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In [16], [26] and others it was shown that the Bage

Abstract—The Comparison analysis of the Wald's and Bayessequential procedures and the Wald criterion ategnomn in

type sequential methods for testing hypothesefésenl. The merits
of the new sequential test are: universality whicbnsists in
optimality (with given criteria) and uniformity adecision-making
regions for any number of hypotheses; simplicitynwenience and
uniformity of the algorithms of their realizatiomeliability of the
obtained results and an opportunity of providinge tlerrors
probabilities of desirable values. There are gittea Computation
results of concrete examples which confirm the abstated
characteristics of the new method and characteaheeconsidered
methods in regard to each other.
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|. INTRODUCTION

the sense of definition of optimality in these eria, and that
under certain conditions, they coincide.

The methods of sequential analysis of the Wald'shod
and the method based on the Bayesian approachuitee q
simple, graphic and convenient for practical reslon, but,
unfortunately, only for the case of two hypothesesr an
arbitrary number of hypotheses, the problem becomes
significantly complex, and it has not been solvedpletely
in the sense of conventional statements of bothséugiential
criterion based on the sequential probability ragist and the
minimization of the sum of the Bayesian risk cadtaetl for
sequentially incoming observation results and tlost cof
obtaining the same results of the experiment.

New methods of sequential analysis for testing many
hypotheses were offered in [27]; they are basetherspecific

THE development of sequential methods was starten afProperties of hypotheses acceptance regions intregmsd

the Second World War by Wald [1], [2] and BarnaB{l [
In [4] was given a set of works dedicated to ddferaspects
of the problem of the sequential analysis. The erigs of
optimality of the Wald criterion were investigatad[1], [2],
[5]-[12]. In [8], [9] some modifications of Wald’'snethod
were developed. In particular, in [9] a modificatiovhich

Bayesian problems of testing many hypotheses [28]-[The
aim of this work is to provide the comparison asayof new
the Sequential and Wald’s methods for testing Hypses.

Il. THEWALD’SMETHOD
For the statement of the problem, let us use théd¥a

guaranteed achiving the exact error probabilitiess w formalization [1], [2]. LetH, and H, be the suppositions that

developed. Sequential tests of the multidimensioyze with
the corresponding univariate sequential tests, witiphasis
on the Gaussian setting, were compared in [13]]. [Eér

these cases the comparison of expected sample ®ze

realized in [15]. The optimal properties of the N&n-
Pearson and Wald criteria were compared in [12kr&lwas
shown that, for providing the given probabilitiesesrors of
the first and the second kinds, in the Wald crateyifrom half
to one-third as many observation results as inNkgman-
Pearson criterion were needed in the case whertested
hypotheses were close.

The Bayesian sequential procedures were descnibgd],
[16]-[26] and others. The essence of these proesdeonsists
in the minimization of the risk, which is defined the average
cost of observations plus the average loss regultiom
erroneous decisions.
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S

a random variableX has the distribution density(x|H,) or
p(x|H,), respectively. The decision in favour of the

hypothesis must be made on the basis of the seglient
obtained observation resulsx,,.... The essence of the

Wald's sequential test consists in the following: dompute

the likelihood ratio

B(X) = p(X, Xp,ees Xy [ Ho) 1 POX XXy | HY) for m

sequentially obtained observation results, and, if
B<B(x)<A, 1)

the decision is not made, and the observation efr@mdom
variable is continued. If

B(x)= A, (2
then hypothesid, is accepted on the basis ldf observation
results. If

B(x)<B, (3)
then hypothesidH, is accepted on the basis wf observation
results.

The thresholds A and B are chosen so that the

significance level and the power of the criterioe aqual to
a andl- [, respectively.
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Finding of the exact values oA and B is a challenge.
Therefore, for practical aims, their upper and
estimations are suggested [1], [2], [31], [32] exsjvely.

and B=—£_, @)
l1-a

It is proved [1] that in this case the real valoéshe errors
of types | and Il are close enough to the desieddes, but on
the whole are distinguished from them.

As was mentioned above, unfortunately, the germatidin
of this method for an arbitrary number of hypotlsehas not
been accomplished.

A:ﬁ
a

IIl. A NEwWMETHOD OFSEQUENTIAL ANALYSIS

In [33] new forms of the Bayesian statement of higpees
testing were introduced. Instead of the unconstdhiproblem
of minimization of the average risk caused by thers of
types | and Il, it was offered to solve the corised
optimization problem. In this case, restrictions emposed on
the errors of one type and the errors of the sedgpd are
minimized. Depending on the type of restrictiortsere are
considered different constrained optimization peohé [28],
[33]: 1. The Restriction on the averaged probapildf
acceptance of true hypothesis; 2. The Restrictiams
conditional
hypothesis; 3. Restrictions on the posterior prdbias of
acceptance of each true hypothesis; 4. The Réstrion the
averaged probability of rejection of true hypotlesé.
Restrictions on the probabilities of rejection dick true
hypothesis; 6. Restrictions on the posteriori philiiees of
rejection of each true hypothesis; 7 Restrictionsaweraged
probabilities of rejected true hypotheses. To becHie, let us
consider the task of imposing the restriction oa #veraged
probability of rejection of true hypotheses, whibas the
following statement

Py p(Hi).[ri P(x|H;)dx= max,

{ri} (5)

subject to
X5 P(H)Z g a f, PXIH)dX< @
The Solution of this problem is

(6)

={x: p(H)p(x|H) > A%, p(H, (| )},
j=1...S.
Here S is the number of tested hypotheses; (i =

is the tested hypothesid;
hypothesidH,; p(H,) is the a priori probability ofH,

1..,S)

hypothesis;p(x|H;) is the conditional distribution density of &

probabilities of acceptance of each etru

is the region of acceptance of

Let us designatel™ is the acceptance region of,
hypotheses (7) on the basis ofi sequentially obtained
repeated observation result®;, is the decision-making space
in the sequential methodn is the dimensionality of the
observation vector;|™ is the population of sub-regions of

lowe

intersections of acceptance regions of hypothedes "
(i=1...,S5), with the regions of acceptance of other

hypothesesH,, j=1...S, j#i; E;= R -, is the

population of regions of spad&;, which do not belong to any
of hypotheses acceptance regions.

The hypotheses acceptance regions in the sequemihbd
are:

Ry =0, i=1..S; (8)
the no-decision reglon is:
mS+1 ( ls—ll|ml.J E (9)
where the acceptance region of tHe hypotheses
MM ={x:p(x|H) > T, A, p(x [ H )}, (10)

WhereO<A' <+o0, (=1..,S.
_yP(H)
the suitable restrictions.
These methods, obtained for all possible constdaine
optimization problems (see above), are catleel sequential
methods of Bayesian tyj27]. To be specific, further we will
consider the task with restrictions on the avergyedability
of acceptance of true hypotheses.

Coefficients A, are defined from the equality in

IV. COMPARISONANALYSIS

Let us investigate the ratio among the errors pésyl and
Il in the Walds’s and sequential Bayesian-type rodshwhen
the number of hypotheses is two. For simplicity, e omit
the indexes where this does not cause misundemstarieor
two hypotheses regions (10) takes the forms

I, ={x: B(x) > EEHO))} andr, ={x: B(x) <~ p((Hj;} 1)

(7)in the considered task with restrictions on the raged

probability of acceptance of true hypotheses, thalecision
p(HO) < ( )<A p(HO)} n A p(HO) >1
p(H,) p(H,) p(H,)

p(H o) 1 p(Ho)
A—= T < B(X )</] D(Hl)} at A <1 (see [28],

region is: —

. P(Ho)
p(H,)

the observation vector] is defined so that equality was[33)]).

fulfilled in (6).

It is evident that, for the Wald’s test, the errofgype | and

The results of investigation of hypotheses accemtan|| are

regions (7) show that the decision-making spacetaias
hypotheses acceptance regions and a no-decisi@nris],
[29]. This property is used for the introduction afnew
sequential method of statistical hypotheses testihge
essence of the method is in the following [27].

= p(B(x)>A[H,), (12)

and
B" = p(B(X) < B|Hy) . (13)
Similar characteristics of the sequential Bayegype

methods are:
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a®=p(B(x)>A|H,), (14)

and

B° = p(B(x) <B'|H,),
where

A’:AM and B':l p(H,) , (16)

p(Hl) A p(Hl)

or
N :l_p(HO) and B' =1 p(HO) ,

A p(H,) p(H,)

depending on the value OTM

p(H,)

It is obvious that, in the general case, theseadteristics
for considered methods are different. Let us irigagt the
ratio among these probabilities. In particular, ust show in
which conditions the inequalities

a®<a" and g® <" (17)
are fulfilled.
It is clear that atd P(Ho) >1 when
1
/] > p(Hl) 1_ﬁ and£< p(Hl) ﬂ , (18)
p(H,) a A p(Ho)1-a
conditions (17) are fulfilled; afl <1 when
i> p(H) 1-8 and A < p(H) B (19)

A p(Hy) a
conditions (17) are fulfilled.
It was proved in [27] that for the given level iB) (at
increasing divergence between the

p(Hy)1-a

Let us considep(H,)=09, p(H,)=01, a=005,
£ =005. Then from (18) it follows that if the divergence

(15) between the tested hypotheses is such that thegmate A

in the sequential Bayesian-type method is greatan 211,

a® <a" takes place, and, il >171 both inequalities in (4)
are fulfilled.

The results of given elementary computations cpoed
completely to the logical judgment. Particularlye tsmaller is
the a priori probability of the hypothesis, the Heg is the
probability of its incorrect rejection (error of pg ).
Analogously, the bigger is the a priori probabiliy the
hypothesis the higher is the probability of its dmect
acceptance (error of type II).

Let us present the computation results of some phesrio
confirm in practice the abovementioned considenatio

Example 1. Tested  hypothesel; : 6 =16, =1;
H,:& =4,62 =4. A priori probabilities of the hypotheses:
p(H,) =05, p(H,)=05. The significance level of the

criterion in the constrained Bayesian taskds= 005. The
above-considered tests were applied to the segllgnti
incoming observation results generated as two-déioeal
normally distributed random vectors with the mathtoal
expectation 0=(44) and the covariance matrices

10 4 3 10 5 20 15
W = , W= , W= , W= ,
01 3 4 5 10 15 20
30 25
W= .
25 30

This means that five samples of normally distribute

tested hypothesemndom vectors with different covariance matricegrev

coefficient A in (16) decreases and, in the limit, tends to .zergrocessed by both tests.

It was proved also that for the given level in &)decreasing
divergence between the tested hypotheses coeffidietends
to the constant which is determined by a prioribatalities of
tested hypotheses, and, when these probabilitesdantical,
it is equal to the number of tested hypotheses snime.

Hence it follows that there always exists such aitp@
value of the divergence between the hypotheses ithtdie
divergence between the tested hypotheses is mare ttat
value, the method of sequential analysis of thgeBemn type
rigorously surpasses the criterion with the ermirghe first
and the second kinds equaldoand S, respectively.

Let us suppose thatp(H,)=p(H,)=05, a =005,

The Kullback's divergence [34] between the tested
hypotheses for different samples changes depending
covariance matrices and are equal to 0.5721, 0,71.0954,
1.6036 and 4.2426, respectively. In Fig. 1 the ddpaces of
the averaged numbers of observations necessarsndting
the decision in the Wald's and Bayes-type sequemndists
depending on the divergences between the hypotheses
given. In Fig. 2 the dependences of the type | Bnetrors
probabilities on the divergence for the numbers of
observations equal to the averaged values for wihégisions
are made in the Bayes-type sequential test areemiexs In
Fig. 2, for each divergence the appropriate valoéshe
number of averaged observations are shown. The galues,

B=005. From the first and the second conditions of (4}, the suitable sequence, for the Wald’s test 8r6,115.6, 8.2,
follows that A=171 and B = 211, respectively. Then from 2.71 and 1.66, respectively. Form here it is sdaat the

(18) it follows that, if the divergence between ttested
hypotheses is such that the appropriade in sequential
Bayesian type method is greater tha@, i.e. A>19 then
there takes place (17).

Let us nowp(H,) = 01, p(H,)=09, a =005, S=005.
Then from (18) follows that if divergence betweesstéd
hypotheses is such that the appropridtein the sequential
Bayesian- type method is greater thahl, £° <" takes
place, and, ifA >171 both inequalities in (4) are fulfilled.

Bayes-type sequential test needs in average lesberuof
observations than the Wald’s test for making theigien for
the considered example. The discrepancy between
averaged values is bigger the smaller is divergembeugh,
the type Il error probability for the Bayes-typeggential test
is bigger than the analogous characteristic foritad’s test.
The Bayes-type sequential test becomes more poWtidn
the Wald'’s test by both types of errors for the dtiygses with
the divergence greater than 4 (see Fig. 2).

the
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— The Wald’s test

. The Bayes type
sequential test

20.00000

15.00000-]

10.00000-|

5.00000-]

Averaged numbers of observations

0.00000-

T T T T T
57210 71710 1.09540 1.60360 4.24260

Divergence between hypotheses

Fig. 1 The dependences of the averaged numbetssefations
necessary for making decision in the Wald’'s and&hges type
sequential tests depending on the divergences bethwgpotheses

— Errorl
054 -==Errorl

n=9.6

Type | and Il errors probabilities

T T T T
57210 71710 1.09540 1.60360

Devergence

Fig. 2 The dependences of the type | and Il epoobabilities on the
divergence for the numbers of observations equtle¢@veraged
values for which decisions are made in the Bayes $equential test

V. CONCLUSION

On the basis of above-given results, we can coecthdt
the new sequential Bayes-type method is a good fiwol
testing any number of hypotheses. The method igeusal,
convenient and reliable for testing any number ygdtheses
without additional investigations. The working peofles of
the test and the quality of the obtained resultshiy test are
investigated by their comparison with the Wald'sttor two
multivariate hypotheses. The comparison allowedoumfer
that, for making the decision, the new method nerds
average a smaller number of observations and, mergéor
some values of divergence between the tested hgpesh it
gives more powerful decisions than the Wald’s tests. It is
beyond question that, in contradistinction to thalié test,
this test is optimum, convenient and simply defided any
number of hypotheses.
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