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Abstract—The paper contains an investigation of winding numbers
of paths of zeros of analytic theta functions. We have considered
briefly an analytic representation of finite quantum systems ZN .
The analytic functions on a torus have exactly N zeros. The brief
introduction to the zeros of analytic functions and there time evolution
is given. We have discussed the periodic finite quantum systems. We
have introduced the winding numbers in general. We consider the
winding numbers of the zeros of analytic theta functions.
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I. INTRODUCTION

THIS Paper is devoted to the study winding numbers of
paths of zeros in analytic representation of finite quantum

systems on a torus. Analytic functions are very important tool
in several branches of physic sciences. [1], [2], [3] has been
studied analytic functions and used them Widely in quantum
mechanics. The analytic Bargmann function [4], [5], [6], [7],
[8], [9], [10] is the important to study the overcompleteness

representations of finite quantum systems on a torus. The
analytic function representing a quantum state has exactly
N zeros which define uniquely the quantum state. Ref [13]
has been studied the motion of the N zeros on the torus. In
present paper we introduce the winding numbers of the zeros
of analytic functions. The path of zeros are functions of time.
The path of this motion is curve as long as functions x(t)
and y(t) are continuous. We define the winding numbers of
real part and imaginary part of the zero. We demonstrate these
general ideas with various concrete examples.

II. ANALYTIC REPRESENTATION OF FINITE QUANTUM
SYSTEMS

Let H be a d-dimensional Hilbert space. Let |Xm〉, |Pm〉,
where m the integers modulo n, be an orthonormal basis
in this Hilbert space (position states and momentum states
Respectively). where

|Pm〉 = F|Xm〉 = N−1/2
∑
n

(exp

[
i
2πm

N

]
)|Xm〉, (1)

and F the Fourier operator:

F = N−1/2
∑
m,n

(exp

[
i
2πm

N

]
)|Xm〉〈Xn|. (2)
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Let x, p be the position and momentum operators and they
given by

x =

N−1∑
n=0

n|Xn〉〈Xn, (3)

p = FxF† =
N−1∑
n=0

n|Pn〉〈Pn| (4)

We study an arbitrary normalized state |F〉
|F〉 =

∑
m

Fm|Xm〉;
∑
m

|Fm|2 = 1, (5)

By reference to ref[13] we represent the state |F〉 of Eq.(5),
with the analytic function

f(z) = π−1/4
N−1∑
m=0

Fmϑ3[πmN−1 −
√

zπ

2N
;
i

N
] (6)

which obeys quasi-periodic relations

f
[
z +

√
2πN

]
= f(z)

f
[
z + i

√
2πN

]
= f(z) exp

[
πN − i

√
2πNz

]
, (7)

where ϑ3 is Theta function defined as

ϑ3(u, τ) =
∞∑

n=−∞
exp(iπτn2 + i2nu). (8)

The analytic function f(z) is defined on a cell [a, a+
√
2πN)×

[b, b+
√
2πN) (defined on a torus)

Example 1:
We consider the case where N = 3 and the state |F(0)〉 at
t = 0 is described through the coefficients

F0(0) = 0.08− 0.24i, F1(0) = 0.52 + 0.45i,

F2(0 ) = 0.55 + 0.37i. (9)

In Fig.1 we plot the real part of the function f(z)in Eq.(6)

III. ZEROS OF THE FUNCTIONS f(z)

Ref.[12] has proved that the sum of the zeros μn of f(z),
is

N∑
n=1

μn = (2π)1/2N3/2(l + ir) +
(π
2

)1/2

N3/2(1 + i) (10)

By reference to ref.[12], [13] we construct the function f(z)
from its zeros μn which satisfy the relation of Eq.(10) as

Winding Numbers of Paths of Analytic Functions
Zeros in Finite Quantum Systems

Libya ( e-mail: mona

of the coherent states. Ref [11], [12] have studied analytic



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:8, 2013

1224

−10

0

10

−1

0

1
−1

0

1

2

Z
R

Z
I

f(z)
R

Fig. 1. The real part of the function f(z) in Eq.(6) where N = 3 and the
|F (t)〉 at t = 0 is described through the coefficients in Eq.(13).

following

f(z) = q exp

[
−i

(
2π

N

)1/2

lz

]
N∏

n=1

ϑ3 [wn(z); i]

wn(z) =
( π

2N

)1/2

(z − μn) +
π(1 + i)

2
(11)

where l is the integer relation of Eq.10; and q is a fixed
calculated from the normalization condition.
Ref.[13] has calculated the coefficients Fmfrom f(z) as fol-
lowing.

IV. PATHS OF THE ZEROS

Following ref.[13] we consider the state |F(0)〉 =∑
Fm(0)|X;m〉 at t = 0. Using the Hamiltonian H , the state

|F(0)〉 evolves at time t

|F(t)〉 = exp(ith)|F(0)〉 =
N−1∑
m=0

Fm(t)|Xm〉 (12)

Example 2:
We consider the case where N = 3 and the state |F(0)〉 at
t = 0 is described through the coefficients

F0(0) = 0.9− 0.008i, F1(0) = 0.3 + 0.004i,

F2(0) = 0.3 + 0.003i. (13)

We have calculated the coefficients |F(t)〉 for the two cases of
the Hamiltonians

H1 =
x2

2
+

p2

2
,

H2 = −i ln

[
exp

(
ix2

2

)
exp

(
ip2

2

)]
. (14)

Using MATLAB we calculated numerically the zeros μn

of f(z). In Fig.2 we present the three curves μn for the
Hamiltonian H1 (dotted line ), and the Hamiltonian H2(sold
line) of Eq.14.

V. PERIODICITY OF THE ZEROS

Ref.[13] has discussed the Periodic finite quantum systems.
In some cases d of the zeros follow the same path. We say
that this path has multiplicity d (see Ref.[13]).

Example 3:
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Fig. 2. The distribution of the zeros μn(t) for the state |F(t)〉 which at
t = 0 is described in Eq.(13) for Hamiltonian H1 (dotted line)and H2 (solid
line) of Eq.(14).
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Fig. 3. The path of the zeros μ0, μ1, μ2 with the Hamiltonian of Eq.16.
The initial values of the zeros are given in Eq.15

Let

μ0(0) = 1.37 + 2.29i; μ1(0) = 2.17 + 2.34i,

μ2(0) = 3.02 + 1.94i (15)

be the zeros at t = 0 and let

H =

⎡
⎣ 1 1 0

1 1 0
0 0 1

⎤
⎦ (16)

be the Hamiltonian with eigenvalues 0, 1, 2 with period α =
2π. Numerically we get that

μ1(α+ t) = μ2(t), μ2(α+ t) = μ1(t), (17)

In this case after period the μ1, μ2 follow the same path and
after a period they exchange position while μ3 follows a closed
path as following

μ1(α) = μ2(0), μ2(α) = μ1(0), μ0(α) = μ0(0), (18)

In Fig.3 we plot the paths of this zeros.
Example 4:

Let

μ0(0) = 0.7 + 2.6i, μ1(0) = 2.1 + 4.3i,

μ2(0) = 3.7 + 1.1i, μ3(0) = 3.7 + 2.2i, (19)
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Fig. 4. The path of the zeros μ0, μ1, μ2, μ3 for the Hamiltonian of Eq.20.
The initial values of the zeros are given in Eq. 19

be the zeros at t = 0 and let

H =

⎡
⎢⎢⎣

1 −i 0 0
i 1 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ (20)

be the Hamiltonian with eigenvalues 0, 2, 2, 2. Using Matlab
we calculate the paths of the zeros and found that

μ0(α+ t) = μ1(t), μ1(α+ t) = μ2(t),

μ2(α+ t) = μ3(t), μ3(α+ t) = μ0(t) (21)

In this example all the zeros follow the same path and after
period α = π we get that

μ0(α) = μ1(0), μ1(α) = μ2(0),

μ2(α) = μ3(0), μ3(α) = μ0(0). (22)

In Fig.4 we plot the paths of this zeros. Hence by definition
the zeros μ1, μ2 in example.3 have multiplicity d = 2 and the
four zeros in example.4 have multiplicity d = 4.

VI. WINDING NUMBERS OF PATHS OF THE ZEROS

The analytic function f(z) in Eq.(6) obeys quasi-periodic
relations of Eq.(7). In some cases the paths of the zeros are
closed curves.
In this section we study the winding number of the paths of
the zeros of analytic function f(z).
In general the winding number of the closed curve C about a
point z0 is the number of times C surrounds z0. In our case
the analytic function f(z) is defined on a cell
[a, a+

√
2πN)× [b, b+

√
2πN),

and each cell is labeled by a two of integers (l, r) with area
2πN and period

√
2πN.

The paths of zeros are functions of time, so we can write each
zero as following

μ(t) = x(t) + iy(t), 0 ≤ t ≤ T, (23)

The path of this motion is curve as long as functions x(t) and
y(t) are continuous.
Our goal is to calculate winding number of the paths μn.
We say that x have completed one period at t = T , if it obeys
the relation
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Fig. 5. The path of the zeros μ0 with the Hamiltonian of Eq.14. The initial
values of the zeros μ0, μ1, μ2, μ3, μ4 are given in Eq.25.

x(T ) = x(0) +
√
2πN ,

and we say that x have completed κ periods at t = T , if it
obeys the relation
x(T ) = x(0) + κ

√
2πN .

Here κ is the winding number of x.
We will denote a winding number of real part of the path of
the zeros μn by κ and we will denote a winding number of
imaginary part of the path of the zeros μn by η. Therefore

κ =
x(T )− x(0)√

2πN
, η =

y(T )− y(0)√
2πN

(24)

We present the following examples
Example 5:

Let

μ0(0) = 2.8 + 1.8i, μ1(0) = 0.3 + 0.9, μ2(0) = 1.6 + 3i,

μ3(0) = 3.93 + 4.8i, μ4(0) = 5.3 + 3.5i (25)

be the zeros at t = 0.
We consider the Hamiltonian H1 in Eq.(14) for the case N = 5
which has the eigenvalues 12.82, 8.15, 5.17, 2.87, 0.96.
We consider the zero μ2(0) = 1.6 + 3i.
When the system evolves in time, the zeros move in paths on
the torus.
In this case we found numerically that

μ2(1.7) = −4.006 + 0.66i = (1.6− 5.605) + 0.66i

= (1.6 + (−1)
√
2πN) + 0.66i (26)

This show that at the time t = 1.7 the winding number of the
real part of the zero μ2 is κ = −1. Therefore at the time t=1.7
the winding number of the of the zero μ2 are (κ, η) = (−1, 0).
At time t = 3.5 we found that

μ2(3.5) = −5.205− 2.605i = −5.205− (3− 5.605)i

= −5.205− (3 + (−1)
√
2πNi) (27)

It is seen that at the time t = 3.5 the winding number of the
of the zero μ2 are (κ, η) = (−1,−1).
In Fig.5 we present the path of the zero μ2.

Example 6:
Let

μ0(0) = 0.5 + 3.8i, μ1(0) = 0.9 + 2.5i,

μ2(0) = 0.93 + 0.3i, (28)
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Fig. 6. The path of the zeros μ0 with the Hamiltonian of Eq.14. The initial
values of the zeros μ0, μ1, μ2 are given in Eq.28.

be the zeros at t = 0,
and let

H =

⎡
⎣ 1 0 3

0 2 0
3 0 1

⎤
⎦ (29)

be the Hamiltonian with eigenvalues −2, 2, 4.
We consider the zero μ0(0) = 0.44 + 3.76i
In this case found numerically that

μ0(0.08) = 0.7082 +
√
2πN + 3.698i,

μ0(0.17) = 0.7082 + 2
√
2πN + 4.003i,

μ0(0.25) = 0.7082 + 3
√
2πN + 4.003i. (30)

This show that at the times t = 0.23, 0.4, 0.56 the
winding number (κ, η) of the path of the zero μ0 are
(1, 0), (2, 0), (3.0) respectively
In Fig.6 we present the path of the zero μ0.

Also we consider the zero

μ1(0) = 0.90 + 2.51i, (31)

this zero comes to its original position at time t = 0.5 and we
found that

μ1(0.5) = 0.90 + 0
√
2πN + 2.51i+ 0

√
2πN. (32)

Here we say that at the time t = 0.5 the winding number of
the of the zero μ1 are (κ, η) = (0, 0).
In Fig.7 we present the path of the zero μ1.

VII. CONCLUSION

We have studied the analytic representation of finite quan-
tum systems. The zeros of analytic theta function and there
time evolution have been considered. We have derived some
examples to calculate the paths of various zeros for various
Hamiltonians. A brief discussion to the Periodicity of the zeros
has been given. In some cases some of the zeros travel in one
path.
In general the winding number of the closed curve C about
a point z0 is the number of times C surrounds z0. We have
introduced the definition of winding number of the zeros of
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Fig. 7. The path of the zeros μ1 with the Hamiltonian of Eq.14. The initial
values of the zeros μ0, μ1, μ2 are given in Eq.28.

the analytic representation in finite quantum systems.
The winding number of the zeros of analytic function f(z)
are expressed in integer pairs Eq.(24).
We gave several examples to calculate winding number of the
paths μn(t) of various zeros.
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