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Convergence Analysis of a Prediction based
Adaptive Equalizer for IIR Channels

Miloje S. Radenkovic, and Tamal Bose

Abstract– This paper presents the convergence analy-
sis of a prediction based blind equalizer for IIR channels.
Predictor parameters are estimated by using the recursive
least squares algorithm. It is shown that the prediction
error converges almost surely (a.s.) toward a scalar
multiple of the unknown input symbol sequence. It is
also proved that the convergence rate of the parameter
estimation error is of the same order as that in the iterated
logarithm law.

Keywords– Adaptive blind equalizer, Recursive least
squares, Adaptive Filtering, Convergence analysis.

I. INTRODUCTION

THE earliest blind channel equalization methods
were based on single-input single-output models,

sampled at the symbol rate. Some of them such as the
constant modulus algorithms (CMA) involve nonlinear
optimization and higher order statistics of the channel
output [1], [2]. An extensive list of references of CMA
methods is given in [3]. Since the appearance of [4], a
large number of blind equalization results are based on
using only second order statistics of the received signals,
(see for example [5], [6] and [7]). The basic idea in [4]
is to oversample the received signal with respect to the
baud rate, or to use multiple antennas thereby giving
single-input multiple-output (SIMO) channel model. For
a comprehensive list of important contributions in this
area until 1998, we refer to [3] and [7].

In this paper we present an RLS based blind adaptive
equalizer, where the parameter estimates are updated
when each single signal is received. Following the idea
presented in [6], [8], [9], an equalizer is developed based
on one-step ahead prediction of the received signal. It
is shown that IIR channels can be equalized with the
FIR type predictors. It is proved that almost surely (a.s.)
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(with probability one) the prediction error converges to a
scalar multiple of the input symbol sequence. Rigorous
analysis reveals that the convergence rate of the param-
eter estimation error is the same as that in the iterated
logarithm law.

II. PROBLEM STATEMENT

The standard model of a fractionally spaced receiver is
the single-input multiple-output system. For simplicity of
our presentation, we consider a single-input two-output
system model. In this case the receiver performs the two
measurements,

x1(i) = q−d B1(q−1)
A1(q−1)

w(i),

x2(i) = q−d B2(q−1)
A2(q−1)

w(i)

for each transmitted symbol w(i), i ≥ 0. Here q−1 is the
unit delay operator, integer d is the delay between input
w(i) and outputs xk(i), k = 1, 2,, and B1(q−1)/A1(q−1)
and B2(q−1)/A2(q−1) are stable IIR transfer operators,
and Bi(q−1) and Ai(q−1), i = 1, 2 are polynomials in
q−1. An equivalent representation of this process is given
in Fig. 1, where

x1(i) = q−d B(q−1)
A(q−1)

w(i),

x2(i) = q−d C(q−1)
A(q−1)

w(i), (1)

with

A(q−1) = 1 + a1q
−1 + · · ·+ aLq−L,

B(q−1) = b0 + b1q
−1 + · · ·+ bLq−L,

C(q−1) = c0 + c1q
−1 + · · ·+ cLq−L,

where L is the channel order. Clearly, if A(q−1) =
A1(q−1)A2(q−1), then B(q−1) = B1(q−1)A2(q−1),
and C(q−1) = B2(q−1)A1(q−1). In general
w(i), x1(i), x2(i) and the coefficients of polynomials in
(1) can be complex quantities.

In this paper it is assumed that 1
A(q−1)

is a stable oper-
ator. We introduce the following assumptions regarding
the channel model of Fig. 1.
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Fig. 1 Signal Model

Assumption A1: B(q−1) and C(q−1) are coprime
polynomials.

Assumption A2: Let w(i) = wR(i) + jwI(i), j =√−1, with {wR(i)} and {wI(i)} being real sequences.
Let {w(i)} be a martingale difference sequence, i.e.,

E

[(
wR(i + 1)
wI(i + 1)

)
| Fi

]
= 0, (a.s) (2)

where, Fi
∆= {wR(0), · · · , wR(i), wI(0), · · · , wI(i)},

E(w(i + 1)w(i + 1)∗|Fi) = σ2
w, (a.s.) (3)

where (.)∗ denotes complex conjugate and

|w(i)| ≤ kw < ∞. (4)

Note that (2) implies

E(w(i)w(i+ l)∗)
= E[E(w(i)w(i+ l)∗|Fi)]

= E[w(i)w(i+ l)∗|Fi] = 0, l ≥ 1. (5)

That is, samples of w(i) at two different time instants
are uncorrelated. Observe that A2 does not imply that
the samples of w(i) are independent random variables.

The prediction based equalizer is described in Fig. 2,
where y(i+1) is one step-ahead prediction of x1(i+1),
based on the observed samples x1(k) and x2(k), k ≤ i.
Hence

y(i + 1) = R(q−1)x1(i) + S(q−1)x2(i), (6)

where the filter operators are defined as

R(q−1) = r0 + r1q
−1 + · · ·+ rN1q

−N1 ,

S(q−1) = s0 + s1q
−1 + · · ·+ sN2q

−N2 , (7)

N1 ≥ L − 1, N2 ≥ L − 1

where L is the channel order. We consider the predictor
to be optimal in the mean-square sense. The order of
each of the polymomials R(q−1) and S(q−1) is L −
1, the reason for which will be given shortly. These
polynominals are computed by minimizing the following
cost function:

J = E
(|x1(i + 1) − y(i + 1)|2) . (8)

)(1 ix                                                          )1(1 +ix

                                                                                  + )1( +iy      + )1( +ie
                                                                                                   + 
                                       )(2 ix                                  +

)( 1−qR

)( 1−qS

Fig. 2 Predictor based equalizer

Note that instead of x1(i) we can use x2(i) just as
well as the reference signal and derive the predictor
by minimizing E

(|x2(i + 1) − y(i + 1)|2). Next we ex-
plain how to calculate R(q−1) and S(q−1) so that J in
(8) is minimal.

Note that x1(i + 1) can be written in the form,

x1(i + 1) = b0w(i + 1 − d)

+
q[B(q−1) − A(q−1)b0]

A(q−1)
w(i− d),(9)

where q is forward shifting operator, and b0 is the leading
coefficient of B(q−1). Since from (8) and Fig. 2,

y(i + 1) = P (q−1)
B(q−1)
A(q−1)

w(i− d)

+S(q−1)
C(q−1)
A(q−1)

w(i− d), (10)

equation (9) yields,

x1(i + 1)− y(i + 1) = x(i− d) + b0w(i + 1 − d), (11)

x(i − d) = [
B(q−1)R(q−1) + C(q−1)S(q−1)

A(q−1)
−

q(B(q−1)− A(q−1)b0)
A(q−1)

]w(i− d), (12)

where for the sake of notational simplicity, q−1 is out
shifted in the above polynomials. Using the fact that
by (5) samples of {w(i)} are uncorrelated, from (11)
it follows that J is minimal if and only if x(i− d) = 0.
Then

x1(i + 1)− y(i + 1) = b0w(i + 1 − d), (13)

and minJ = |b0|2σ2
w . Relation (12) implies that x(i) =

0 if

B(q−1)R(q−1) + C(q−1)S(q−1)

= q(B(q−1)− A(q−1)b0), (14)
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which is the design equation for calculating polynomials
R(q−1) and S(q−1) of the optimal predictor (8). The
degrees of R(q−1) and R(q−1) must be L − 1 as given
in (7) so that the above equation has a unique solution.
In practice, B(q−1) and C(q−1) are unknown. Hence we
cannot use (14) to calculate R(q−1) and S(q−1). We now
propose a recursive algorithm for directly estimating the
unknown parameters in (8). Let

θH
0 = [r0, r1, · · · , rN1, s0, s1, · · · , sN2 ], (15)

and

φ(i)T = [x1(i), x1(i− 1), · · · , x1(i− N1),
x2(i), x2(i− 1), · · · , x2(i − N2)], (16)

where (.)H stands for conjugate transpose. Then from
(6) we have,

y(i + 1) = θH
0 φ(i). (17)

Instead of (17) we use following adaptive predictor,

ŷ(i + 1) = θ̂(i)Hφ(i), (18)

where θ̂(i) is an estimate of unknown θ0, and it can be
generated by the following recursive least square (RLS)
algorithm [10]:

θ̂(i + 1) = θ̂(i) + p(i)φ(i)ε(i + 1)∗, (19)

ε(i + 1) = x1(i + 1) − θ̂(i)Hφ(i), (20)

p(i) = p(i− 1)− p(i− 1)φ(i)φ(i)Hp(i− 1)
1 + φ(i)Hp(i− 1)φ(i)

,

p(0) = p0I, p0 > 0, (21)

where I is the identity matrix.

III. CONVERGENCE OF THE ADAPTIVE EQUALIZER

We now show consistency of the parameter estimates,
and prove that the prediction error converges almost
surely (a.s.) towards the scalar version of the input
symbol sequence. In the following, f(i) = O(g(i))
means limi→∞ |f(i)/g(i)|< ∞.

Theorem 1 Let Assumptions A1 and A2 hold and one
of the following is valid: N1 = L − 1 or N2 = L − 1.
Then,

||θ̂(i)− θ0|| = O
(

loglog i

i

) 1
2

(a.s.) as n → ∞, (22)

and

lim
i→∞

(ε(i + 1)) − b0w(i + 1 − d)) = 0. (a.s) (23)

Proof: Note that by the Matrix Inversion Lemma
[10], (21) gives

p(i)−1 = p(i− 1)−1 + φ(i)φ(i)H, (24)

or

p(i)−1 = p(0)−1 +
i∑

k=1

φ(k)φ(k)H . (25)

We first prove that for sufficiently large i, p(i)−1

i is a
positive definite matrix. Since from (1), x1(i) = B

Aw(i−
d) and x2(i) = C

Aw(i − d), signal vector φ(i) given by
(16), can be written as follows:

φ(i)T = 1
A(q−1)

[B(q−1), q−1B(q−1), · · · , q−N1B(q−1),

C(q−1), q−1C(q−1), · · · , q−N2C(q−1)]w(i− d) (26)

Using the fact that by Assumption A2, process w(i) is
ergodic in the second moment, application of Parseval’s
theorem on (25) gives

T = lim
i→∞

p(i)−1

i
=

1
2π

∫ 2π

0

F (e−jω)F (ejω)Hσ2
wdω (a.s.)

where

F (z−1)T =
z−d

A(z−1)
[B(z−1), z−1B(z−1), · · · , z−N1B(z−1),

C(z−1), z−1C(z−1), · · · , z−N2C(z−1)], z = ejω.

Obviously T is positive definite if it is not possible to
find any nonzero vector λ satisfying λTTλ = 0. The last
equality holds if and only if

λTF (z−1) = 0, (27)

for all ω ∈ [0, 2π]. Let λ1(z−1) and λ2(z−1) be poly-
nomials in z = ejω of degree N1 and N2 respectively,
formed from the corresponding components of λ. Then
(27) becomes

λTF (z−1) = λ1(z−1)B(z−1) + λ2(z−1)C(z−1) = 0. (28)

Since B(z−1) and C(z−1) are coprime, and either N1 =
L−1 < degB(z−1) = degC(z−1) = L or N2 = L−1 <
L, (28) holds if λ1(z−1) = 0 and λ2(z−1) = 0 implying
λ = 0, and therefore T is a positive definite matrix. Next
we prove statement (22). Since from (13) and (17) x1(i+
1) = y(i+1)+b0w(i+1−d) = θH

0 φ(i)+b0w(i+1−d),
we have

ε(i + 1) = x1(i + 1) − θ̂(i)Hφ(i)
= −θ̃(i)Hφ(i) + b0w(i + 1 − d), (29)
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where θ̃(i) is parameter estimation error given by θ̃(i) =
θ̂(i)− θ0. By using (29) in (19) it follows that

θ̃(i + 1) = θ̃(i) + p(i)φ(i)[−φ(i)Hθ̃(i)
+b∗0w(i + 1 − d)∗], (30)

or,

p(i)−1θ̃(i + 1) = p(i)−1θ̃(i)− φ(i)φ(i)Hθ̃(i)

+b∗0φ(i)w(i + 1 − d)∗. (31)

Substituting (24) into the first term on the right hand side
of (31) yields

p(i)−1θ̃(i + 1) =
p(i − 1)−1θ̃(i) + b∗0φ(i)w(i + 1 − d)∗, (32)

from where we obtain

p(i)−1θ̃(i + 1) =

p(0)−1θ̃(1) + b∗0
i∑

k=1

φ(k)w(k + 1− d)∗. (33)

Consider the following martingale transform,

S(i + 1 − d) ∆=
n∑

k=1

φ(k)w(k + 1 − d)∗; i ≥ d − 1.

Then

E(S(i + 1 − d)|Fi−d) = S(i− d), (a.s.) (34)

where we have used the fact that φ(i) depends only on
past samples of w(k), k ≤ i−d. On the other hand since
{φ(i)} is a bounded sequence, we have E(|φ(i)w(i +
1 − d)|) < ∞. Hence (34) implies that S(i + 1 − d) is
a martingale. By virtue of the iterated logarithm law for
martingales [11] we can conclude that

||S(i + 1 − d)|| = O
[
(i log log i)

1
2

]
. (a.s.) (35)

Using the fact that for sufficiently large i, p(i)−1

i is a posi-
tive definite matrix, statement (22) follows from (33) and
(35). Furthermore, (22) implies limi→∞(θ̃(i)Hφ(i)) =
0 (a.s.). Then statement (23) follows from (29) and the
proof is complete.

Note that the convergence rate in (22) is the best
possible for the parameter error generated by the least
squares based algorithm, since it is the same as that in
the laws of the iterated logarithm.

IV. SIMULATION EXAMPLE

In this experiment we use a symbol sequence gener-
ated from a 16-QAM constellation. The corresponding
symbol levels along both axis are −1.5,−0.5, 0.5 and

1.5. We consider the following channel model A(q−1) =
1 − 0.8q−1 + 0.16q−2, B(q−1) = (1.5 − 1.5i) +
(−2.6−0.9i)q−1+(3.44+1.2i)q−2+(−2.32+1.7i)q−3,
C(q−1) = (1 − 0.7i) + (−1.7 + 2i)q−1 + (0.96 −
1.4i)q−2+2.18q−3. In (16) we take N1 = 3 and N2 = 4.
Fig. 3 shows the received symbols x1(i), while Fig. 4
presents the equalized symbols eye diagram. The amount
of rotation and magnification in the eye diagram is a
function of b0 = 1.5 − 1.5i, i.e., the angle of rotation
is −45o, while the magnification is |b0| = 2.1213.
According to (23),

ms(i) =
1
i

i∑
k=1

|ε(k) − b0w(k)|2 →
i→∞

= 0, (a.s.) (36)

Fig. 5 illustrates this fact for this particular example.
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Fig. 4 Eye diagram of equalizer output
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Fig. 5 Mean square error

V. CONCLUSION

This paper presents a rigorous convergence analysis
of the prediction based RLS adaptive equalizer. It is
proved that the parameter estimates converge (a.s.) with
the same rate as that given by the iterated logarithm law.
Also, the prediction error converges (a.s.) to a scalar
version of the input symbol sequence. Currently, efforts
are under way to extend the above results to the case
when receiver noise is present.
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