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Abstract—The Comparison analysis of the Wald’s and Bayes-

type sequential methods for testing hypotheses is offered. The merits 
of the new sequential test are: universality which consists in 
optimality (with given criteria) and uniformity of decision-making 
regions for any number of hypotheses; simplicity, convenience and 
uniformity of the algorithms of their realization; reliability of the 
obtained results and an opportunity of providing the errors 
probabilities of desirable values. There are given the Computation 
results of concrete examples which confirm the above-stated 
characteristics of the new method and characterize the considered 
methods in regard to each other. 
 

Keywords—Errors of types I and II, likelihood ratio, the Bayes 
Type Sequential test, the Wald’s sequential test, averaged number of 
observations.  

I. INTRODUCTION 

HE development of sequential methods was started after 
the Second World War by Wald [1], [2] and Barnard [3]. 

In [4] was given a set of works dedicated to different aspects 
of the problem of the sequential analysis. The properties of 
optimality of the Wald criterion were investigated in [1], [2], 
[5]-[12]. In [8], [9] some modifications of Wald’s method 
were developed. In particular, in [9] a modification which 
guaranteed achiving the exact error probabilities was 
developed. Sequential tests of the multidimensional type with 
the corresponding univariate sequential tests, with emphasis 
on the Gaussian setting, were compared in [13], [14]. For 
these cases the comparison of expected sample sizes is 
realized in [15]. The optimal properties of the Neyman-
Pearson and Wald criteria were compared in [12]. There was 
shown that, for providing the given probabilities of errors of 
the first and the second kinds, in the Wald criterion, from half 
to one-third as many observation results as in the Neyman-
Pearson criterion were needed in the case when the tested 
hypotheses were close.  

The Bayesian sequential procedures were described in [10], 
[16]-[26] and others. The essence of these procedures consists 
in the minimization of the risk, which is defined as the average 
cost of observations plus the average loss resulting from 
erroneous decisions. 

 
 
 
 

K. J. Kachiashvili is with Informatics and  Control  Systems Department, 
Georgian Technical University, 77, Kostava Street, 0175, Tbilisi, Georgia (e-
mail: kartlos55@yahoo.com).  

In [16], [26] and others it was shown that the Bayesian 
sequential procedures and the Wald criterion are optimum in 
the sense of definition of optimality in these criteria, and that 
under certain conditions, they coincide. 

The methods of sequential analysis of the Wald’s method 
and the method based on the Bayesian approach are quite 
simple, graphic and convenient for practical realization, but, 
unfortunately, only for the case of two hypotheses. For an 
arbitrary number of hypotheses, the problem becomes 
significantly complex, and it has not been solved completely 
in the sense of conventional statements of both the sequential 
criterion based on the sequential probability ratio test and the 
minimization of the sum of the Bayesian risk calculated for 
sequentially incoming observation results and the cost of 
obtaining the same results of the experiment.  

New methods of sequential analysis for testing many 
hypotheses were offered in [27]; they are based on the specific 
properties of hypotheses acceptance regions in constrained 
Bayesian problems of testing many hypotheses [28]-[30]. The 
aim of this work is to provide the comparison analysis of new 
the Sequential and Wald’s methods for testing hypotheses.  

II.  THE WALD ’S METHOD  

For the statement of the problem, let us use the Wald’s 
formalization [1], [2]. Let 0H  and 1H  be the suppositions that 

a random variable X  has the distribution density )|( 1Hxp  or

)|( 2Hxp , respectively. The decision in favour of the 

hypothesis must be made on the basis of the sequentially 
obtained observation results ,..., 21 xx . The essence of the 

Wald’s sequential test consists in the following: to compute 
the likelihood ratio 

)|,...,,(/)|,...,,()( 121021 HxxxpHxxxpB mm=x  for m  
sequentially obtained observation results, and, if 

                                      ABB << )(x ,                               (1) 

the decision is not made, and the observation of the random 
variable is continued. If    

                                    AB ≥)(x ,                                       (2) 

then hypothesis 0H  is accepted on the basis of m observation 

results. If  
                                     BB ≤)(x ,                                      (3) 

then hypothesis 1H  is accepted on the basis of m  observation 

results.  
The thresholds A  and B  are chosen so that the 

significance level and the power of the criterion are equal to 
α  and β−1 , respectively.  
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Finding of the exact values of A  and B  is a challenge. 
Therefore, for practical aims, their upper and lower 
estimations are suggested [1], [2], [31], [32] respectively.   

 

                      
α

β−= 1
A    and   

α
β
−

=
1

B ,                       (4) 

It is proved [1] that in this case the real values of the errors 
of types I and II are close enough to the desired values, but on 
the whole are distinguished from them.  

As was mentioned above, unfortunately, the generalization 
of this method for an arbitrary number of hypotheses has not 
been accomplished. 

III.  A NEW METHOD OF SEQUENTIAL ANALYSIS  

In [33] new forms of the Bayesian statement of hypotheses 
testing were introduced. Instead of the unconstrained problem 
of minimization of the average risk caused by the errors of 
types I and II, it was offered to solve the constrained 
optimization problem. In this case, restrictions are imposed on 
the errors of one type and the errors of the second type are 
minimized. Depending on the type of restrictions, there are 
considered different constrained optimization problems [28], 
[33]: 1. The Restriction on the averaged probability of 
acceptance of true hypothesis; 2. The Restrictions on 
conditional probabilities of acceptance of each true 
hypothesis; 3. Restrictions on the posterior probabilities of 
acceptance of each true hypothesis; 4. The Restriction on the 
averaged probability of rejection of true hypotheses; 5. 
Restrictions on the probabilities of rejection of each true 
hypothesis; 6. Restrictions on the posteriori probabilities of 
rejection of each true hypothesis; 7 Restrictions on averaged 
probabilities of rejected true hypotheses. To be specific, let us 
consider the task of imposing the restriction on the averaged 
probability of rejection of true hypotheses, which has the 
following statement 

              
{ }ii i

S
i i dxHpHp

ΓΓ= ⇒∫∑ max)|()(1 x ,                     (5)       

subject to 
             α≤∑ ∑ ∫= ≠= Γ

S
i

S
ijj j ii dxHpHp1 ,1 )|()( x .                 (6)      

  The Solution of this problem is 
 

{ }∑>=Γ ≠=
S

jii iijjj HpHpHpHpx ,1 )|()()|()(: xx λ , 

                          Sj ,..,1= .                                         (7) 

Here S  is the number of tested hypotheses; iH  ( Si ,...,1= ) 

is the tested hypothesis; iΓ  is the region of acceptance of 

hypothesis iH ; )( iHp  is the a priori probability of iH  

hypothesis; )|( iHp x  is the conditional distribution density of 

the observation vector; λ  is defined so that equality was 
fulfilled in (6).    

The results of investigation of hypotheses acceptance 
regions (7) show that the decision-making space contains 
hypotheses acceptance regions and a no-decision region [28], 
[29]. This property is used for the introduction of a new 
sequential method of statistical hypotheses testing. The 
essence of the method is in the following [27].  

Let us designate: m
iΓ  is  the acceptance region of iH  

hypotheses (7) on the basis of m  sequentially obtained 

repeated observation results; nmR  is the decision-making space 

in the sequential method; n  is the dimensionality of the 

observation vector; m
iI  is the population of sub-regions of 

intersections of acceptance regions of hypotheses iH , m
iΓ   

),...,1( Si = , with the regions of acceptance of other 

hypotheses jH , Sj ,...,1= , ij ≠ ; U
S
i

m
i

n
m

n
m RE 1= Γ−=  is the 

population of regions of space nmR  which do not belong to any 

of hypotheses acceptance regions. 
The hypotheses acceptance regions in the sequential method 

are: 

,/,
m
i

m
i

n
im IR Γ=  Si ,...,1= ;                      (8) 

the no-decision region is: 

                               ( ) ,11, UU
n
m

S
i

m
i

n
Sm EIR =+ =                          (9) 

where the acceptance region of the iH  hypotheses 

                                            

       })|()|(:{ ,1∑>=Γ ≠=
S

i
i

i
m
i HpHp ll ll

xxx λ ,            (10) 

where +∞<≤ i
lλ0 , S,...,1=l .  

Coefficients 
)(

)(

i

i

Hp

Hp l

l λλ =  are defined from the equality in 

the suitable restrictions.     
These methods, obtained for all possible constrained 

optimization problems (see above), are called the sequential 
methods of Bayesian type [27]. To be specific, further we will 
consider the task with restrictions on the averaged probability 
of acceptance of true hypotheses.  

IV. COMPARISON ANALYSIS 

Let us investigate the ratio among the errors of types I and 
II in the Walds’s and sequential Bayesian-type methods when 
the number of hypotheses is two. For simplicity, let us omit 
the indexes where this does not cause misunderstanding. For 
two hypotheses regions (10) takes the forms     

}
)(

)(
)(:{

1

0
0 Hp

Hp
B λ>=Γ xx  and }

)(

)(1
)(:{

1

0
1 Hp

Hp
B

λ
<=Γ xx  (11) 

in the considered task with restrictions on the averaged 
probability of acceptance of true hypotheses, the no-decision 

region is: }
)(

)(
)(

)(

)(1

1

0

1

0

Hp

Hp
B

Hp

Hp λ
λ

≤≤ x  when 1
)(

)(

1

0 >
Hp

Hpλ   

and }
)(

)(1
)(

)(

)(

1

0

1

0

Hp

Hp
B

Hp

Hp

λ
λ ≤≤ x  at 1

)(

)(

1

0 <
Hp

Hpλ  (see [28], 

[33]). 
It is evident that, for the Wald’s test, the errors of type I and 

II are 

             )|)(( 1HABpW >= xα ,                         (12) 

and  

                           )|)(( 0HBBpW <= xβ .                       (13)      
   Similar characteristics of the sequential Bayesian-type 
methods are: 
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                           )|)(( 1HABpB ′>= xα ,                      (14) 

and  

                       )|)(( 0HBBpB ′<= xβ ,                       (15)      

where  

                   
)(

)(

1

0

Hp

Hp
A λ=′  and 

)(

)(1

1

0

Hp

Hp
B

λ
=′ ,                  (16) 

or 

)(

)(1

1

0

Hp

Hp
A

λ
=′  and 

)(

)(

1

0

Hp

Hp
B λ=′ ,  

depending on the value of 
)(

)(

1

0

Hp

Hpλ .  

It is obvious that, in the general case, these characteristics 
for considered methods are different. Let us investigate the 
ratio among these probabilities. In particular, let us show in 
which conditions the inequalities  

                            WB αα <  and WB ββ <                        (17)    

are fulfilled.             

It is clear that at 1
)(

)(

1

0 >
Hp

Hpλ  when  

            
α

βλ −
>

1

)(

)(

0

1

Hp

Hp
 and 

α
β

λ −
<

1)(

)(1

0

1

Hp

Hp
,            (18) 

 
conditions (17) are fulfilled; at 1<λ  when 

            
α

β
λ

−
>

1

)(

)(1

0

1

Hp

Hp
 and 

α
βλ
−

<
1)(

)(

0

1

Hp

Hp
.            (19) 

conditions (17) are fulfilled. 
It was proved in [27] that for the given level in (6) at 

increasing divergence between the tested hypotheses, 
coefficient λ  in (16) decreases and, in the limit, tends to zero. 
It was proved also that for the given level in (6) at decreasing 
divergence between the tested hypotheses coefficient λ  tends 
to the constant which is determined by a priori probabilities of 
tested hypotheses, and, when these probabilities are identical, 
it is equal to the number of tested hypotheses minus one.    

Hence it follows that there always exists such a positive 
value of the divergence between the hypotheses that, if the 
divergence between the tested hypotheses is more than that 
value, the method of sequential analysis of  the Bayesian type 
rigorously surpasses the criterion with the errors of the first 
and the second kinds equal to α  and β , respectively.   

Let us suppose that 5.0)()( 10 == HpHp , 05.0=α , 

05.0=β . From the first and the second conditions of (4) 

follows that 171=A  and 11.2=B , respectively. Then from 
(18) it follows that, if the divergence between the tested 

hypotheses is such that the appropriate λ  in sequential 
Bayesian type method is greater than 19, i.e. 19>λ  then 
there takes place (17).  

Let us now 1.0)( 0 =Hp , 9.0)( 1 =Hp , 05.0=α , 05.0=β . 

Then from (18) follows that if divergence between tested 
hypotheses is such that the appropriate λ  in the sequential 

Bayesian- type method is greater than11.2 , WB ββ <  takes 

place, and, if 171>λ  both inequalities in (4) are fulfilled.     

   Let us consider 9.0)( 0 =Hp , 1.0)( 1 =Hp , 05.0=α , 

05.0=β . Then from (18) it follows that if the divergence 

between the tested hypotheses is such that the appropriate λ  

in the sequential Bayesian-type method is greater than 11.2 , 
WB αα <  takes place, and, if 171>λ  both inequalities in (4) 

are fulfilled.     
The results of given elementary computations correspond 

completely to the logical judgment. Particularly, the smaller is 
the a priori probability of the hypothesis, the higher is the 
probability of its incorrect rejection (error of type I). 
Analogously, the bigger is the a priori probability of the 
hypothesis the higher is the probability of its incorrect 
acceptance (error of type II). 

Let us present the computation results of some examples to 
confirm in practice the abovementioned considerations. 

Example 1. Tested hypotheses: 1,1: 1
2

1
11 == θθH ; 

4,4: 2
2

2
12 == θθH . A priori probabilities of the hypotheses: 

5.0)( 1 =Hp , 5.0)( 2 =Hp . The significance level of the 

criterion in the constrained Bayesian task is 05.0=α . The 
above-considered tests were applied to the sequentially 
incoming observation results generated as two-dimensional 
normally distributed random vectors with the mathematical 
expectation )4;4(=θ  and the covariance matrices 









=

10

01
W , 








=

43

34
W , 








=

105

510
W , 








=

2015

1520
W , 









=

3025

2530
W .  

This means that five samples of normally distributed 
random vectors with different covariance matrices were 
processed by both tests.   

The Kullback’s divergence [34] between the tested 
hypotheses for different samples changes depending on 
covariance matrices and are equal to 0.5721, 0.7171, 1.0954, 
1.6036 and 4.2426, respectively. In Fig. 1 the dependences of 
the averaged numbers of observations necessary for making 
the decision in the Wald’s and Bayes-type sequential tests 
depending on the divergences between the hypotheses are 
given. In Fig. 2 the dependences of the type I and II errors 
probabilities on the divergence for the numbers of 
observations equal to the averaged values for which decisions 
are made in the Bayes-type sequential test are presented. In 
Fig. 2, for each divergence the appropriate values of the 
number of averaged observations are shown. The same values, 
in the suitable sequence, for the Wald’s test are 19.6, 15.6, 8.2, 
2.71 and 1.66, respectively. Form here it is seen that the 
Bayes-type sequential test needs in average less number of 
observations than the Wald’s test for making the decision for 
the considered example. The discrepancy between the 
averaged values is bigger the smaller is divergence. Though, 
the type II error probability for the Bayes-type sequential test 
is bigger than the analogous characteristic for the Wald’s test. 
The Bayes-type sequential test becomes more powerful than 
the Wald’s test by both types of errors for the hypotheses with 
the divergence greater than 4 (see Fig. 2).         
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Fig. 1 The dependences of the averaged numbers of observations 
necessary for making decision in the Wald’s and the Bayes type 

sequential tests depending on the divergences between hypotheses 
 

 
Fig. 2 The dependences of the type I and II errors probabilities on the 

divergence for the numbers of observations equal to the averaged 
values for which decisions are made in the Bayes type sequential test 

V.  CONCLUSION 

On the basis of above-given results, we can conclude that 
the new sequential Bayes-type method is a good tool for 
testing any number of hypotheses. The method is universal, 
convenient and reliable for testing any number of hypotheses 
without additional investigations. The working properties of 
the test and the quality of the obtained results by this test are 
investigated by their comparison with the Wald’s test for two 
multivariate hypotheses. The comparison allowed us to infer 
that, for making the decision, the new method needs in 
average a smaller number of observations and, moreover, for 
some values of divergence between the tested hypotheses, it 
gives more powerful decisions than the Wald’s test does. It is 
beyond question that, in contradistinction to the Wald’s test, 
this test is optimum, convenient and simply defined for any 
number of hypotheses.  
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