v

h(sj)

(11)
From (8), we have Ah = [− 1

2π h ln |2e−
1
2 sin jh

2 |]nj=1, and
we known Ah is a symmetric circulant matrix.

Lemma 2.1. [14](1) The eigenvalues λi of Ah are positive,
and

1
4nπ

≤ λi ≤ c (i = 0, · · · , n − 1), (12)

where c is a constant independent of h.
(2) Ah is invertible and ‖(Ah)−1‖ = O (n), where ‖·‖

denotes the spectral norm.
We define some special operators in order to discuss the

existence and convergence of numerical approximations. Let

V h = span{ei(s), i = 0, 1, · · · , n} ⊂ C[0, 2π) be a piecewise
linear function subspace with nodes {sj}n

j=0, where ei(s) is
the basis function satisfying ei(sj) = δij . Define a prolonga-
tion operator Ih : R

n → V h satisfying

Ihv =
n∑

i=0

viei(s), ∀v = (v0, · · · , vn) ∈ R
n,

and a restricted operator Rh : C[0, 2π) → R
n satisfying

Rhv = (v(s0), · · · , v(sn)) ∈ R
n, ∀v ∈ C[0.2π).

Lemma 2.2.[14] The operator sequence
{

Ih(Ah)−1RhAh :

C3[0, 2π) → C[0, 2π)
}

is uniformly bounded and convergent
to the embedding operator I .

Corollary 2.3. For an integral operator B with a periodic
smooth kernel b(s, t), defining the Nyström approximation

(Bhv)(s) = h

n∑

j=0

b(s, tj)v(si), s ∈ [0, 2π),

and assume that (4) is uniquely solvable. we have

Ih(Ah)−1RhBh c.c→ (A)−1B in C[0, 2π) → C[0, 2π), (13)

where c.c→ denotes the collectively compact convergence, and
Eh + Ih(Ah)−1RhBh is invertible, and the inverse operator
is uniformly bounded.

Proof: Because the kernel b(s, t) of the operator B and
its derivatives of higher order are continuous [11], and we have
‖Ih(Ah)−1RhBh‖0,0 ≤ ‖Ih(Ah)−1RhAh‖0,3‖(Ah)−1Bh‖3,0.
From the literatures [9,10], we know (Ah)−1Bh is collectively
and compactly convergent to A−1B ∈ L(C[0, 2π), C3[0, 2π)),
and there exists a constant M0 such that

‖(Ah)−1Bh‖3,0 ≤ M0, ‖Ih(Ah)−1RhAh‖0,3 ≤ M0,

where ‖ · ‖n2,n1 is the norm of the linear bounded oper-
ator space L(Cn1 [0, 2π), Cn2 [0, 2π)). Applying the results
in the literature [10], the operator sequence {(Ah)−1Bh :
C[0, 2π), C3[0, 2π)} must be collectively compactly conver-
gent to (Ah)−1B. Hence, the proof of Corollary 2.3 is
completed.

Replacing (Qh)−1 = (Ah)−1, Ah, and Bh by
(Q̂h)−1 = Ih(Qh)−1Rh, Âh = Ih(Ah)Rh and
B̂h = IhBhRh, respectively, we obtain the operator

Ĝh = Ih(Qh)−1Rh(Ah + Bh)Rh.

Consider the operator equation

(Eh + Ĝh)v̂h = f̂h, (14)

with f̂h = Ih(Qh)−1Rhfh. Obviously, if v̂h = Ihvh is a
solution of (14), then Rhv̂h must be a solution of

(Qh)−1(Ah + Bh)vh = (Qh)−1fh. (15)

Conversely, if vh is a solution of (10), then v̂h must be a
solution of (14). The following theorem shows there exists a
unique solution v̂h in (14) such that converges to v.

Theorem 2.4.[9] The operator sequence {Ĝh} is collectively
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compactly convergent to G = (Qh)−1(Ah +Bh) in C[0, 2π),
i.e.,

Ĝh c.c→ G. (16)

Corollary 2.5. Assuming that (4) has a unique solution and
h is sufficiently small, then there exists a unique solution v̂h

in (14), and v̂h has the following error bound under the norm
of C[0, 2π):

‖v̂h − v‖ ≤ ‖(I + G)−1‖‖(Ĝ
h − G)f̂‖ + ‖(Ĝh − G)Ĝhv‖

1 − ‖(I + Ĝh)−1(Ĝh − G)Ĝh‖ .

(17)

B. Stability Analysis for MQMs

For the stability of MQMs, we have the following theorem.
Theorem 2.6. Assume that ∂Ω satisfy C∂Ω �= 1, and ∂Ω

be smooth curves. Suppose that Ah and Bh are the discrete
matrices defined by (6) and (7), respectively. Then the eigen-
values λi (i = 1, · · · , n) of discrete matrix Kh = Ah + Bh

satisfy
č ≥ |λi| ≥ ĉh, i = 1, · · · , n,

where č and ĉ are two positive constants independent of h(=
1/n) is the mesh step size of a curved edge ∂Ω, and there
exists the bound of condition number

Cond(Kh) =
|λmax(Kh)|
|λmin(Kh)| = O(h−1). (18)

where λi(Kh) are the eigenvalues of Kh = Ah + Bh, and
Cond is the traditional 2-norm condition number.

Proof: Because there exists unique solution in (5) based
on C∂Ω �= 1, we have λi((Ah)−1Bh) �= −1. From Lemma 2.2
and Theorem 2.4, the operator (Ah)−1Bh is compact operator.
Based on the properties of compact operator [8], we get

c1 ≤ |λi(I + (Ah)−1Bh)| ≤ c2, i = 1, ...,

n∑

j=1

,

where c1 and c2 are two positive constants independent of h
and h (= 1/n is the mesh step size of a curved edge ∂Ω. From
Lemma 2.1 and the literature [11], we have č ≥ |λi(Ah(I +
(Ah)−1Bh))| ≥ ĉh. The proof of Theorem 2.6 is completed.

III. EXTRAPOLATION METHODS

Theorem 3.1. If there exists a unique solution in (4), f , fh

are computed by (5) and (10) respectively, xi ∈ C6[0, 2π) (i =
1, 2)and f(s) ∈ C5[0, 2π), then there exists a function 
 ∈
C5[0, 2π) independent of h such that

(v − v̂h)
∣
∣
s=si

= h3

∣
∣
s=si

+ O(h5). (19)

Proof: By the midpoint trapezoidal rule, the asymptotic
expansion holds [9,12]

(f − fh)
∣
∣
s=si

= h3IhRhψ1

∣
∣
s=si

+ O(h5),

with ψ1 = −ξ
′
(−2)f ′′(t)/π . Using (8) and (9), we can obtain

(c0A
h
0 + Bh

0 )Rh(v̂h − v)
∣
∣
s=si

= h3IhRhψ
∣
∣
s=si

+ O(h5),
(20)

where ψ2 = c0ξ
′
(−2)v′′(t)/π, and ψ = ψ1 + ψ2. From

Theorem 2.4, we have

(Eh + Ĝh)(v − v̂h)
∣
∣
s=si

= h3(Q̂h)−1IhRhψ
∣
∣
s=si

+ O(h5).
(21)

Define the auxiliary equation

(E + G)
 = Q−1ψ, (22)

and its approximate equation

(Eh + Ĝh)
h = (Q̂h)−1IhRhψ. (23)

Substituting (23) into (22) yields

(Eh + Ĝh)(v − v̂h − h3
h)
∣
∣
s=si

= O(h5). (24)

Since (Eh + Ĝh)−1 is uniformly bounded by Theorem 2.4,
we obtain

(v − v̂h − h3
h)
∣
∣
s=si

= O(h5). (25)

Replacing 
h in (25) with 
 and applying Theorem 2.4, we
complete the proof of Theorem 3.1.

The asymptotic expansion (19) implies that the extrapolation
methods (EMs) can be applied to solve (4). Moreover, the high
order O (h5) of accuracy can be obtained on coarse grids of
∂Ω in parallel. The related work on EMs can be find in the
literature [12] and can be described as follows:

Step 1. Choose h and h
2 , and solve (10) in parallel, where

vh(si) and v
h
2 (si) are their solutions.

Step 2. Computing the solutions at the coarse grid points
by (11)

u∗(si) =
1
7
[8u

h
2 (si) − uh(si)], (26)

An a posteriori estimate can be obtained by (19) and (11)
∣
∣u(si) − u

h
2 (si)

∣
∣ ≤ 8

7

∣
∣u

h
2 (si) − uh(si)

∣
∣+ O (h5). (27)

IV. NUMERICAL EXAMPLES

In this section, to verify theoretical results in this paper, we
present two numerical examples for the anisotropic Darcy’s
equations by MQMs and EMs.

The following two examples can be regarded as the models
of steady state heat conduction in the smooth domains which
are materials possessing zoned orthotropic thermal conductiv-
ity in the Darcy’s equations. Here, we assume that the heat
generation is absent.

Example 1. We consider the two-dimensional anisotropic
Darcy’s equation in Ω = {(x1, x2) : x2

1 + x2
2 ≤ 1}. The

Dirichlet boundary condition is given by u(x1, x2) = −10x2
1+

2x2
2+3x1x2+4x1+5x2+6,where u represents the temperature.

The thermal conductivity coefficients used are κ1 = 1.0 and
κ2 = 5.0.

Tables I, and II, accord with our error analysis, where the
numbers of nodes n is 2π/h. eh(t) = |u(t) − uh(t)| gives
the absolute error at a given point (cost, sint)(t = 0, π/2);
rh(t) = eh(t)/eh/2(t) shows the convergence ratio by MQMs;
eh

E(t) = |u(t) − u∗(t)| shows the error at the given point
after using the EMs once; and rh

E(t) = eh
E(t)/e

h/2
E (t) shows

the convergence ratio by EMs. From the numerical results
we can see that Cond|2k+1/Cond|2k ≈ 2 (k = 5, · · · , 8),
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TABLE I
THE CONDITION NUMBER FOR EXAMPLE 1.

2n 25 26 27 28 29

|λmin| 0.272 0.136 0.068 0.034 0.017
|λmax| 24.23 24.24 24.23 24.24 24.24
Cond 89.05 1.781E+2 3.562E+2 7.124E+2 1.425E+3

TABLE II
ERROR eh , ERROR RATIO rh , AND ERROR eh

E OF u FOR EXAMPLE 1.

t t = 0 t = π
2

n eh; rh eh
E ; rh

E eh; rh eh
E ; rh

E
23 7.0E-2; 22.9 1.7E-5; 22.7 4.2E-3; 22.7 1.6E-4; 28.7

24 8.8E-3; 23.0 2.6E-6; 24.8 6.7E-4; 23.0 3.8E-7; 24.8

25 1.2E-3; 22.9 9.0E-8; 24.9 8.3E-5; 23.0 1.4E-8; 25.0

26 1.4E-4; 23.0 2.9E-9; 25.0 1.0E-5; 23.0 4E-10; 25.0

27 1.7E-5; 23.0 3E-11; 25.0 1.3E-6; 22.9 1E-11; 25.0

28 2.1E-6; 23.0 9E-12; −− 1.6E-7; 23.0 4E-13; −−
29 2.7E-7; −− 2.0E-8; −−

TABLE III
THE CONDITION NUMBER FOR EXAMPLE 2.

2n 25 26 27 28 29

|λmin| 0.272 0.136 0.068 0.034 0.017
|λmax| 18.68 18.67 18.67 18.67 18.67
Cond 68.58 1.372E+2 2.743E+2 5.487E+2 1.097E+3

TABLE IV
ERROR eh , ERROR RATIO rh , AND ERROR eh

E OF u FOR EXAMPLE 2.

t t = 0 t = π
2

n eh ; rh eh
E ; rh

E eh; rh eh
E ; rh

E
23 5.3E-3; 21.2 1.9E-3; 211 1.4E-2; 23.6 7.2E-4; 210

24 2.3E-3; 22.9 5.7E-7; 24.6 1.1E-3; 23.0 4.8E-7; 25.4

25 2.9E-4; 23.0 2.3E-8; 24.9 1.4E-4; 23.0 1.2E-8; 25.0

26 3.6E-5; 23.0 8E-10; 24.9 1.8E-5; 22.9 4E-10; 25.0

27 4.5E-6; 23.0 3E-11; 24.1 2.2E-6; 23.0 1E-11; 25.1

28 5.6E-7; 23.0 2E-12; −− 2.8E-7; 23.0 5E-13; −−
29 7.0E-8; −− 3.5E-8; −−

log2(rh(t)) ≈ 3 (t = 0, π/2), and log2(rh
E(t)) ≈ 5 (t =

0, π/2), which are consistent with Theorem 2.6, Theorem 3.1
and (27).

Example 2. Let ∂Ω denote the boundary of the oblate
circle, where ∂Ω = {(x1, x2) : x2

1/a2 + x2
2/b2 = 1, a =

1, b = 1/3}. The Dirichlet boundary condition is given by
u(x1, x2) = x2

1 − 2x2
2 + x1x2/3 + x1 + x2/3 + 1. parameter

values used are κ1 = 1.0 and κ2 = 0.5

Tables III, and IV, accord with our error analysis, where
the numbers of nodes n is 2π/h. eh(t) = |u(t)−uh(t)| gives
the absolute error at a given point (cost, 1

3 sint)(t = 0, π/2);
rh(t) = eh(t)/eh/2(t) shows the convergence ratio by MQMs;
eh

E(t) = |u(t) − u∗(t)| shows the error at the given point
after using the EMs once; and rh

E(t) = eh
E(t)/e

h/2
E (t) shows

the convergence ratio by EMs. From the numerical results
we can see that Cond|2k+1/Cond|2k ≈ 2 (k = 5, · · · , 8),
log2(rh(t)) ≈ 3 (t = 0, π/2), and log2(rh

E(t)) ≈ 5 (t =
0, π/2), which are consistent with Theorem 2.6, Theorem 3.1
and (27) perfectly.

V. CONCLUSIONS

To close this paper, a few concluding remarks can be made.
1. The MQMs proposed in this paper has the following

advantages: (a) the quadrature formula is simple and easier to
implement; (b) the optimal convergence rate is O (h3) .

2. This paper reflects on the excellent stability for singularity
problems with condition number in the order of O (h−1) for
MQMs. Having a small condition number is significant to sin-
gularity solutions for the first kind BIEs. This is a remarkable
advantage of MQMs, which other existing numerical methods,
such as the GM and EM, do not possess.

3. The convergence rate is O (h5) after extrapolation once,
which is a significant improvement in accuracy.

In this paper we discussed the MQMs and EMs only for
problems with a smooth closed boundary ∂Ω. The discussion
of problems with a nonsmooth boundary will be presented in
a separate paper.
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