International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:8, 2008

Compression of Semistructured Documents

Leo Galambos
Department of Software Engineering
Charles University in Prague
Czech Republic
e-mail: leo.galambos@mff.cuni.cz

Abstract—EGOTHOR is a search engine that indexes the Web
and allows us to search the Web documents. Its hit list contains URL
and title of the hits, and also some snippet which tries to shortly
show a match. The snippet can be almost always assembled by an
algorithm that has a full knowledge of the original document (mostly
HTML page). It implies that the search engine is required to store
the full text of the documents as a part of the index.

Such a requirement leads us to pick up an appropriate compression
algorithm which would reduce the space demand. One of the solutions
could be to use common compression methods, for instance gzip or
bzip2, but it might be preferable if we develop a new method which
would take advantage of the document structure, or rather, the textual
character of the documents.

There already exist a special compression text algorithms and
methods for a compression of XML documents. The aim of this
paper is an integration of the two approaches to achieve an optimal
level of the compression ratio.

Keywords— Compression, search engine, HTML, XML.

I. MOTIVATION

GOTHOR [7] is a full-text search engine written entirely

in Java2. The platform was chosen for its beneficial
attributes: portability, simplified code management and fast
linking with modules of 3rd parties. The issue discussed in this
paper is related to the development of a proper compression
algorithm with respect to the amount of data processed by the
whole system. This problem will not be discussed in a context
of the inverted index which is already compressed. Our goal
is pointed to the database of original documents in particular.
This meta-data database plays an important role during the
process of snippets generation. Moreover, it is also a major
consumer of a disk space in the whole system.

To better explain our motivation a brief system performance
is given. The second generation system (EGOTHOR v2)
consists of a Web robot and indexing and search modules. The
robot is able to crawl the Web at the speed of 700-1000 pages
per second. The indexer throughput is about 500-700 pages
per second and the searcher is only limited by the disk bus
capacity. Obviously, all the performance values are influenced
by a length of documents, structure of the Web and hardware
capacity (the values were measured on a dedicated server with
AMD Opteron 246).

The work was supported by the project 1ET100300419 of the Program
Information Society (of the Thematic Program Il of the National Research
Program of the Czech Republic) "Intelligent Models, Algorithms, Methods
and Tools for the Semantic Web Realisation”.

Jan Lansky
Department of Software Engineering
Charles University in Prague
Czech Republic
e-mail: zizelevak@gmail.com

Katsiaryna Chernik
Department of Software Engineering
Charles University in Prague
Czech Republic
e-mail: kchernik@gmail.com

Robot

- Hit list

new chunks ‘ 64b‘|D5 ‘ ‘ Snippets ‘
{15Ta A S —
: ‘ Inverted lists ‘ ‘ Meta—data ‘

Fig. 1 EGOTHOR architecture

The system can also be extended by many linguistic mod-
ules which increase the information quality of results and
lowers the throughput consequently. Such modules could also
lower the system space demand, i.e. a stemmer [6], but
we rather consider now that the system runs without any
supplemental modules.

Snippets can be generated by many algorithms, but the
common factor is the knowledge of the original document
structure and user’s query. First, the system finds hits, or rather
their 64-bit identifiers, and retrieves their textual contents
from the database of original documents. Finally, it prepares
adequate snippets for the final hit list. This common process
is also described by Figure 1.

The base version of the system implemented the compres-
sion algorithm of the database on top of the existing gzip
method [5]. The question is whether such a compression is
suitable for HTML documents or an adequate substitution
could be found on a base of other (or similar) compression
methods.

Our aim is therefore to develop such a method that gives a
better or similar compression ratio and a same or better decom-
pression time than gzip. On the other hand, the compression
time need not be as fast as gzip.

This paper is organized as follows. A brief introduction to
the compression is presented first. Then we discuss the textual
methods and the methods suitable for XML compression. A
novel method for HTML (or XML) documents is introduced
afterwards. Finally, experiments and a list of open problems
are presented, and the conclusion is given.

I1. COMPRESSION

Any Web full-text system gathers a lot of documents, mostly
HTML pages [26]. The number of all pages is estimated over
several billions and their average size is about 10-20kB [18].

2572

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:8, 2008

The capacity issue can be then solved by a compression which
is a typical way how to reduce the data size.

A successful compression method can take advantage of
the knowledge of the input message (stream). Our document
database largely contains HTML documents and it is a good
idea to make the best of HTML tree structure.

Obviously, we could still forget all the HTML features and
pick up one of the many compression methods, such as gzip
or bzip2 [20], running on a textual representation of the input
documents. The compression level might be good, but also
suboptimal in a common case. This solution was chosen for
its simplicity by the existing EGOTHOR system.

Another way is to use special compression algorithms
which process the textual representation by syllables [13] or
words [24]. The syllable-based methods often need to know a
language of the input document, but it is not a serious issue.
The language can be found in HTTP header or HTML meta-
data values, or even guessed by some statistical analysis of
the text.

There is also another way how to compress the HTML
documents. Existing methods for XML compression [25]
could be used, for instance XMLPPM [8] which is thought
to be the most effective method for XML data. This sort
of algorithms is based on an effective coding of XML tags
structure. Unfortunately, HTML standard is not as strict as
XML and it makes the use of tag structure harder. We would
have to fix our input HTML documents to well-formed XML,
or extend the original XML compression methods to support
documents which are not well-formed.

The original XML-based solution tries to separate two
processes. The first one encodes the tags and attributes struc-
ture, while the second one encodes the CDATA content with
some common compression method. Some improvement was
achieved by the use of a different compression method for
the second process [9]. This paper presents a similar approach
with the extension for HTML documents.

I1l. COMPRESSION METHODS FOR TEXT

Text compression can often derive benefit from the two
views of the textual content: the content can be seen as a
stream of syllables or words. The word-based methods are
older, so many implementations of classical methods exist,
for instance Huffman coding [24], LZW [4], Burrows-Wheeler
transformation [10], PPM [1] or Arithmetic coding [17]. The
syllable-based methods are rather young with initial imple-
mentations of Huffman coding and LZW [13].

The port of classical character methods to syllable or word
based is not easy. The transformation heavily hits almost all
inner data structures, because they must be able to work
with undefined (and often high) number of syllables or words
instead of the original alphabet of 256 characters. Moreover,
the large input alphabet (of syllables or words) also requests
the encoder to export elements of the alphabet to the decoder.
This issue is often solved by exporting the alphabet as a part
of the encoded document [11].

The confrontation and comparison of the word and syllable
based methods depends on a language of the input document.
Languages with a simple morphology, i.e. English, are better
compressed by the word-based algorithms. On the other hand,
the languages with a complex morphology, i.e. Czech or
German, are often compressed better by the syllable-based
methods [12].

A. Word-Based Methods

The word-based methods require to divide the input docu-
ment into a stream of words and non-words. The words are
usually defined as longest alphanumeric strings in a text, while
the non-words are the remaining fragments.

The previous definition of words and non-words implies
that one can assume that the elements of the two groups are
alternated regularly. Next, another heuristic is also used: the
word is often followed by a special non-word — space. So
we can skip over the space without any encoding. The right
decompression is guaranteed, one must only ensure that two
successive words are interleaved with the space in a decoder.

In practice the words length is often limited by some
constant value. Longer words are broken up and the resulting
parts are interleaved with a special empty word of an opposite
type (word versus non-word). For instance, if a long word is
divided into two parts, then the parts are interleaved with an
empty non-word.

B. Syllable-Based Methods

The syllable-based methods [13] first decompose an input
document into words and then these words are decomposed
into the final stream of syllables. The previous word based
methods recognize two word groups. In contradistinction to
this simple approach, the syllable-based methods prefer the
following (more effective) grouping.

Words containing only the small letters are denoted as
small, i.e. “river”. Words containing only the upper letters are
upper, i.e. “MSFT”. Words starting with first letter upper and
having following letters small are mixed, i.e. “John”. If a word
contains digits and nothing else, then the word is classified as
number, i.e. “2006”. Other non-alphanumeric words form the
last catch-all group — special. Moreover, the first three groups
are also named letter words, the last two groups are denoted
as non-letter.

The input textual document is decomposed into words by
a greedy algorithm. Afterwards, the words are decomposed
into syllables. This process need not be always unambiguous.
In our case, we can be satisfied with some approximation, be-
cause it has not any significant impact on the final compression
ratio.

There are many algorithms which are able to decompose
words into syllables. We briefly present four algorithms which
need to know a few linguistic rules about the processed
language. In fact, they only need to recognize vowels and
consonants correctly.

All the four algorithms has a common start phase. All non-
letter words are declared as syllables, and therefore they are

2573

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:8, 2008

TABLE |
HYPHENATION OF odstr&enou (CZECH WORD: “UNDERPRIVILEGED”)

Algorithm ‘ Syllables

Correct hyphenation | od-str-ce-nou
Pyr, odst-ré-en-ou
Pyr o-dstr-Ce-nou
Pumr ods-tr-Ce-nou
Pumr od-str-Ce-nou

not divided at all. In letter words, vowels and consonants are
recognized. Next, the longest strings of vowels are found. The
string (block) must be of the maximum length of 3 letters and
it cannot be possible to extend it by a contiguous vowel. These
blocks are cores of final syllables. Consonants before the first
block are assigned to the first block, and consonants after the
last block are assigned to the last block.

The algorithms differ in the following step which assigns
remaining consonants to the existing blocks which are left or
right to them. The universal left algorithm (P 1) assigns all
consonants to the left (previous) block of vowels. Similarly,
the universal right algorithm (P) assigns all consonants to
the right block.

The universal middle-right algorithm (Py) assigns one
half of consonants to the respective adjacent block, if the
number of consonants is even. If the number is odd, then the
right block gets one consonant more.

Last, the universal middle-left algorithm (Py) is an-
tipodal — it prefers to assign one consonant more to the left
block. Nonetheless, one exception exists: if there is just one
consonants, then it is assigned to the right block. It ensures
that word endings are not formed by single blocks of vowels,
which is the handicap of the Py algorithm.

An example is presented in Table I, where all the four
algorithms hyphen a word odstréenou (Czech word: “under-
privileged”). The blocks of vowels are o, r, €, ou (in this order).

The example also presents a surprising fact — the recognition
of vowels and consonants is not so simple in many languages.
Basic vowels are obvious, there are a, €, i, 0, u, y, while other
letters are called basic consonants. Nonetheless, a context and
language can cause that some basic vowels may start to play a
role of consonants (and vice versa). For instance, consonants
r and | play a role of vowels in Czech, if their adjacent letters
are consonants. A similar case can be shown with the letter
y in English. It depends on a context which role the letter y
plays, it can be a vowel, i.e. dirty, or a consonant, i.e. yellow.

The syllable-based methods are based on a fact, that the text
consists of sentences and it can be described by the following
rules: A sentence starts with a mixed word (first letter is upper,
others are small) and ends with a special word containing a
dot. The small and special words are alternated regularly. If a
sentence starts with an upper word, then the upper and special
words are alternated instead.

This model does not work well after the hyphenation
process. Every word has a different number of syllables and
it may cause the following issue. While a small word is often

SAX Parser |

Input XML file |

| Path Processor |

|Structure Container“Data Container1 ”Data Container 2| | Data Container k |

[ozp | [b |[ozip | [ozp |

| I

| Compressed XML file |

Fig. 2 Data flow of XMill

followed by a special word, a small syllable can be followed
by a small syllable (and obviously by a special syllable as
well).

This observation helps to define a model which is able to
predict the type of a next syllable. More details can be found
in the previous paper [13] on this topic.

IV. XML STRUCTURE COMPRESSION

There are many algorithms which compress XML data. One
of the first available was XMill [14]. Many other successors
are based on similar principles, i.e. XMLPPM [8]. Some
algorithms also add new features: XGrind [21] and XPress [16]
are able to query the compressed data structure at the cost of
a worse compression ratio.

A, XMill
XMill algorithm is based on the following principles:

« Structure separation: The structure includes tags, at-
tributes and their ordering. Sequence of fields (textual
content of tags, values of attributes) is rated as data.

« Grouping of data: Data values can be grouped into
containers by their sense and each of the groups is
compressed separately. For instance, one container can
be formed by a content of all <name> tags, while the
second container is formed by a content of <phone>
tags.

« Separate compression of containers: Every container is
often processed by a different compression method.

The data flow of XMill method is described by Figure 2.
The input document is processed by SAX parser [15] which
forwards SAX events to Path processor. The processor sepa-
rates structure and data, and also groups data into containers.

There is one special container which processes the structure
of the whole document. Its data stream has the following
format: tag content is replaced by a number of a container
which processes the given tag; tag names and attributes are
replaced by references to a vocabulary of tags and attributes.

Finally, the content of all containers is compressed by gzip,
and the resulting stream is saved to a final output.

B. XMLPPM

XMLPPM [8] is XML compressor based on Prediction by
Partial Match (PPM) encoding. It proposes a technique called

2574

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:8, 2008

Multiplexed Hierarchical Modeling (MHM), which employs
two basic ideas: multiplexing several text compression models
based on XML syntactic structure, and injecting hierarchical
element structure symbols into the multiplexed models.

In XMLPPM, the input XML document is converted into
a stream of SAX events. Element start tags, end tags, and at-
tribute names are dictionary encoded and sent to corresponding
PPM models for running predictions and encodings.

XMLPPM uses four compression models:

1) the element and attribute name model (Sym),
2) the element structure model (EIt),

3) the attribute values model (Att), and

4) the string value model (Char).

To illustrate the operation of XMLPPM, consider this XML
fragment: <elt att="abcd">XYZ</elts>. Assuming the
tag elt has been seen before, and is represented by byte 10,
while the attribute name att has not, and the next available
byte for attribute name is 0D, our XML fragment would be
encoded as shown in Figure 3.

In Att and Char models, XMLPPM injects the enclosing
token index <nn> in order to retain cross-model dependencies
among the tokens in different contexts. The <nn> token
indicates that a particular token has been seen, but these token
indexes are not explicitly encoded in the models.

Last, but not least;, XMLPPM is often able to achieve a
better compression ratio than the default mode of XMill [14].

V. OUR CONTRIBUTION

This section presents our older methods XMillSyl and
XMLSyI [9] which were used to test the joint of syllable-based
methods with some XML structure compression methods.

A. XMillSyl and XMLS/i

We already made a proposal of two methods which try to
combine the compression of XML structure and text.

The first method (XMillSyl) is a modification of XMill
algorithm. While the structure container is still compressed
by gzip, our method uses syllable-based compression methods
(LZWL and HuffSyllable [13]) instead of the original gzip.

The second method (XMLSyI) tries to modify the existing
syllable-based methods LZWL and HuffSyllable, so that the
tags are not hyphened. There is still the SAX parser which
sends SAX events into a structure coder. The coder uses two
separate dictionaries for tags and attributes encoding, and it
also replaces tag and attribute names with references to the
respective dictionary. This output stream is processed by a
data container. The data container and dictionaries are finally
encoded by LZWL or HuffSyllable.

Both methods (LZWL and HuffSyllable) are syllable-based
methods, but their roots differ. LZWL is based upon a classic
dictionary-based LZW [23] algorithm, while HuffSyllable is
inspired by HuffWord [24] and uses the principle of the five
different syllables.

B. XBW

The new XBW method is based on Burrows-Wheeler trans-
formation [3]. Burrows-Wheeler transformation was chosen
for its success in the bzip2 program [20].

The method consists of these seven steps: replacement
of tag names, division into words or syllables, dictionary
encoding, Burrows-Wheeler transformation (BWT), Move to
Front transformation (MTF), Run Length Encoding of null
sequences (RLE), Canonical Huffman.

1) Replacement of tag names. The XBW method SAX
parser produces a sequence of SAX events which are pro-
cessed by a structure coder. The coder builds up two separate
dictionaries for tags and elements encoding. Moreover, it
also replaces tag and attribute names with references to the
respective dictionaries.

2) Division into words or syllables: The output of the
previous step is divided into words or syllables as described
in Section Ill. The resulting stream is denoted as S-stream.

3) Dictionary encoding: The previous step also generates a
dictionary of words or syllables which are used in a text. One
of the effective dictionary compression methods is TD3 [11].
The method encodes the whole dictionary (represented as a
trie) instead of the separate items stored inside.

4) Burrows-Wheeler transformation: The purpose of BWT
step is to transform the S-stream into a “better” stream. The
“better” stream would allow to achieve a better compression
ratio. Obviously, the transformation would be also reversible
else we might lost some information. In the concrete, a partial
grouping of same input alphabet elements will be achieved.
Such a process requires to sort all the permutations of this
step input. We do not yet use the effective algorithm described
in [19], but a simpler gsort function of C/C++ language.
The sophisticated algorithm would boost the compression time
performance.

5) Move to Front transformation: Next, the output stream
of BWT s transformed by another transformation step —
MTF [2]. This step translates textual strings into a sequence
of numbers. Suppose a numbered list of alphabet elements.
MFT reads input elements and writes their list order. As soon
as an element is processed, it is also moved up to the front of
the list.

6) Run Length Encoding of null sequences. MFT step may
generate a long sequences of zeroes (null sequences). The
successor step (RLE) shrinks the null sequences and replaces
them with a special symbol which represents a null sequence
of a given length. The output is then a stream of numbers and
the special symbols.

7) Canonical Huffman: Finally, the stream after RLE step
is encoded by canonical Huffman code [22].

V1. EXPERIMENTS

This paper discussed several methods which could be used
for HTML pages compression. This section presents the re-
spective experiments with the input of ten EGOTHOR robot
files. Each of the files has size about 14 MB and contains one
thousand HTML pages of ac.uk domain. The HTML pages

2575

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:8, 2008

Model | <elt | att= "asdf" | > | Xvz | </elt>
Elt: 10 FE FF
Att: <10> 0D | asdf 00 | <10> FF
Char: <10> XYZ 00
Sym: att 00
Fig. 3 Example: XMLPPM processing
TABLE 11

RESULTS OF COMPRESSION (10 FILES, 1000 ENGLISH PAGES EACH)

Method Compressed Ratio
none 14 383 kB | 100.00%
gzip 3044 kB 21.16%
bzip2 2 372 kB 16.50%
XMLPPM 2128 kB 14.80%
XBW (words) 1379 kB 9.59%
XBW (syllables) 1371 kB 9.53%

were first fixed and repaired to comply the well-formed XML
format. The summary results (average per one file) are then
presented in Table II.

The first column of the table specifies the method used,
the next column presents the size of the original file after the
compression, and the last column shows the compression ratio
achieved.

The most important factor is the compression ratio, and it
can be seen that the absolute winner is XBW with the ratio of
9.53%. It implies, that the original file occupies less than one
tenth of its original size. XMLPPM output needs about 50%
more space (compared to XBW), bzip’s about 80% more and
gzip’s about 120% more.

An interesting point can be seen on the results of word
and syllable-based variation of XBW as well. Although the
syllable-based methods are worse than word-based, in this
case of a language of a simple morphology (English), they are
slightly better with XBW core. We suppose even better result
on languages with a rich-morphology, thus we may simply
prefer the syllable-based method later.

Last, but not least, another factor is important as well, it
is a time of compression. The fastest program is gzip with 2
seconds per our file. Bzip runs slower and needs 9 seconds.
XMLPPM ends its work after 20 seconds.

The XBW program exists in a beta version and it is not fully
optimized for speed yet. Obviously, it is the slowest among
the tested algorithms - one run needs about 400 seconds, but
we suppose 50-100 seconds after a full optimization. On the
other hand, the unoptimized XBW achieves a decompression
time better than 60 seconds. Such a result is good enough for
our primary use in a beta version of a search engine.

The results show that the existing use of gzip is not suitable.
GZip is fastest, but it also achieved the worst compression
ratio in out test group of five. Unfortunately, the method with
the best compression ratio (XBW) is not still ready to go live
down to earth — it needs significant optimization first.

VII. OPEN PROBLEMS

The methods based on XML structure compression require
well-formed input documents. Unfortunately, this requirement
is often contravened in HTML documents on the Web: the
documents use tags incorrectly, i.e. <a>, or
their tags use the same attribute name twice. Therefore, it will
be needed to modify the existing XML structure compression
method to support bad-formed documents at the cost of
lowering a compression ratio.

Text compression methods, especially syllable-based, are
able to take advantage of the language specification given
by HTTP headers or HTML meta-data block. In practice we
found that the specification was often false or it could not
cover a situation when the document contained paragraphs or
sentences in different languages.

On the other hand, HTML standard has one positive aspect
— it uses a limited set of tags and attributes names. This aspect
may improve the efficiency of a compression process.

A negative aspect of HTML could be seen in a support of
scripting languages. Since the scripts have not a structure of
a natural language, the textual compression methods do not
achieve the best results here.

Presently, EGOTHOR robot stores up to one thousand
HTML pages into one single file. The reasons are rooted in
the robot optimizations. Unfortunately, it also implies that one
cannot easily access single documents without the decompres-
sion of all documents in this file. We already plan to compress
the single documents, so that the final file would contain 1000
documents compressed separately. It would ease the access to
the single documents. Such a solution may utilize the syllable-
based methods effectively [12].

VIIlI. CONCLUSION

EGOTHOR full-text search engine collects and stores huge
number of documents, mostly in HTML format. For practical
reasons the documents are compressed obviously.

We discussed the selection of a suitable compression
method which would utilize the semantics and structure of
HTML documents. Our guess was that such a method has the
best chance to achieve an optimal level of a compression ratio.

Three branches of compression algorithms were discussed:
textual, special XML, and a mix of the previous two. Last
branch was represented by a novel XBW algorithm which
combines textual method with a method for XML structure
compression.

2576

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:2, No:8, 2008

REFERENCES
§

—

Adiego, J., Feunte, P.: On the Use of Words as Source Alphabet Symbols

in PPM. Data Compression Conference, IEEE CS Press, Los Alamitos,

CA, USA (2006) 435.

Arnavut, Z.: Move-to-front and inversion coding. Data Compression

Conference, IEEE CS Press, Los Alamitos, CA, USA (2000) 193-202.

Burrows, M., Wheeler, D. J.: A Block Sorting Loseless Data Compression

Algorithm. Technical report, Digital Equipment Corporation, Palo Alto,

CA, U.S.A (2003).

Dvorsky, J., Pokorny, J., Snasel, V.: Word-based Compression Methods

for Large Text Documents. Data Compression Conference, IEEE CS

Press, Los Alamitos, CA, USA (1999) 523.

Gailly, J. L.: Gzip program and documentation (1993). Source code

aviable from ftp://prep.ai.mit.edu/pub/gnu/gzip-*.tar

Galambos, L.: Dynamization in IR Systems. Mieczyslaw A. Klopotek,

Slawomir T. Wierzchon, Krzysztof Trojanowski (Eds.): IPWM, Proc. of

the Int. 11S: IPWM’04, Poland, 2004. ASC Springer 2004, ISBN 3-540-

21331-7.

[7] Galambos, L.: EGOTHOR. http://www.egothor.org/

[8] Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Mod-

els. Data Compression Conference, IEEE CS Press, Los Alamitos, CA,

USA (2001) 163.

Chernik, K., Lansky, J., Galambos, L.: Syllable-based compression for

XML documents. In: Snasel, V., Richta, K., and Pokorny, J.: Proceedings

of the Dateso 2006 Annual International Workshop on DAtabases, TExts,

Specifications and Objects. CEUR-WS, Vol. 176, (2006) 21-31

[10] lsal, R.Y.K., Moffat, A.: Word-based Block-sorting Text Compression.
Proc. 24th Australasian Computer Science Conference, Gold Coast,
Australia, (2001) 92-99

[11] Lansky, J., Zemlicka, M.: Compression of a Dictionary. In: Snasel, V.,

Richta, K., and Pokorny, J.: Proceedings of the Dateso 2006 Annual

International Workshop on DAtabases, TExts, Specifications and Objects.

CEUR-WS, \ol. 176, (2006) 11-20

2

—

3

[}

[4

—

[5

—

[6

—_

[9

—

[12] Lansky, J., Zemlicka, M.: Compression of Small Text Files Using
Syllables. Data Compression Conference, IEEE CS Press, Los Alamitos,
CA, USA (2006) 458.

[13] Lansky, J., Zemlicka, M.: Text Compression: Syllables. In: Richta,
K., Snasel, V., Pokorny, J.: Proceedings of the Dateso 2005 Annual
International Workshop on DAtabases, TExts, Specifications and Objects.
CEUR-WS, \ol. 129, (2005) 32-45

[14] Liefke, H., Suciu, D.: XMill: an Efficient Compressor for XML Data.
In Proc. ACM SIGMOD Conference (2000) 153-164

[15] Megginson, D.: SAX: A Simple APl for XML. http://www.
saxproject.org

[16] Min, J. K., Park, M. J., Chung, C. W.: XPRESS: A Queriable Com-
pression for XML Data. SIGMOD 2003, San Diego, CA, USA (2003)
122-133

[17] Moffat, A., Neal, R. M., Witten, I. H.: Arithmetic Coding Revisited.
ACM Transactions on Information Systems, 16, (1998) 256-294

[18] O’Neill, E. T., Lavoie, B. F., Bennett, R.: Trends in the Evolution of the
Public Web: 1998-2002. D-Lib Magazine (2003) 1082-9873

[19] Seward, J.: On the Performance of BWT Sorting Algorithms. DCC,
IEEE CS Press, Los Alamitos, CA, USA (2000) 173.

[20] Seward, J.: The bzip2 and libbzip2 official home page. http://
sources.redhat.com/bzip2/

[21] Tolani, P., Haritsa, J. R.: XGrind: A Query-friendly XML Compressor.
In Proc. IEEE International Conference on Data Engineering (2002).
[22] Turpin, A., Moffat, A.: Housekeeping for prefix coding. IEEE Transac-

tion on Communications, 48(4), (2000) 622—628.

[23] Welch, T. A.: A technique for high performance data compression. IEEE
Computer, 17(6) (1984) 8-19.

[24] Witten, 1., Moffat, A., Bell, T.: Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold (1994).

[25] World Wide Web Consorcium: Extensive Markup Language (XML).
http://www.w3.org/XML/

[26] World Wide Web Consorcium: HyperText Markup Language (HTML).
http://www.w3.org/MarkUp/

2577

