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Abstract—This study compares three meta heuristics to minimize 

makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem 
with Parallel Machines. This problem is known to be NP-Hard. This 
study proposes three algorithms among improvement heuristic 
searches which are: Genetic Algorithm (GA), Simulated Annealing 
(SA), and Tabu Search (TS). SA and TS are known as deterministic 
improvement heuristic search. GA is known as stochastic 
improvement heuristic search. A comprehensive comparison from 
these three improvement heuristic searches is presented. The results 
for the experiments conducted show that TS is effective and efficient 
to solve HFS scheduling problems. 
 

Keywords—Flow Shop, Genetic Algorithm, Simulated 
Annealing, Tabu Search.  

I. INTRODUCTION 

CHEDULING is allocating limited resources (machine, 
gate, people, etc) to certain task to optimize objective 

functions [1]. Hybrid or Flexible Flow Shop (HFS) is one kind 
of scheduling problem. HFS is combination of Parallel 
machine and Flow shop scheduling [2]-[4]. In addition, it is a 
generalization of flow shop problem [5]. In HFS, jobs are 
processed through some stages l. in each stage l, there are two 
or more identical machine i that can process the job. Fig. 1 
shows HFS scheme. The job in each stage will be processed 
by every machine that idle. The machines have capacity 
constraint so that only one job machine can process at a time.  
 

 
Fig. 1 n-stages 2-parallel machine Hybrid Flow Shop 
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The notation for this scheduling problem is as follows: 
HFm | perm | Cmax [2]. The meaning of this notation is as 
follows: hybrid flow shop scheduling environment with all 
jobs have identical sequence and minimizing total time to 
finish all jobs is the objective to be solved. Mathematical 
formulation for HFS is as follows as given in [6]: 
Notation of the HFS model: 

J: The set of the job to be scheduled 
|J| = N: number of jobs 
s: Number of stages that all jobs will be processed with the  
    same order. 
j: Subscript letter representing job j. 
l: Subscript letter representing stage l. 
i: Subscript letter representing machine i. 

:lm  Number of identical parallel machine in stage l. 
B: A very large positive number. 

:jlS  Starting time of job j in stage l. 

,,,, Jjjsll ∈∀∈∀  

miJjjsll
otherwise

lstageatimachineonisjjobif
X jli

..,..........,1,,,,
0

.,1

=∈∀∈∀
⎩
⎨
⎧

=
 

 

miJjjsll
otherwise

lstageonimachineongjobbeforeisfjobif
Y fgli

..,..........,1,,,,
0
,1

=∈∀∈∀
⎩
⎨
⎧

=

    :ljp  Processing time of job j at stage l. 

,,,, Jjjsll ∈∀∈∀  
 

Objective Function:  
    QMinimize  
Subject to: 
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Explanation of the model are as follows: (1) indicates that 

Q is the completion time of the last job j at the last stage s. (2) 
indicates that it is impossible for every job j to be processed at 
stage l+1 before every job j is completed at stage l, (3), (4), 
and (5) are the processing order for jobs f and g on machine i 
at stage l. These constraints are defined to guarantee that one 
machine can only process one job at any time, (6) guarantee 
that one job can only be processed on one machine at any 
time, (7) provides non-negativity constraint for variable S, (8) 
restricts that the value of X and Y only have 0 or 1. 

To solve HFS problem, we presented three improvement 
heuristic searches [1], which are Genetic Algorithm (GA), 
Simulated Annealing (SA), and Tabu Search (TS). We use 
these improvement heuristic searches to solve identical 
problem instances to directly compare performance of these 
three searches algorithm. The problems to be solved consist of 
small size problem to big size problem that are considerable 
NP-hard to be analytically solved. By using these searches, 
the problem can be solved in polynomial time computation. 
From the experiment result, performances of these three 
searches are studied. 

The structures of this paper are organized as follows. In 
section II, description of improvement heuristic search, as one 
kind of heuristic search, will be presented. Detail of 
improvement heuristic search, which are GA, SA, and TS will 
be presented in section III, IV, and V respectively. Experiment 
result will be presented in section VI and closed by conclusion 
in section VII. 

II. IMPROVEMENT HEURISTIC SEARCH 
In scheduling problem, there are three classifications of 

search algorithms, which are exact algorithms, approximation 
algorithms, and heuristic algorithms as in Fig. 2. Exact 
algorithm is a complete enumeration search that searches all 
feasible solution in solution region. This algorithm will give 
optimum solution. Exact algorithm has limited implementation 
regarding to computational time for large size problem. 
Branch and bound is kind of exact algorithm. Approximation 
algorithm is a search algorithm that uses mathematical 
formulation to guide the search direction to find good feasible 
solution. Heuristic algorithm is a search algorithm that uses 
certain rule to search feasible solution in solution region to 
find good feasible solution. 

 
Fig. 2 Classification of search algorithm in scheduling problem 
 
Heuristic search consist of two groups, which are 

construction heuristic and improvement heuristic [7]-[8]. 
Construction heuristic is heuristic search that start from empty 
schedule solution set and, in each iteration, one job is added 
into schedule solution set until all jobs are scheduled. 
Improvement heuristic search is heuristic search that start 
from initial complete schedule, generated randomly or with 
certain dispatching rule and the schedule solution set is 
improved in each iteration until reach certain stopping criteria. 
GA, SA, and TS are classified as improvement heuristic 
search. 

The background to use approximation search or heuristic 
search is significantly less computational time even though 
this search can only give good solution, optimum if we luck. 
Approximation and heuristic search is effective for large scale 
problem size, especially for problems that are NP-hard if it is 
solved using exact algorithm. 

III. GENETIC ALGORITHM 
GA was found by John Holland. GA is stochastic heuristic 

technique that starts from many initial solutions, called 
population, and using generation to create new population. 
Population is filled by individual in term of chromosome. 
Each element in chromosome is called gene. Each gene 
represents job and the position of gene represents sequence of 
the job in schedule.  

To generate new population, GA makes selection from 
current population to choose the best individual in current 
population and uses operators to create the new population on 
new generation. The operators are: Crossover and Mutation. 
By crossover operation, GA generates the neighborhood to 
explore new feasible solution [6], [9]-[12], [14]. 

 

A.  Selection 
This process chooses the best individual with fitness 

function. The fitness function is:                                                  
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B. Crossover 
Crossover is GA operator to generate new individual to fill 

the population of the new generation. Parents are randomly 
chosen from individuals from last generation and selected by 
crossover rate, that is probability that one individual will 
become parent. There are many methods for crossover 
operator [13], which are: Position Based Crossover (PBX), 
Order Based Crossover (OBX), One Point Crossover (1PX), 
Cycle Crossover Operator (CX), Order Crossover (OX), 
Linier Order Crossover (LOX), Partially Mapped Crossover 
(PMX), Two Point Crossover Version 1 (2PX_V1), Two 
Point Crossover Version 2 (2PX_V2), and Two Point 
Crossover Version 3 (2PX_V3). 

C.  Mutation 
The objective of mutation operator is to prevent search 

space fall into local optima. It hopes that by avoiding local 
optima, it can give near global optima result. Mutation process 
is an optional process for chromosome. That is why the 
probability (mutation rate) number is very small. There are 
two common type of mutations, which are: 

 
1)  Inversion 

Inversion mutation as in Fig. 3 is method to randomly 
change the position of gene with other gene in chromosome. 

 

 
Fig. 3 Mutation Inversion 

 
2) Pairwise Interchange 

Pairwise interchange as in Fig. 4 is method to change the 
position between two adjacent genes in chromosome. 

 

 
Fig. 4 Mutation Pairwise 

 
Genetic Algorithm Step: 
STEP 1: Generate initial population P(0) randomly and set    
               i=0 
STEP 2: REPEAT  
       a. Evaluate the fitness function of each individual and  
           select the fittest  individual from the population that  

have: 

iP <
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                    (10) 

   b. Apply crossover according to crossover rate. 
   c. Apply mutation according to mutation rate. 
   d. produce offspring or child until the population is  
          filled up. 
STEP 3: UNTIL Stopping criteria is satisfied. 
 
In Fig. 5, scheme of GA is presented. From the scheme, not 

every new individual, resulted from crossover operation, will 
be mutated. Only some new individual will be mutated depend 
on its mutation rate. 

 

 
Fig. 5 GA scheme 

 
Maximum 70% populations of next generation are chosen 

by roulette wheel method using fitness function (9). The rest 
of the populations will be filled by crossover operation that is 
done from crossing two random individuals, according to 
crossover rate, from populations of the last generation. The 
crossover processes will be iteratively done until individuals 
in the next generation reach the population size. Subsequently, 
mutation operation will be done to some individuals in new 
generation according to its mutation rate. 

IV. SIMULATED ANNEALING 
SA is one of improvement heuristic search. SA is more 

deterministic compared to GA. SA starts from one initial 
solution and, in each iteration, new solution will be generated 
to improve the solution. SA allows accepting bad solution in 
certain probability, called probability acceptance test. With 
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probability acceptance test, it can avoid local optima while 
searching around the neighborhood. SA uses interchange 
operator to generate its neighborhood. There are two most 
common interchange operators, which are SWAP and 
Pairwise Interchange. In GA, these two operators are used to 
escape from local optima instead of generating neighborhood. 

In the beginning, Final, Current, and Candidate have 
identical initial solution. Then, in each iteration, current 
solution is compared with Final solution that has been 
recorded, if current solution is better than the final solution, 
then current solution will become candidate solution, if it is 
not, with some probability, this worst current solution can still 
be acceptable. The process continues until stopping criteria is 
reached. 

 
Simulated Annealing Algorithm: 

Let: 
 Sf = Final Solution found so far. 
 Sc = Candidate Solution. 
 Sk = Solution on Kth Iteration. 
 F(Sf) = Value of Final Solution. 
 F(Sc) = Value of Candidate Solution. 
 F(Sk) = Value of Kth Iteration. 
 P(F(Sk), F(Sc)) = Probability from moving from Sk 

schedule to Sc Schedule.       
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:

)()(

==×=

−

ααββ

β

andparametercooling
where
e

ScFSkF
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STEP 1: Set k = 1 
   Set β1 and α 
   Set initial solution S1 
   Set Sf  =  S1 
   Set F(Sf) = F(S1) 
STEP 2: Generate K+1 solution (using SWAP or Pairwise  
               Interchange) 
       Evaluate F(Sk) 
    IF F(Sk) < F(Sf) which is better THEN 
  Sc = Sk 
  Sf = Sk 
   F(Sf) = F(Sk) 
    ELSE 
  Calculate P(F(Sk), F(Sc)) 
  Generate Random Number U[0,1] 
  IF U<P(F(Sk),F(Sc)) THEN 
   Sc = Sk 
  ELSE 
   Sk+1 = Sk 
STEP 3: Set k = k+1 and β = β x α 
   IF k = N THEN STOP 
   ELSE  GOTO STEP 2 

V. TABU SEARCH 
TS has similar characteristic with SA which is starting from 

one initial solution and iteratively generate new solution to 
search through its neighborhood [9]. In TS, acceptance of 
moving to other solution in neighborhood is not probabilistic 
like SA, but deterministic. Records of move, called Tabu 
move, are kept in a list, called Tabu list as in Fig. 6. The 
function of Tabu list is to remember moves that have been 
done, so that it will avoid identical move.  

 

 
Fig. 6 Tabu List 

Similar to SA, TS uses interchange operator to generate 
neighborhood. There are two common operators: SWAP and 
Pairwise Interchange. In each iteration, TS does more than 
one neighborhood generation. This is called Inner Step. 
Examples of three inner steps are shown in Fig. 7.  

 

 
Fig. 7 Example of inner step 

Before generating the neighborhood, TS move will be 
checked in tabu list. After new solution neighborhoods 
generated, the best solution on its iteration will be chosen as 
the parent for the next solutions generation.  
 

Tabu Search Algorithm: 
STEP 1: Initialization. 
   Set k = 1 
   Generate initial solution S0 
   Set S1 = S0, then G(S1) = G(S0) 
STEP 2: Moving. 
      Select Sc from neighborhood of Sk 
   IF move from Sk to Sc is already in Tabu list THEN 
    Sk+1 = Sk,  
  GOTO STEP 3 
   END IF 
   IF G(Sc) < G(S0) THEN 
  S0 = SC 
   END IF 
   Delete the Tabu move in the bottom of Tabu list 
   Add new Tabu Move in the top of Tabu list 
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  GOTO STEP 3 
STEP 3: Next Iteration. 
   Set k = k + 1 
      IF k = N THEN 
  STOP 
   ELSE  
  GOTO STEP 2 
   END IF 

VI. EXPERIMENT RESULT 
This experiment uses data from [15] that is originally 

Tailard’s problem set. These benchmark problems consist of 
12 problem sets. Each problem sets consist 10 problem 
instances. On each problem instances, 14 solutions will be 
presented resulted from 10 GA solutions, 2 SA solutions, and 
2 TS solutions. 10’s GA solutions are resulted from 10 
different crossover operations. Crossover operator is chosen to 
differentiate the result because crossover operators are the 
way GA generated new neighborhood or solutions. Crossover 
operators that are used: PBX, OBX, 1PX, CX, OX, LOX, 
PMX, 2PX_V1, 2PX_V2, and 2PX_V3. Pairwise interchange 
is used for GA mutation operation. SWAP and pairwise 
interchange are neighborhood generation method for SA and 
TS to get different result. Then, total number of run are 12 
Problem sets ×  10 problems instances on each problem set ×  
14 different solution approach = 1680 number of runs. 

 Naming system of the problem set are 
tai_NumberOfJobs_NumberOfStages. i.e. tai_50_20a is HFS 
problem with 500 jobs, 20 stages, and subtype problem a. All 
stages of the problem consist of two identical parallel 
machines. 

Parameters setting for GA are population size = 100, 
Number of generation = 100, Crossover ratio = 0.9, and 
Mutation ratio = 0.1. Parameters setting for SA are Cooling 
parameter = 100, α =0.8, and number of iterations = 1000. 
Parameters setting for TS are Tabu List size = 20, Number of 
inner steps = 5, and number of iteration = 1000. Computer 
specifications to run all problems are Intel Core 2 Duo 2 GHz, 
1GB DDR2 Memory, 80 GB hardisk, and Windows XP SP2 
operating system. 

Results from run of all problem sets are shown in 
TABLEIA, IB, and IC. The results are average result from 10 
problems in each problem set. The run results consist of 14 
solutions of average Cmax and average computation time 
from each problem set.  

In TABLEII, the best solutions of Cmax from each problem 
set are presented. On each problem set, method that gives the 
best result is shown as well as result of percent (%) 
improvement compared with the other methods. TS gives 6 
best results, SA gives 3 best results, and GA gives 3 best 
results. All the best results of TS and SA are resulted from 
SWAP neighborhood generation. And, the best results from 
GA are mostly resulted from OX, PMX, and 2PX_V2 
crossover. TS gives most of the best result because it uses 5 
inner steps to generate neighborhoods in each iteration. It will 

make TS can widely explore feasible solution space. It 
increases the probability to find optimal solution. In GA, 
crossover rate used is 0.9; it means that 90% probability of 
gene will become parents to create new population. It makes 
feasible solution space, explored by GA, become narrow so 
that it reduces the probability to find optimal solution.  

In Fig. 8, comparison of computation time is shown. SA has 
the minimum computation time and GA has the maximum 
computation time. In this experiment, TS computation time is 
between SA and GA computation time. For SA, computation 
time only depends on problem size and number of iteration. 
But, for GA and TS, computation time is not merely 
depending on problem size and number of iteration (in GA, 
number of generation). GA computation time also depends on 
population size and TS computation time also depends on 
number of inner steps. From the graph in Fig. 8, TS algorithm 
is efficient to solve the problem in computation time and 
effective to solve HFS problems. 
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TABLE IA 
 AVERAGE CMAX AND COMPUTATIONAL TIME

GA PBX GA OBX GA CX GA OX GA 1PX 
Problem Set 

Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s) 

tai_20_5 744.4 32.2 767.5 34.6 745.2 30.9 746.1 31.3 755.7 31.4 
tai_20_10 1046.3 42.6 1069.4 42.7 1040.1 43.6 945.6 44.6 1042.3 41.9 
tai_20_20 1656.8 74.5 1682.9 74.8 1659.3 85.8 1656.5 146.9 1660.8 85.4 
tai_50_5 1532.4 152.2 1552.4 125.9 1525.8 135.9 1520 134.6 1527.3 137.2 
tai_50_10 1918.5 158.7 1953.1 168 1913.1 159 1913.9 161.8 1914.4 175.7 
tai_50_20 2515.5 225.6 2647.6 297.8 2606 210.7 2605.8 210.6 2617.6 347.8 
tai_100_5 2802.7 490.9 2854.4 493.8 2801.2 456.9 2799.7 651.4 2808.6 574.4 
tai_100_10 3324.6 550.2 3360 543 3304.3 544 3312.6 571.7 3309.3 735.7 
tai_100_20 4123.8 594.4 4170.7 626.7 4116.4 597.1 4113.2 604.2 4127.6 591.4 
tai_200_10 5962.8 1573.1 6042.9 1531.6 5952.3 1619.2 5952.6 1587.9 5971.4 1638.6 
tai_200_20 6926.3 1814.5 7001.8 1772.5 6922.4 1823.8 6931.2 1840.1 6922.3 1901.6 
tai_500_20 15041 9037.5 15134 9107 14986 9107 15024 9117 15033.5 8917 

 
TABLE IB 

AVERAGE CMAX AND COMPUTATIONAL TIME CONTINUED 
GA LOX GA PMX GA 2PX_V1 GA 2PX_V2 GA 2PX_V3 Problem Set 

Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s) 

tai_20_5 751.3 30.8 748.4 37.1 755.7 36.2 750.2 30.6 750.8 34.4 
tai_20_10 1042.5 45.4 1047 43.7 1053.9 40.6 1042.1 49.1 1048.3 44.9 
tai_20_20 1663.2 173 1662.1 74.6 1684.7 85.5 1663.3 143.1 1661.5 98.7 
tai_50_5 1536.7 135.5 1520.3 135.3 1545.4 313.9 1515.1 205.7 1528.9 132.6 
tai_50_10 1923.7 172.2 1919.5 180.3 1919.6 191.7 1905.1 171 1917.8 167.7 
tai_50_20 2615.3 222.8 2505.8 217.8 2622.2 225.7 2605.7 230.5 2608 209 
tai_100_5 2827.3 434.1 2805.1 458.6 2815.3 525.8 2812.8 524 2800.4 541.1 
tai_100_10 3326.8 492.8 3314.2 515.3 3315.6 480.9 3314.9 487.8 3307.8 488.9 
tai_100_20 4129.2 605.4 3752.6 597 4125.3 631.2 4121.2 631.2 4120.5 607.2 
tai_200_10 5996.6 1565.2 5948.8 1871.4 5973.2 1737.4 5940.1 1722.5 5962.6 1777.3 
tai_200_20 6922.3 1801.9 6909.6 1748.4 6948.3 1734.1 6944.6 1762.2 6943.6 1766.4 
tai_500_20 15063.5 9017 14995 9147.5 15029 9017.5 14988 9013 14957 9023 

 
TABLE IC 

AVERAGE CMAX AND COMPUTATIONAL TIME CONTINUED 
SA Swap SA Pairwise TS Swap TS Pairwise Problem Set 

Cmax Time (s) Cmax Time (s) Cmax Time (s) Cmax Time (s) 

tai_20_5 709.7 3.7 784.8 8.7 731.9 16.8 830.6 2.3 
tai_20_10 996.1 8.1 1104.3 5 1032.6 16.4 1118.9 2.6 
tai_20_20 1650.8 11.8 1702.7 7.5 1654.9 31.8 1775.4 1.5 
tai_50_5 1456.9 22.3 1596.1 30.9 1452.2 67.8 1636.2 64.3 
tai_50_10 1845.2 20.1 1967.6 20.9 1810.3 76.3 2001.6 50.4 
tai_50_20 2508.6 42.7 2714.9 22.9 2527.7 101.2 2737.2 64.5 
tai_100_5 2714.3 49.6 2933.1 55.7 2586.6 208.5 2941.5 171.4 
tai_100_10 3196 123.9 3367.4 56.5 3138.9 358.2 3439.2 206.3 
tai_100_20 4037.2 65.5 4195.9 91.6 3990.8 276.6 4233 237.1 
tai_200_10 5759.8 168.4 6104 172.8 5658.1 783.5 6160.8 752.2 
tai_200_20 6820.9 212.8 7044.1 243.1 6770.2 870.7 7066.8 854.5 
tai_500_20 14679 827 15233 849 14833 3041.5 15268 3049.5 
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TABLE II 
THE BEST RESULT FROM EACH PROBLEM SET 

Problem Set Method The Best 
Cmax Time(s) % improvement 

from GA 
% improvement 

from SA 
% Improvement 

from TS 

tai_20_5 SA SWAP 709.7 3.7 4.60%  - 3.03% 

tai_20_10 GA OX 945.6 44.6  - 5.06% 8.42% 

tai_20_20 SA SWAP 1650.8 11.8 0.34%  - 0.24% 

tai_50_5 TS SWAP 1452.2 67.8 4.15% 0.32%  - 

tai_50_10 TS SWAP 1810.3 76.3 4.97% 1.89%  - 

tai_50_20 GA PMX 2505.8 217.8  - 0.11% 0.87% 

tai_100_5 TS SWAP 2585.6 208.5 7.61% 4.70%  - 

tai_100_10 TS SWAP 3138.9 358.2 5.21% 1.78%  - 

tai_100_20 GA PMX 3752.6 597  - 7.04% 5.96% 

tai_200_10 TS SWAP 5658.1 783.5 4.74% 1.76%  - 

tai_200_20 TS SWAP 6770.2 870.7 2.01% 0.74%  - 

tai_500_20 SA SWAP 14679 827 8.00%  - 1.03% 
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Fig. 8 Comparison of computation time
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VII. CONCLUSION 
In this paper, we have presented three improvement 

heuristic searches, which are GA, SA, and TS, to solve HFS 
scheduling problems with parallel machines that is known to 
be NP-hard. The problem consists of two identical parallel 
machines in each stage. Experiment uses problem from tailard 
[15] that has problem size ranging from 20 jobs to 500 jobs. 
Effectiveness and efficiency comparisons of the three 
improvement heuristic searches are presented. From the 
experiment result, TS gives effective result and efficient 
computation time to solve HFS scheduling problems. 
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