
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:2, 2010

134

Abstract—This study compares three meta heuristics to minimize

makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem
with Parallel Machines. This problem is known to be NP-Hard. This
study proposes three algorithms among improvement heuristic
searches which are: Genetic Algorithm (GA), Simulated Annealing
(SA), and Tabu Search (TS). SA and TS are known as deterministic
improvement heuristic search. GA is known as stochastic
improvement heuristic search. A comprehensive comparison from
these three improvement heuristic searches is presented. The results
for the experiments conducted show that TS is effective and efficient
to solve HFS scheduling problems.

Keywords—Flow Shop, Genetic Algorithm, Simulated
Annealing, Tabu Search.

I. INTRODUCTION

CHEDULING is allocating limited resources (machine,
gate, people, etc) to certain task to optimize objective

functions [1]. Hybrid or Flexible Flow Shop (HFS) is one kind
of scheduling problem. HFS is combination of Parallel
machine and Flow shop scheduling [2]-[4]. In addition, it is a
generalization of flow shop problem [5]. In HFS, jobs are
processed through some stages l. in each stage l, there are two
or more identical machine i that can process the job. Fig. 1
shows HFS scheme. The job in each stage will be processed
by every machine that idle. The machines have capacity
constraint so that only one job machine can process at a time.

Fig. 1 n-stages 2-parallel machine Hybrid Flow Shop

Wahyudin P. Syam is a MS student at Industrial Engineering Department,

King Saud University, Riyadh, 11421, Kingdom of Saudi Arabia and
researcher at Princess Fatimah Alnijris’s Research Chair for Advance
Manufacturing Technology at King Saud University, Riyadh (corresponding
author e-mail: wsyam@ksu.edu.sa, gebe_top@yahoo.com).

Ibrahim M. Al-Harkan is an associate professor at Industrial Engineering
Department, King Saud University, Riyadh, 11421, Kingdom of Saudi Arabia
and Chairman of Saudi Council of Engineer (e-mail: imalhark@ksu.edu.sa,
ialharkan@gmail.com).

The notation for this scheduling problem is as follows:
HFm | perm | Cmax [2]. The meaning of this notation is as
follows: hybrid flow shop scheduling environment with all
jobs have identical sequence and minimizing total time to
finish all jobs is the objective to be solved. Mathematical
formulation for HFS is as follows as given in [6]:
Notation of the HFS model:

J: The set of the job to be scheduled
|J| = N: number of jobs
s: Number of stages that all jobs will be processed with the
 same order.
j: Subscript letter representing job j.
l: Subscript letter representing stage l.
i: Subscript letter representing machine i.

:lm Number of identical parallel machine in stage l.
B: A very large positive number.

:jlS Starting time of job j in stage l.

,,,, Jjjsll ∈∀∈∀

miJjjsll
otherwise

lstageatimachineonisjjobif
X jli

..,..........,1,,,,
0

.,1

=∈∀∈∀
⎩
⎨
⎧

=

miJjjsll
otherwise

lstageonimachineongjobbeforeisfjobif
Y fgli

..,..........,1,,,,
0
,1

=∈∀∈∀
⎩
⎨
⎧

=

 :ljp Processing time of job j at stage l.

,,,, Jjjsll ∈∀∈∀

Objective Function:
 QMinimize
Subject to:

 jQpS jsjs ∀≤+ ; (1)

 slljSpS ljjljl ≠∀≤+ + ,,;1, (2)

gfgfil

YBSpS fgliglflfl

≠∀

−+≤+

,,,,

);1(
 (3)

Comparison of Three Meta Heuristics to
Optimize Hybrid Flow Shop Scheduling

Problem with Parallel Machines
Wahyudin P. Syam, and Ibrahim M. Al-Harkan

S

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:2, 2010

135

gfgfil

YY gflifgli

≠∀

≤+

,,,,

;1
 (4)

gfgfil

YYXX gflifgliglifli

≠∀

++≤+

,,,,

;1
 (5)

 ∑
=

∀=
ml

i
jli ljX

1
,;1 (6)

 ljS jl ,;0 ∀≥ (7)

 }1.0{, ∈fglijli YX (8)

Explanation of the model are as follows: (1) indicates that

Q is the completion time of the last job j at the last stage s. (2)
indicates that it is impossible for every job j to be processed at
stage l+1 before every job j is completed at stage l, (3), (4),
and (5) are the processing order for jobs f and g on machine i
at stage l. These constraints are defined to guarantee that one
machine can only process one job at any time, (6) guarantee
that one job can only be processed on one machine at any
time, (7) provides non-negativity constraint for variable S, (8)
restricts that the value of X and Y only have 0 or 1.

To solve HFS problem, we presented three improvement
heuristic searches [1], which are Genetic Algorithm (GA),
Simulated Annealing (SA), and Tabu Search (TS). We use
these improvement heuristic searches to solve identical
problem instances to directly compare performance of these
three searches algorithm. The problems to be solved consist of
small size problem to big size problem that are considerable
NP-hard to be analytically solved. By using these searches,
the problem can be solved in polynomial time computation.
From the experiment result, performances of these three
searches are studied.

The structures of this paper are organized as follows. In
section II, description of improvement heuristic search, as one
kind of heuristic search, will be presented. Detail of
improvement heuristic search, which are GA, SA, and TS will
be presented in section III, IV, and V respectively. Experiment
result will be presented in section VI and closed by conclusion
in section VII.

II. IMPROVEMENT HEURISTIC SEARCH
In scheduling problem, there are three classifications of

search algorithms, which are exact algorithms, approximation
algorithms, and heuristic algorithms as in Fig. 2. Exact
algorithm is a complete enumeration search that searches all
feasible solution in solution region. This algorithm will give
optimum solution. Exact algorithm has limited implementation
regarding to computational time for large size problem.
Branch and bound is kind of exact algorithm. Approximation
algorithm is a search algorithm that uses mathematical
formulation to guide the search direction to find good feasible
solution. Heuristic algorithm is a search algorithm that uses
certain rule to search feasible solution in solution region to
find good feasible solution.

Fig. 2 Classification of search algorithm in scheduling problem

Heuristic search consist of two groups, which are

construction heuristic and improvement heuristic [7]-[8].
Construction heuristic is heuristic search that start from empty
schedule solution set and, in each iteration, one job is added
into schedule solution set until all jobs are scheduled.
Improvement heuristic search is heuristic search that start
from initial complete schedule, generated randomly or with
certain dispatching rule and the schedule solution set is
improved in each iteration until reach certain stopping criteria.
GA, SA, and TS are classified as improvement heuristic
search.

The background to use approximation search or heuristic
search is significantly less computational time even though
this search can only give good solution, optimum if we luck.
Approximation and heuristic search is effective for large scale
problem size, especially for problems that are NP-hard if it is
solved using exact algorithm.

III. GENETIC ALGORITHM
GA was found by John Holland. GA is stochastic heuristic

technique that starts from many initial solutions, called
population, and using generation to create new population.
Population is filled by individual in term of chromosome.
Each element in chromosome is called gene. Each gene
represents job and the position of gene represents sequence of
the job in schedule.

To generate new population, GA makes selection from
current population to choose the best individual in current
population and uses operators to create the new population on
new generation. The operators are: Crossover and Mutation.
By crossover operation, GA generates the neighborhood to
explore new feasible solution [6], [9]-[12], [14].

A. Selection
This process chooses the best individual with fitness

function. The fitness function is:

∑
=

= n

j
j

i
i

f

f
P

1

 (9)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:2, 2010

136

B. Crossover
Crossover is GA operator to generate new individual to fill

the population of the new generation. Parents are randomly
chosen from individuals from last generation and selected by
crossover rate, that is probability that one individual will
become parent. There are many methods for crossover
operator [13], which are: Position Based Crossover (PBX),
Order Based Crossover (OBX), One Point Crossover (1PX),
Cycle Crossover Operator (CX), Order Crossover (OX),
Linier Order Crossover (LOX), Partially Mapped Crossover
(PMX), Two Point Crossover Version 1 (2PX_V1), Two
Point Crossover Version 2 (2PX_V2), and Two Point
Crossover Version 3 (2PX_V3).

C. Mutation
The objective of mutation operator is to prevent search

space fall into local optima. It hopes that by avoiding local
optima, it can give near global optima result. Mutation process
is an optional process for chromosome. That is why the
probability (mutation rate) number is very small. There are
two common type of mutations, which are:

1) Inversion

Inversion mutation as in Fig. 3 is method to randomly
change the position of gene with other gene in chromosome.

Fig. 3 Mutation Inversion

2) Pairwise Interchange

Pairwise interchange as in Fig. 4 is method to change the
position between two adjacent genes in chromosome.

Fig. 4 Mutation Pairwise

Genetic Algorithm Step:
STEP 1: Generate initial population P(0) randomly and set
 i=0
STEP 2: REPEAT
 a. Evaluate the fitness function of each individual and
 select the fittest individual from the population that

have:

iP <

∑
=

= n

j
j

f
f

f

f
P

1

 (10)

 b. Apply crossover according to crossover rate.
 c. Apply mutation according to mutation rate.
 d. produce offspring or child until the population is
 filled up.
STEP 3: UNTIL Stopping criteria is satisfied.

In Fig. 5, scheme of GA is presented. From the scheme, not

every new individual, resulted from crossover operation, will
be mutated. Only some new individual will be mutated depend
on its mutation rate.

Fig. 5 GA scheme

Maximum 70% populations of next generation are chosen

by roulette wheel method using fitness function (9). The rest
of the populations will be filled by crossover operation that is
done from crossing two random individuals, according to
crossover rate, from populations of the last generation. The
crossover processes will be iteratively done until individuals
in the next generation reach the population size. Subsequently,
mutation operation will be done to some individuals in new
generation according to its mutation rate.

IV. SIMULATED ANNEALING
SA is one of improvement heuristic search. SA is more

deterministic compared to GA. SA starts from one initial
solution and, in each iteration, new solution will be generated
to improve the solution. SA allows accepting bad solution in
certain probability, called probability acceptance test. With

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:2, 2010

137

probability acceptance test, it can avoid local optima while
searching around the neighborhood. SA uses interchange
operator to generate its neighborhood. There are two most
common interchange operators, which are SWAP and
Pairwise Interchange. In GA, these two operators are used to
escape from local optima instead of generating neighborhood.

In the beginning, Final, Current, and Candidate have
identical initial solution. Then, in each iteration, current
solution is compared with Final solution that has been
recorded, if current solution is better than the final solution,
then current solution will become candidate solution, if it is
not, with some probability, this worst current solution can still
be acceptable. The process continues until stopping criteria is
reached.

Simulated Annealing Algorithm:

Let:
 Sf = Final Solution found so far.
 Sc = Candidate Solution.
 Sk = Solution on Kth Iteration.
 F(Sf) = Value of Final Solution.
 F(Sc) = Value of Candidate Solution.
 F(Sk) = Value of Kth Iteration.
 P(F(Sk), F(Sc)) = Probability from moving from Sk

schedule to Sc Schedule.

]1,0[
:

)()(

==×=

−

ααββ

β

andparametercooling
where
e

ScFSkF

 (11)

STEP 1: Set k = 1
 Set β1 and α
 Set initial solution S1
 Set Sf = S1
 Set F(Sf) = F(S1)
STEP 2: Generate K+1 solution (using SWAP or Pairwise
 Interchange)
 Evaluate F(Sk)
 IF F(Sk) < F(Sf) which is better THEN
 Sc = Sk
 Sf = Sk
 F(Sf) = F(Sk)
 ELSE
 Calculate P(F(Sk), F(Sc))
 Generate Random Number U[0,1]
 IF U<P(F(Sk),F(Sc)) THEN
 Sc = Sk
 ELSE
 Sk+1 = Sk
STEP 3: Set k = k+1 and β = β x α
 IF k = N THEN STOP
 ELSE GOTO STEP 2

V. TABU SEARCH
TS has similar characteristic with SA which is starting from

one initial solution and iteratively generate new solution to
search through its neighborhood [9]. In TS, acceptance of
moving to other solution in neighborhood is not probabilistic
like SA, but deterministic. Records of move, called Tabu
move, are kept in a list, called Tabu list as in Fig. 6. The
function of Tabu list is to remember moves that have been
done, so that it will avoid identical move.

Fig. 6 Tabu List

Similar to SA, TS uses interchange operator to generate
neighborhood. There are two common operators: SWAP and
Pairwise Interchange. In each iteration, TS does more than
one neighborhood generation. This is called Inner Step.
Examples of three inner steps are shown in Fig. 7.

Fig. 7 Example of inner step

Before generating the neighborhood, TS move will be
checked in tabu list. After new solution neighborhoods
generated, the best solution on its iteration will be chosen as
the parent for the next solutions generation.

Tabu Search Algorithm:
STEP 1: Initialization.
 Set k = 1
 Generate initial solution S0
 Set S1 = S0, then G(S1) = G(S0)
STEP 2: Moving.
 Select Sc from neighborhood of Sk
 IF move from Sk to Sc is already in Tabu list THEN
 Sk+1 = Sk,
 GOTO STEP 3
 END IF
 IF G(Sc) < G(S0) THEN
 S0 = SC
 END IF
 Delete the Tabu move in the bottom of Tabu list
 Add new Tabu Move in the top of Tabu list

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:2, 2010

138

 GOTO STEP 3
STEP 3: Next Iteration.
 Set k = k + 1
 IF k = N THEN
 STOP
 ELSE
 GOTO STEP 2
 END IF

VI. EXPERIMENT RESULT
This experiment uses data from [15] that is originally

Tailard’s problem set. These benchmark problems consist of
12 problem sets. Each problem sets consist 10 problem
instances. On each problem instances, 14 solutions will be
presented resulted from 10 GA solutions, 2 SA solutions, and
2 TS solutions. 10’s GA solutions are resulted from 10
different crossover operations. Crossover operator is chosen to
differentiate the result because crossover operators are the
way GA generated new neighborhood or solutions. Crossover
operators that are used: PBX, OBX, 1PX, CX, OX, LOX,
PMX, 2PX_V1, 2PX_V2, and 2PX_V3. Pairwise interchange
is used for GA mutation operation. SWAP and pairwise
interchange are neighborhood generation method for SA and
TS to get different result. Then, total number of run are 12
Problem sets × 10 problems instances on each problem set ×
14 different solution approach = 1680 number of runs.

 Naming system of the problem set are
tai_NumberOfJobs_NumberOfStages. i.e. tai_50_20a is HFS
problem with 500 jobs, 20 stages, and subtype problem a. All
stages of the problem consist of two identical parallel
machines.

Parameters setting for GA are population size = 100,
Number of generation = 100, Crossover ratio = 0.9, and
Mutation ratio = 0.1. Parameters setting for SA are Cooling
parameter = 100, α =0.8, and number of iterations = 1000.
Parameters setting for TS are Tabu List size = 20, Number of
inner steps = 5, and number of iteration = 1000. Computer
specifications to run all problems are Intel Core 2 Duo 2 GHz,
1GB DDR2 Memory, 80 GB hardisk, and Windows XP SP2
operating system.

Results from run of all problem sets are shown in
TABLEIA, IB, and IC. The results are average result from 10
problems in each problem set. The run results consist of 14
solutions of average Cmax and average computation time
from each problem set.

In TABLEII, the best solutions of Cmax from each problem
set are presented. On each problem set, method that gives the
best result is shown as well as result of percent (%)
improvement compared with the other methods. TS gives 6
best results, SA gives 3 best results, and GA gives 3 best
results. All the best results of TS and SA are resulted from
SWAP neighborhood generation. And, the best results from
GA are mostly resulted from OX, PMX, and 2PX_V2
crossover. TS gives most of the best result because it uses 5
inner steps to generate neighborhoods in each iteration. It will

make TS can widely explore feasible solution space. It
increases the probability to find optimal solution. In GA,
crossover rate used is 0.9; it means that 90% probability of
gene will become parents to create new population. It makes
feasible solution space, explored by GA, become narrow so
that it reduces the probability to find optimal solution.

In Fig. 8, comparison of computation time is shown. SA has
the minimum computation time and GA has the maximum
computation time. In this experiment, TS computation time is
between SA and GA computation time. For SA, computation
time only depends on problem size and number of iteration.
But, for GA and TS, computation time is not merely
depending on problem size and number of iteration (in GA,
number of generation). GA computation time also depends on
population size and TS computation time also depends on
number of inner steps. From the graph in Fig. 8, TS algorithm
is efficient to solve the problem in computation time and
effective to solve HFS problems.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:2, 2010

139

TABLE IA
 AVERAGE CMAX AND COMPUTATIONAL TIME

GA PBX GA OBX GA CX GA OX GA 1PX
Problem Set

Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s)

tai_20_5 744.4 32.2 767.5 34.6 745.2 30.9 746.1 31.3 755.7 31.4
tai_20_10 1046.3 42.6 1069.4 42.7 1040.1 43.6 945.6 44.6 1042.3 41.9
tai_20_20 1656.8 74.5 1682.9 74.8 1659.3 85.8 1656.5 146.9 1660.8 85.4
tai_50_5 1532.4 152.2 1552.4 125.9 1525.8 135.9 1520 134.6 1527.3 137.2
tai_50_10 1918.5 158.7 1953.1 168 1913.1 159 1913.9 161.8 1914.4 175.7
tai_50_20 2515.5 225.6 2647.6 297.8 2606 210.7 2605.8 210.6 2617.6 347.8
tai_100_5 2802.7 490.9 2854.4 493.8 2801.2 456.9 2799.7 651.4 2808.6 574.4
tai_100_10 3324.6 550.2 3360 543 3304.3 544 3312.6 571.7 3309.3 735.7
tai_100_20 4123.8 594.4 4170.7 626.7 4116.4 597.1 4113.2 604.2 4127.6 591.4
tai_200_10 5962.8 1573.1 6042.9 1531.6 5952.3 1619.2 5952.6 1587.9 5971.4 1638.6
tai_200_20 6926.3 1814.5 7001.8 1772.5 6922.4 1823.8 6931.2 1840.1 6922.3 1901.6
tai_500_20 15041 9037.5 15134 9107 14986 9107 15024 9117 15033.5 8917

TABLE IB

AVERAGE CMAX AND COMPUTATIONAL TIME CONTINUED
GA LOX GA PMX GA 2PX_V1 GA 2PX_V2 GA 2PX_V3 Problem Set

Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s)

tai_20_5 751.3 30.8 748.4 37.1 755.7 36.2 750.2 30.6 750.8 34.4
tai_20_10 1042.5 45.4 1047 43.7 1053.9 40.6 1042.1 49.1 1048.3 44.9
tai_20_20 1663.2 173 1662.1 74.6 1684.7 85.5 1663.3 143.1 1661.5 98.7
tai_50_5 1536.7 135.5 1520.3 135.3 1545.4 313.9 1515.1 205.7 1528.9 132.6
tai_50_10 1923.7 172.2 1919.5 180.3 1919.6 191.7 1905.1 171 1917.8 167.7
tai_50_20 2615.3 222.8 2505.8 217.8 2622.2 225.7 2605.7 230.5 2608 209
tai_100_5 2827.3 434.1 2805.1 458.6 2815.3 525.8 2812.8 524 2800.4 541.1
tai_100_10 3326.8 492.8 3314.2 515.3 3315.6 480.9 3314.9 487.8 3307.8 488.9
tai_100_20 4129.2 605.4 3752.6 597 4125.3 631.2 4121.2 631.2 4120.5 607.2
tai_200_10 5996.6 1565.2 5948.8 1871.4 5973.2 1737.4 5940.1 1722.5 5962.6 1777.3
tai_200_20 6922.3 1801.9 6909.6 1748.4 6948.3 1734.1 6944.6 1762.2 6943.6 1766.4
tai_500_20 15063.5 9017 14995 9147.5 15029 9017.5 14988 9013 14957 9023

TABLE IC

AVERAGE CMAX AND COMPUTATIONAL TIME CONTINUED
SA Swap SA Pairwise TS Swap TS Pairwise Problem Set

Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s)

tai_20_5 709.7 3.7 784.8 8.7 731.9 16.8 830.6 2.3
tai_20_10 996.1 8.1 1104.3 5 1032.6 16.4 1118.9 2.6
tai_20_20 1650.8 11.8 1702.7 7.5 1654.9 31.8 1775.4 1.5
tai_50_5 1456.9 22.3 1596.1 30.9 1452.2 67.8 1636.2 64.3
tai_50_10 1845.2 20.1 1967.6 20.9 1810.3 76.3 2001.6 50.4
tai_50_20 2508.6 42.7 2714.9 22.9 2527.7 101.2 2737.2 64.5
tai_100_5 2714.3 49.6 2933.1 55.7 2586.6 208.5 2941.5 171.4
tai_100_10 3196 123.9 3367.4 56.5 3138.9 358.2 3439.2 206.3
tai_100_20 4037.2 65.5 4195.9 91.6 3990.8 276.6 4233 237.1
tai_200_10 5759.8 168.4 6104 172.8 5658.1 783.5 6160.8 752.2
tai_200_20 6820.9 212.8 7044.1 243.1 6770.2 870.7 7066.8 854.5
tai_500_20 14679 827 15233 849 14833 3041.5 15268 3049.5

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:2, 2010

140

TABLE II
THE BEST RESULT FROM EACH PROBLEM SET

Problem Set Method The Best
Cmax Time(s) % improvement

from GA
% improvement

from SA
% Improvement

from TS

tai_20_5 SA SWAP 709.7 3.7 4.60% - 3.03%

tai_20_10 GA OX 945.6 44.6 - 5.06% 8.42%

tai_20_20 SA SWAP 1650.8 11.8 0.34% - 0.24%

tai_50_5 TS SWAP 1452.2 67.8 4.15% 0.32% -

tai_50_10 TS SWAP 1810.3 76.3 4.97% 1.89% -

tai_50_20 GA PMX 2505.8 217.8 - 0.11% 0.87%

tai_100_5 TS SWAP 2585.6 208.5 7.61% 4.70% -

tai_100_10 TS SWAP 3138.9 358.2 5.21% 1.78% -

tai_100_20 GA PMX 3752.6 597 - 7.04% 5.96%

tai_200_10 TS SWAP 5658.1 783.5 4.74% 1.76% -

tai_200_20 TS SWAP 6770.2 870.7 2.01% 0.74% -

tai_500_20 SA SWAP 14679 827 8.00% - 1.03%

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500

0 1 2 3 4 5 6 7 8 9 10 11 12

GA PBX

GA OBX

GA CX

GA OX

GA 1PX

GA LOX

GA PMX

GA 2PX_V1

GA 2PX_V2

GA 2PX_V3

SA SWAP

SA Pairwise

TS SWAP

TS Pairwise

GA

TS

SA

Time(s)

Tai_20_5 Tai_20_10 Tai_20_50 Tai_50_5 Tai_50_10 Tai_50_20 Tai_100_5 Tai_100_10 Tai_100_20 Tai_200_10 Tai_200_20 Tai_500_20

Problem Type

GA

TS

SA

Fig. 8 Comparison of computation time

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:2, 2010

141

VII. CONCLUSION
In this paper, we have presented three improvement

heuristic searches, which are GA, SA, and TS, to solve HFS
scheduling problems with parallel machines that is known to
be NP-hard. The problem consists of two identical parallel
machines in each stage. Experiment uses problem from tailard
[15] that has problem size ranging from 20 jobs to 500 jobs.
Effectiveness and efficiency comparisons of the three
improvement heuristic searches are presented. From the
experiment result, TS gives effective result and efficient
computation time to solve HFS scheduling problems.

VIII. REFERENCES
[1] C. Y. Lee, L. Lei, M. Pinedo, “Current Trends in Deterministic

Scheduling,” Annals of Operations Research, Vol. 70, pp. 1-41, 1997.
[2] M. L. Pinedo, “Scheduling: Theory, Algorithms, and Systems 3rd

Edition,” New York: Springer Science and Business Media, 2008.
[3] D. P. Ronconi, L. R. R. Henriques, “Some Heuristic Algorithm for Total

Tardiness Minimization in a Flowshop with Blocking,”OMEGA The
International Journal of Management Science, vol. 37, pp. 272-281,
2009.

[4] E. Nowicki, C. Smutnicki,, “The Flow Shop with Parallel Machines: A
Tabu Search Approach,” European Journal of Operational Research, vol.
106, pp. 226-253, 1998.

[5] S. A. Brah, L. L. Loo, “Heuristic for scheduling in a flow shop with
multiple processors,” European Journal of Operation Research, vol. 113,
pp. 113-122, 1999.

[6] C. Kahraman, O. Engin, I. Kaya, M. K. Yilmaz, “An Application of
Effective Genetic Algorithm for Solving Hybrid Flowshop Scheduling
Problems,” International Journal of Computational Intelligence Systems,
vol. 1, No. 2, pp. 134-147, 2008.

[7] C. Koulamas, “A New Constructive Heuristic for The Flowshop
Scheduling Problem,” European Journal of Operational Research, vol.
105, pp. 66-71, 1998.

[8] D. P. Ronconi, “A Note on Constructive Heuristic for The Flowshop
Problem with Blocking,” International Journal of Production Economics,
vol. 87, pp. 39-48, 2004.

[9] H. Zhou, W. Cheung, L. C. Leung, “Minimizing Weighted Tardiness of
Job-Shop Scheduling using Hybrid Genetic Algorithm,” European
Journal of Operation Research, vol. 194, pp. 637-649, 2009.

[10] C. Low, Y. Yeh, “Genetic Algorithm-Based Heuristics for An Open
Shop Scheduling Problem with Setup, Processing, and Removal Times
Separated,” Robotics and Computer-Integrated Manufacturing, vol. 25,
pp. 314-322, 2009.

[11] F. Chou, “An Experienced Learning Genetic Algorithm to Solve The
Single Machine Total Weighted Tardiness Scheduling Problem,” Expert
System with Application, vol. 36, pp. 3857-3865, 2009.

[12] C. H. Martin, “A Hybrid Genetic Algorithm / Mathematical
Programming Approach to The Multi-Family Flow Shop Scheduling
Problem with Lot Streaming,” OMEGA: The International Journal of
Management Science, vol. 37, pp. 126-137, 2009.

[13] T. Kellegoz, B. Toklu, J. Wilson, “Comparing Efficiencies of Genetic
Crossover Operators for One Machine Total Weighted Tardiness
Problem,” Applied Mathematics and Computation, vol. 199, pp. 590-
598, 2008.

[14] Al-Harkan, I. M., 1997. “On Merging Sequencing and Scheduling
Theory with Genetic Algorithms to Solve Stochastic Job Shops”,
Dissertation of doctor of philosophy, University of Oklahoma.

[15] http://ina.eivd.ch/Collaborateurs/etd/problemes.dir/ordonnancement.dir/
ordonnancement.html.

