
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

928

Abstract—Models are placed by modeling paradigm at the center

of development process. These models are represented by languages,
like UML the language standardized by the OMG which became
necessary for development. Moreover the ontology engineering
paradigm places ontologies at the center of development process; in
this paradigm we find OWL the principal language for knowledge
representation. Building ontologies from scratch is generally a
difficult task. The bridging between UML and OWL appeared on
several regards such as the classes and associations. In this paper, we
have to profit from convergence between UML and OWL to propose
an approach based on Meta-Modelling and Graph Grammars and
registered in the MDA architecture for the automatic generation of
OWL ontologies from UML class diagrams. The transformation is
based on transformation rules; the level of abstraction in these rules
is close to the application in order to have usable ontologies. We
illustrate this approach by an example.

Keywords—ATOM3, MDA, Ontology, OWL, UML

I. INTRODUCTION

ML is the unified object oriented modeling language
which became an important standard. In the other side,

the ontologies became the backbone of the semantic web
which described formally using a standard language called
OWL (Ontology Web Language). In this work we propose an
approach for transforming UML class diagrams into ontologies
described in OWL language in order to profit from the visual
expressivity of the notation language UML and the power of
ontologies so that the information described by those diagrams
can be shared and linked with other information and we could
start dealing with the overlaps, gaps, and integration barriers
between modeling languages and get greater value out of the
information capture. In addition to that, we benefit from UML
in order to have models on ontologies to make preliminary
analyzes and OWL implementations to test ontologies
consistencies. This approach is based on the combined use of
Meta-Modelling and Graph Grammars to automatically
generate OWL ontologies from UML class diagrams. We use
the meta-modelling tool AToM3 to propose and implement a
class diagram meta-model, after that we generate automatically
a visual modelling tool to process class diagrams. We also
define a graph grammar to translate the models created in the
generated tool to OWL ontologies in RDF/XML format.

Aissam Belghiat is with the Department of Computer Science, Faculty of
Engineering, University Md Boudiaf Msila, Algeria (e-mail:
belghiatissam@gmail.com).

Mustapha Bourahla is with the Department of Computer Science, Faculty
of Engineering, University Md Boudiaf Msila, Algeria (e-mail:
m_bourahla@hotmail.fr).

The rest of the paper is organized as follows: In Section 2,
we present some related works. In Section 3, we present some
basic notions about UML, OWL, and their bridging. In Section
4, we present concepts about model transformation and graph
transformation, and then we give an overview of the AToM3
tool [1]. In Section 5, we describe our approach that
transforms UML class diagrams models to OWL ontologies
models. In Section 6, we illustrate our tool through an
example. Finally concluding remarks drawn from the work and
perspectives for further research are presented in Section 7.

II.RELATED WORKS

The idea of our work is not innovating, indeed several
works exist in the literature tackle this subject. In [14] the
authors proposed a transformation of UML to-wards DAML at
the end of the Nineties, by showing similarities and differences
between the two languages. In [15] the work of “Converting
UML to OWL Ontologies” proposed a transformation of
Ontology UML Profile (OUP) towards an ontology OWL. In
[6] the OMG notices the interest of such subject and pro-posed
in its turn the ODM which provides a profile for writing RDF
and OWL within UML, it also includes partial mappings
between UML and OWL as well as mappings amongst RDF,
RDFS, Common Logic and Topic Maps, it should be noted
that several works are carried out like answer to the call of the
OMG and gathered in the ODM that we do not evoke here. In
[9], the author presented an implementation of the ODM using
ATL language. In [5], the author used a style sheet
“OWLfromUML.xsl” applied to an XMI file (intermediate
format of UML model) to generate an ontology OWL DL
represented as RDF/XML format. And finally in [16], the
authors proposed a detailed comparison between UML and
OWL that carried out in 2008. In the other side Atom3 has
been proven to be a very powerful tool allowing the meta-
modeling and the transformations between formalisms, in
[1,17,18] we can found treatment of class diagrams, activity,
and other UML diagrams. In these works the Meta modeling
allows visual modeling and graph grammar allows the
transformation. Obviously, the heart of our work is articulated
on transformation rules and their implementation. In preceding
works, the transformation rules are more specific and reflect a
general opinion of the author often related to a specific field
which he works on (specific transformation). In this paper we
propose another vision different from that approached in
preceding works either in the proposition of transformation
rules, or in theirs implementation, this vision is to propose the
transformation rules in a level of abstraction close to the
application in order to obtain usable ontologies, because more
the selected level of abstraction is close to the application
minus ontology is reusable, but more it is usable. Then we
propose a graph grammar implementation for these rules.

Aissam Belghiat, Mustapha Bourahla

Automatic Generation of OWL Ontologies from
UML Class Diagrams Based on Meta-

Modelling and Graph Grammars

U

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

929

III. BRIDGING UML AND OWL

UML (Unified Modeling Language) is a language to
visualize, specify, build and document all the aspects and
artifacts of a software system [7]. UML defines thirteen
diagrams; some of them represent the system statically while
others show the functionalism of the system. The class diagram
is considered as the most important of object oriented
modeling, it shows the internal structure of a system and
makes it possible to provide an abstract representation of its
objects [2]. OWL (Ontology Web Language), was
recommended by the W3C in 2004, and its version 2 in 2009,
is designed for use by applications that need to process the
content of information instead of just presenting information to
humans. It allows an interpretation of the Web contents by the
machines higher than that offered by the languages XML, RDF
and diagram RDF, by providing an additional vocabulary with
a formal semantics. OWL1 offers three sublanguages with
increasing expression intended for specific communities of
developers and users: OWL Lite, OWL DL, and OWL Full
[10] whereas OWL2 defines three new profiles: OWL2 EL,
OWL2 QL, and OWL2 RL [13]. UML and OWL have
different goals and approaches; however they have some
overlaps and similarities, especially for representation of
structure (class diagrams). UML and OWL comprise some
components which are similar in several regards, like: classes,
associations, properties, packages, types, generalization and
instances [6]. UML is a notation for modeling the artifacts of
objects oriented software, whereas OWL is a notation for
knowledge representation, but both are modeling languages.

IV. MODEL TRANSFORMATION

A. Overview

Modeling and model transformation play an essential role in
the MDA “Model Driven Architecture”. MDA recommends
the massive use of models in order to allow a flexible and
iterative development, thanks to refinements and enrichments
by successive transformations. A model transformation is a set
of rules that allows passing from a meta-model to another, by
defining for each one of elements of the source their
equivalents among the elements of the target. These rules are
carried out by a transformation engine; this last reads the
source model which must be conform to the source meta-
model, and applies the rules defined in the model
transformation to lead to the target model which will be itself
conform to the target meta-model. The principle of model
transformation is illustrated by fig. 1.

Fig. 1 Model transformation principle

B. Graph Transformation

Graph transformation was largely used for the expression of
model transformation [4]. Particularly transformations of
visual models can be naturally formulated by graph
transformation, since the graphs are well adapted to describe
the fundamental structures of models.

The set of graph transformation rules constitutes what is
called the model of graph grammar. A graph grammar is a
generalization, for graphs, of Chomsky grammars. Each rule of
a graph grammar is composed of a left hand side (LHS) pattern
and of a right-hand sided (RHS) pattern.

Therefore, the graph transformation is the process to choose
a rule among the graph grammar rules, apply this rule on a
graph pattern that is matched with the LHS pattern to produce
the RHS pattern, and reiterate the process until no rule can be
applied [4].

C.AToM3

AToM3 [1] “A Tool for Multi-formalism and Meta-
Modeling” is a visual tool for model transformation, written in
Python [8] and is carried out on various platforms (Windows,
Linux, …) [18]. It implements various concepts like multi-
paradigm modeling, meta-modeling and graph grammars. It
can be also used for simulation and code generation.

AToM3 provides visual models those are conform to a
specific formalism, and uses the graph grammar to go from a
model to another.

In the next sections, we will discuss how we use AToM3 to
meta-model class diagrams and how to generate OWL models
by applying a graph grammar.

V.OUR APPROACH

Our solution is implemented in AToM3. Our choice is
quickly related to AToM3 because of the advantages which it
presents like its simplicity, and its availability.

For the realization of this application we have to propose
and to develop a meta-model of class diagram, this meta-
model allows us to edit visually and with simplicity class
diagrams on AToM3 canvas. In addition to meta-model
proposed we develop a graph grammar made up of several
rules which allows transforming progressively all what is
modeled on the canvas towards an OWL ontology stored in a
disk file. The graph grammar is based on transformation rules;
those rules try to transform the class diagram in the
implementation level, always in order to obtain at the end a
usable description of ontology. For ontology, the choice
among OWL profiles is made on OWL DL because it places
certain constraints on the use of the structures of OWL such as
separation two to two between classes, datatypes, datatype
properties, objects properties, annotation properties,
ontologies properties, individuals, data values, and integrated
vocabulary [11]. That means, for example, a class cannot be at
the same time an individual [12]. These constraints enable us
to lead to our objective which is an ontology well reflecting
what is modeled in a class diagram.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

930

The transformation proceeds in several steps (fig. 2):
1) Graphic description of class diagram in AToM3.
2) This class diagram is conform to the meta-model of class

diagram developed in AToM3.
3) Apply the graph grammar on the class diagram.
4) An OWL file is generated automatically which contains

the OWL ontology represented in RDF/XML format.
5) Visualization and use of OWL ontology by using special

tools (Protégé, Swoop…).

Fig. 2 Transformation sequence

A. Transformation rules

Our approach is realized according to suggested
transformation rules (Table I). We propose a set of rules for all
elements of a class diagram. The level of abstraction in those
rules is close to the application in order to have usable
ontologies. For lack of space, we have presented some of the
rules.

TABLE I
UML TO OWL TRANSFORMATION RULES

Class
An UML class is transformed to an OWL class; the name of the
class is preserved.

Inheritance
The specialized class is defined subclass of the generalized class.

Class Attributes
An attribute is transformed into a property, and the transformation
is carried out according to the type of attribute.
If the type of the attribute is a primitive type, the attribute is
transformed into datatype property. If the value of the attribute is a
class, it is transformed into object property.

Bidirectional association
Associations are transformed into object properties. An inverse
object property is generated automatically named (Inverse-
associationname)

Roles
Roles transformation is based on the representation by attributes
(implementation level). Thus the situation of attributes
transformation.

Association class

An association-class is transformed to OWL class (implementation
level), named (ac-ssociationclassname). The latter is connected to
the left part by a relation named (AG_AC-associationclassname), and
to the right part by a relation named (AD_AC-associationclassname).
We named also the two new roles on the two new association ends
(RG_AC-associationclassname) and (RD_AC-associationclassname).
 After these transformations on the association class we find
ourselves on the situation of transformation of binary associations
(which is treated previously).

B. Datatypes transformation

UML data types are transformed into XML schema (XSD)
data types because OWL uses the majority of the datatypes
integrated into XML schema. The instances of the primitive
types used in UML itself include: Boolean, Integer, String, and
UnlimitedNatural [7]. Table II presents the UML primitive
datatypes and their transformations.

TABLE II
DATATYPES TRANSFORMATION

UML XSD
Integer xsd:integer

Boolean xsd:boolean
String xsd:string

UnlimitedNatural
xsd:nonNegativeInteger

xsd:positiveInteger

C.Meta-model of UML Class diagram

To build UML class diagram models in AToM3, we have to
define a meta-model for them. Our meta-model is developed
by the meta-formalism (CD_classDiagramsV3), and the
constraints are expressed in Python [8] code (see fig.3):

We have proposed to meta-model class diagrams two
Classes to describe packages and classes, and four associations
to describe association relations, association class relations,
generalization relations, and dependency relations.

Fig. 3 Class diagram meta-model

After we built our meta-model, it remains only its
generation. The generated meta-model comprises the set of
classes and associations modeled in the form of buttons which
are ready to be employed for a possible modeling of a class
diagram.

Fig.4 shows the generated class diagram tool and a dialog
box to edit a class. Each class has a name, and a list of
attributes, it can be also abstract, interface or enumeration. All
these attributes are defined in the proposed Meta-model
(fig.3).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

931

Fig. 4 Generated class diagram tool

D.The Proposed Graph grammar

To perform the transformation between class diagrams and
OWL ontologies, we have proposed a graph grammar
composed of an initial action, ten rules, and a final action. For
lack of space, we have not presented all the rules.

Initial Action: Ontology header
Role: In the initial action of the graph grammar, we created a
file with sequential access in order to store generated OWL
code. We begin by writing the ontology header which is fixed
for all our generated ontologies (see fig. 5).

Fig. 5 Ontology header definition

Rule 1: Class transformation
Name: class2class
Priority: 1
Role: This rule transforms an UML class towards an OWL
class (see Table III). In the condition of the rule we test if the
class is already transformed, if not, in the action of the rule we
reopen the OWL file to add the OWL code of this class.��

TABLE III
CLASS TRANSFORMATION

Condition

:=

Action

Rule 2: Association-class transformation
Name: ac2class
Priority: 2
Role: This rule allows the promotion of association class to a
full class (see Table IV), that reflects what we show in the
transformation rules. This class takes as name the name of the
LHS class-association preceded by (AC-). Two binary
associations are created in the RHS named AG_AC, AD_AC,
thus two new roles RG_AC and RD_AC as illustrated in the
transformation rules.

TABLE IV
ASSOCIATION-CLASS TRANSFORMATION

Condition
No condition

�

:=

�
Action

No action

Rule 3: Binary association transformation
Name: asso2prop
Priority: 3
Role: This rule transform an association of the class diagram
towards an OWL object property, it transforms also roles and
cardinalities of the association (see Table V).��

TABLE V
ASSOCIATION TRANSFORMATION

Condition

:=

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

932

Action

Final Action: Definition of the end of ontology
Role: In the final action of the graph grammar, we end our
ontology, So that becomes possible, we will have to open our
file and to add ‘</rdf:RDF>’ (see fig. 6).

Fig. 6 End of ontology

VI. EXAMPLE

Let us apply our approach on the example illustrated in
figure 7, which models the situation that a person occupies a
job in a company. To model this situation, we use two classes,
“person” and “company”, and an association class “Job”.

A person has a full name “Per_Name”, a company has also a
name “Ent_Name”. Moreover a person occupies only one
work at the same time and a company employed several
persons. Furthermore each person occupies a job must have a
remuneration “remuneration” according to occupied work.

Fig. 7 Class diagram of our example

We start the execution of our graph grammar; we obtain the
following intermediate graph (see fig. 8):

Fig. 8 Intermediate graph

After the execution of the graph grammar on our example
we obtain the diagram illustrated in figure 9:

Fig. 9 Class diagram after execution

In parallel, there is an automatic generation of the file which
contains OWL code stored on hard disc (see fig. 10):

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:8, 2012

933

Fig. 10 Generated OWL ontology

VII. CONCLUSION

We saw in this paper how to implement an application
which makes a transformation from an UML class diagram to
an OWL ontology based on graph transformation and by using
the tool AToM3.

For the realization of this application we developed a meta-
model for UML class diagrams, and a graph grammar
composed of several rules which enables us to transform all
what is modeled in our AToM3 generated environment to an
OWL ontology stored in a hard disk file.

In future work, we plan to extend the transformation of
semantic rules models towards the language of rules SWRL
(Semantic Web Rule Language).

REFERENCES

[1] AToM3. Home page: http://atom3.cs.mcgill.ca.2002.

[2] Laurent AUDIBERT, “UML2”, http://www.lipn.univpa
ris13.fr/audibert/pages/enseignement/cours.htm, 2007.

[3] Fowler, Martin, “UML Distilled - Third Edition - A Brief Guide to the
Standard Object Modeling Language”, 2003.

[4] G. Karsai, A. Agrawal, “Graph Transformations in OMG’s Model-
Driven Architecture”, Lecture Notes in Computer Science, Vol 3062,
243-259, Springer Berlin /Heidelberg, juillet 2004.

[5] Sebastian Leinhos, http://diplom.ooyoo.de, 2006.
[6] OMG, “Ontology Definition Metamodel”, V1.0,

http://www.omg.org/spec/ODM/1.0, May 2009.
[7] OMG, “Unified Modeling Language (OMG UML) Superstructure”,

version 2.3, http://www.omg.org/spec/UML/2.3/Superstructure. 2010.
[8] Python. Home page: http://www.python.org.
[9] SIDo Group, “ATL Use Case - ODM Implementation (Bridging UML

andOWL)”,http://www.eclipse.org/m2m/atl/usecases/ODMImpleme
ntation/, 2007.

[10] Deborah L. McGuinness and Frank van Harmelen, “OWL Web
Ontology Language-Overview”, http://www.w3.org/TR/2004/REC-owl-
features-20040210/. W3C Recommendation 10 February 2004.

[11] Michael K. Smith, Chris Welty and Deborah L. McGuinness, “OWL
Web Ontology Language–Guide”, http://www.w3.org/TR/2004/REC-
owl-guide-2004 0210. W3C Recommendation 10 February 2004.

[12] Mike Dean, Guus Schreiber, Sean Bechhofer, Frank van Harmelen, Jim
Hendler, Ian Horrocks, Deborah L. McGuinness, “OWL Web Ontology
Language-Reference”,http://www.w3.org/TR/2004/REC-owl-ref-
20040210. W3C Recommendation 10 February 2004.

[13] W3C OWL Working Group, “OWL 2 Web Ontology Language
Document Overview”. http://www.w3.org/TR/2009/REC-owl2-
overview-20091027. W3C Recommendation 27 October 2009.

[14] Kenneth Baclawski2, Mieczyslaw K. Kokar2, Paul A. Kogut1, Lewis
Hart5, Jeffrey Smith3, William S. Holmes III1, Jerzy Letkowski4, and
Michael L. Aronson1 “Extending UML to Support Ontology
Engineering for the Semantic Web”.

[15] Dragan Gaševi�, Dragan Djuri�, Vladan Devedži�, Violeta Damjanovi�
“Converting UML to OWL Ontologies”, 2004.

[16] Kilian Kiko, Colin Atkinson, “A Detailed Comparison of UML and
OWL”,2008.

[17] Bardohl, R., H. Ehrig, J. De Lara and G. Taentzer (2004). "Integrating
Meta Modelling with Graph Transformation for Efficient Visual
Language Definition and Model Manipulation". Lecture Notes in
Computer Science 2984, pp.: 214-228.

[18] A. Chaoui, R. Elmansouri, Wafa Saadi, and E. Kerkouche, From UML
Sequence Diagrams to ECATNets: a Graph Transformation based
Approach for modelling and analysis, 2008.

Aissam Belghiat is a Student in the department of Computer science,
University of Msila, Algeria. His research field is model transformation and
ontology engineering.

Mustapha Bourahla is Professor in the department of Computer science,
University of Msila, Algeria. His research field is formal methods.

