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Abstract—An analysis is performed to study the influence of non-
uniform double slot suction on a steady laminar boundary layer flow
over a rotating sphere when fluid properties such as viscosity and
Prandtl number are inverse linear functions of temperature. Non-
similar solutions have been obtained from the starting point of the
streamwise co-ordinate to the exact point of separation. The difficul-
ties arising at the starting point of the streamwise co-ordinate, at the
edges of the slot and at the point of separation have been overcome by
applying an implicit finite difference scheme in combination with the
quasi-linearization technique and an appropriate selection of the finer
step sizes along the stream-wise direction. The present investigation
shows that the point of ordinary separation can be delayed by non-
uniform double slot suction if the mass transfer rate is increased and
also if the slots are positioned further downstream. In addition, the
investigation reveals that double slot suction is found to be more
effective compared to a single slot suction in delaying ordinary
separation. As rotation parameter increase the point of separation
moves upstream direction.

Keywords—boundary layer, suction, mass transfer, rotating sphere.

I. INTRODUCTION

A detailed analysis of boundary layer flow problems taking
non-similarity into account has become significantly important
in recent past. In an earlier study, a review on the non-
similarity solution methods along with the relevant publica-
tions is given by Dewey and Gross [1]. Subsequently, many
attempts have been made to provide non-similar solutions of
boundary layer flow problems by finite difference method [2],
[3] and an implicit finite difference method in combination
with quasi-linearization technique [4], [5]. Fluid viscosity and
thermal conductivity are the main governing fluid properties in
the laminar water boundary layer forced flow and hence their
variations can be expected to affect separation. Further, mass
transfer through a slot strongly influences the development
of a boundary layer along a surface and in particular can
prevent or at least delay separation of the viscous region.
Different studies [7], [6], [8], [9] show the effect of single
slot suction (injection) into steady compressible and water
boundary layer flows over two dimensional and axi-symmetric
bodies. Moreover, Roy [10] and Subhashini et.al [11] gave
investigated the influence of non-uniform multiple slot suction
(injection) on compressible boundary layer flows over cylinder
and yawed cylinder, respectively. Also, in more recent studies,
Roy et.al. [12] and Roy and Saikrishnan [13] have reported
the influence of non-uniform double slot suction (injection) on
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an incompressible boundary layer flow over a slender cylinder
and sphere, respectively.

In the present investigation, the effect of non-uniform dou-
ble slot suction on the steady laminar non-similar boundary
layer flow over rotating sphere is considered. The non-similar
solutions have been obtained starting from the origin of the
stream-wise coordinate to the point of separation (zero skin
friction in the stream-wise direction) using quasi-linearization
technique with an implicit finite difference scheme. The
present analysis may be useful in understanding many bound-
ary layer flow problems of practical importance, for example,
in suppressing recirculation bubbles and controlling transition
and/or delaying the boundary layer separation over control
surfaces.

II. MATHEMATICAL FORMULATION

Consider a steady laminar non-similar boundary layer
forced convection flow (of water) with temperature-dependent
viscosity and Prandtl number over a rotating sphere when
the non-uniform mass transfer (suction in a slot) vary with
the axial distance (x) along the surface. The sphere, rotating
with the constant angular velocity Ωo, is placed in a uniform
stream with its axis of rotation parallel to the free stream
velocity. An orthogonal curvilinear coordinate system (see
Fig.1) has been chosen in which coordinate x measures the
distance from the forward stagnation point along a meridian,
y represents the distance in the direction of rotation and z
is the distance normal to the body surface. The radius of a
section normal to the axis of the sphere at a distance x along
the meridian from the pole is r(x) and it is assumed that
r(x) is large compared with the boundary layer thickness.
The fluid is assumed to flow with moderate velocities, and the
temperature difference between the wall and the free stream is
small (< 40oC). In the range of temperature considered (i.e.,
0oC − 40oC), the variation of both density (ρ) and specific
heat (Cp), of water, with temperature is less than 1% (see
Table 1) and hence they are taken as constants. However, since
the variations of viscosity (μ) and thermal conductivity (k)
[and hence Prandtl number (Pr)] with temperature are quite
significant, the viscosity and Prandtl number are assumed to
vary as an inverse function of temperature (T ) [5, 6]:

μ =
1

b1 + b2T
and Pr =

1

c1 + c2T
(1)

where

b1 = 53.41, b2 = 2.43, c1 = 0.068 and c2 = 0.004.
(2)

WaterBoundary Layer Flow Over
Rotating Sphere with Mass Transfer



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:5, 2010

513

Fig. 1. Flow geometry

The numerical data, used for these correlations, are taken
from [14]. The relations (1) - (2) are reasonably good ap-
proximations for liquids such as water, particularly for small
temperature differences between the wall and ambient fluid.
The fluid at the edge of the boundary layer is maintained
at a constant temperature T∞ and the body has a uniform
temperature Tw (Tw > T∞). The blowing rate of the fluid is
assumed to be small and it does not affect the inviscid flow
at the edge of the boundary layer. Under the above mentioned
assumptions, the boundary layer equations governing the flow
can be written as (3) - (6):

(ru)x + (rw)z = 0, (3)

uux + wuz − r−1v2rx = ue(ue)x + ρ−1(μuz)z, (4)

uvx + wvz + uvr−1rx = ρ−1(μvz)z, (5)

uTx + wTz = ρ−1
( μ

Pr
Tz

)
z
+

μ

ρCp
(u2z + v2z). (6)

The boundary conditions are given by:

u(x, 0) = 0, v(x, 0) = Ωor(x),

w(x, 0) = ww(x), T (x, 0) = Tw = constant,

u(x,∞) = ue(x), v(x,∞) = 0, T (x,∞) = T∞ = constant.
(7)

Applying the following transformations

ξ =

∫ x

0

(
ue
u∞

)( r
R

)2

R−1dx,

η =

(
Re

2ξ

)1/2 (
ue
u∞

)( r
R

)( z
R

)
,

ψ(x, z) = u∞R
(
2ξ

Re

)1/2

f(ξ, η), ur = R
∂ψ

∂z
,

wr = −R∂ψ
∂x

,

Re =
u∞Rρ
μ∞

, G =
T − Tw
T∞ − Tw

,

v(x, z) = Ωo r(x)S(ξ, η) (8)

to Eqs. (3) - (6), we find that Eq. (3) is identically satisfied
and Eqs. (4) - (6) reduce to nondimensional form given by

(NFη)η + fFη +β(ξ)(1−F 2)+α(ξ)S2 = 2ξ(FFξ − fξFη),
(9)

(NSη)η + fSη − α1(ξ)FS = 2ξ(FSξ − Sηfξ), (10)

(NPr−1Gη)η + fGη +NEc

(
ue
u∞

)2

[F 2
η + λS2

η ] =

2ξ(FGξ − fξGη), (11)

where

N =
μ

μ∞
=
b1 + b2T∞
b1 + b2T

=
1

a1 + a2G
,

Pr =
1

c1 + c2T
=

1

a3 + a4G
,

a1 =
b1 + b2Tw
b1 + b2T∞

, a2 =
b2(T∞ − Tw)

b1 + b2T∞
,

a3 = c1 + c2Tw, a4 = c2(T∞ − Tw),

β(ξ) =
2ξ

ue

due
dξ

, α1(ξ) =
4ξ

r

dr

dξ
, λ =

(
Ωor

ue

)2

,

α(ξ) =
2ξ

r

dr

dξ
λ, Ec =

u2∞
Cp(T∞ − Tw)

,

�Tw = (Tw − T∞), u = uefη = ueF,

w = − rue
R(2ξRe)1/2

{f + 2ξfξ + (β(ξ) +
α1(ξ)

2
− 1)ηF}.

The transformed boundary conditions are

F (ξ, 0) = 0, S(ξ, 0) = 1, G(ξ, 0) = 0,

F (ξ,∞) = 1, S(ξ,∞) = 0, G(ξ,∞) = 1, (12)

where f =

∫ η

0

Fdη + fw and fw is given by

fw = −ξ−1/2

(
Re

2

)1/2 ∫ x̄

0

( r
R

) 1

u∞
ww(x̄)dx̄ (13)

The set of Eqs. (9) - (11) reduces to that of the classical
nonsimilar flow over a stationary sphere for λ = 0. Hence
Eq. (10) becomes redundant as the velocity component in the
y- direction v=0 (i.e., S=0) for λ = 0.

In the case of a sphere of radius R, the velocity at the edge
of the boundary layer and non-uniform surface mass transfer
being functions of x̄, give rise to non-similarity. The velocity
at the edge of the boundary layer and the radius of revolution
r(x) are given by [6]

ue
u∞

=
3

2
sin x̄,

r

R
= sin x̄, x̄ =

x

R
.

Consequently, the expressions for ξ, β(ξ), α(ξ), α1(ξ) and fw
can be expressed as

ξ =
1

2
P 2
1P3, β =

2

3
P3P

−2
2 cos x̄, α = λβ,

α1 = 2β, λ =

(
Ωor

ue

)2

=
4

9

(
ΩoR

u∞

)2

, (14)
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fw =⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 , x̄ ≤ x̄o

AP−1
1 P

−1/2
3 C(x̄, x̄o) , x̄o ≤ x̄ ≤ x̄∗o

AP−1
1 P

−1/2
3 C(x̄∗o, x̄o) , x̄∗o ≤ x̄ ≤ x̄1

AP−1
1 P

−1/2
3 {C(x̄∗o, x̄o) + C(x̄, x̄1)} , x̄1 ≤ x̄ ≤ x̄∗1

AP−1
1 P

−1/2
3 {C(x̄∗o, x̄o) + C(x̄∗1, x̄1)} , x̄ ≥ x̄∗1

(15)

where C(x̄, x̄o) = sin{(ω∗−1)x̄−ω∗x̄o}+sin x̄o

(ω∗−1) −
sin{(ω∗+1)x̄−ω∗x̄o}−sin x̄o

(ω∗+1) , P1 = 1− cos x̄, P2 = 1+ cos x̄ and
P3 = 2 + cos x̄.
Here, ww(x̄) (in (13))is taken as

ww(x̄) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , x̄ ≤ x̄o
−u∞(Re

2 )−1/221/2A sin{ω∗(x̄− x̄o)} , x̄o ≤ x̄ ≤ x̄∗o
0 , x̄∗o ≤ x̄ ≤ x̄1
−u∞(Re

2 )−1/221/2A sin{ω∗(x̄− x̄1)} , x̄1 ≤ x̄ ≤ x̄∗1
0 , x̄ ≥ x̄∗1

where ω∗ , x̄o and x̄1 are the three free parameters which
determine the slot length and slot locations, respectively. The
function ww(x̄) is continuous for all values of x̄ and it has a
non-zero value only in the intervals [x̄o, x̄∗o] and [x̄1, x̄∗1]. The
reason for taking such a function is that it allows the mass
transfer to change slowly in the neighbourhood of leading and
trailing edges of the slot. The parameter A > 0 or A < 0
according to whether there is a suction or an injection. It is
convenient to express Eqs. (9) - (11) in terms of x̄ instead of
ξ. Equation (14) gives the relation between ξ and x̄ as

ξ
∂

∂ξ
= B(x̄)

∂

∂x̄
, (16)

where B(x̄) = 3−1 tan( x̄2 )P3P
−1
2 .

Substituting Eq. (16) in Eqs. (9) - (11), we obtain

(NFη)η+fFη+β(x̄)(1−F 2)+α(x̄)S2 = 2B(x̄)(FFx̄−fx̄Fη),
(17)

(NSη)η + fSη − α1(x̄)FS = 2B(x̄)(FSx̄ − Sηfx̄), (18)

(NPr−1Gη)η + fGη +NEc( ue

u∞
)2[F 2

η + λS2
η ]

= 2B(x̄)(FGx̄ − fx̄Gη), (19)

where N = 1
a1+a2G

, and Pr = 1
a3+a4G

.
The boundary conditions become

F (x̄, 0) = 0, S(x̄, 0) = 1, G(x̄, 0) = 0,

F (x̄,∞) = 1, S(x̄,∞) = 0, G(x̄,∞) = 1, (20)

where f =
∫ η

0

Fdη + fw.

The skin friction coefficients in x- and y- directions can be
expressed in the form:

Cf (Re)
1/2 =

9

2
sin x̄ P2P

−1/2
3 Nw (Fη)w, (21)

C̄f (Re)
1/2 =

9

2
λ1/2 sin x̄ P2P

−1/2
3 Nw (Sη)w. (22)
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Fig. 2. Effect of suction (A > 0) on the velocity and temperature gradients
for T∞ = 18.7oC,�Tw = 10oC,w∗ = 2π and λ = 1. – – – – – – – – no
slot. .................., x̄o = 0.5. , x̄o = 0.5, x̄1 = 1.3

Similarly, the heat transfer coefficient in terms of Nusselt
number can be written as

Nu(Re)−1/2 =
3

2
P2P

−1/2
3 (Gη)w, (23)

where Cf = 2
[μ( ∂u

∂z )]w
ρu2∞

, C̄f = 2
[μ( ∂v

∂z )]w
ρu2∞

, Nu =
R( ∂T

∂z )w
(T∞−Tw) , and Nw = 1

a1+a2Gw
= constant.

III. RESULTS AND DISCUSSION

The set of equations (17) and (19) under the bound-
ary conditions (20) have been solved numerically using an
implicit finite difference scheme in combination with the
quasilinearization method as discussed by Inoye and Tate
[16]. Computations were carried out for various values of
A(−0.6 < A < 2.0) and λ(0 ≤ λ ≤ 4). The effect of non-
uniform suction of a single slot located at x̄o = 0.5 on the
skin friction is compared with that over a non-uniform suction
of double slot situated at x̄o = 0.5 and x̄1 = 1.30 in Fig.2. It
is observed that the separation gets delayed and the point of
separation moves further downstream due to the double slot
suction than that of a single slot suction. Hence, double slot
suction is more effective in delaying separation than the single
slot suction when sphere is rotating with constant angular
velocity Ωo.

The effects of non-uniform double slot suction parameter
( A > 0 ) on velocity gradients and temperature gradient
(Fη(x̄, 0),−Sη(x̄, 0), Gη(x̄, 0)) in the case of non-uniform
double slot suction is presented in Figure 2. In both, double
and single slot cases, the skin frictions gradually increase from
the leading edges of the slots, attain a maximum and then
start decreasing at the rear end the slots. Finally, the veloc-
ity and temperature gradients (Fη(x̄, 0),−Sη(x̄, 0), Gη(x̄, 0))
decrease from their maximum values and reaches zero but
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Fig. 3. Effect of suction (A > 0) on the velocity and temperature gradients
for T∞ = 18.7oC,�Tw = 10oC, x̄o = 0.5, x̄1 = 1.3, w∗ = 2π and
λ = 1.

the velocity gradient in y direction (Sη(x̄, 0)) remains finite.
This implies that ordinary separation occurs at this point. For
the problem under consideration, singular separation does not
occur (i.e. for no value of x̄, both Fη(x̄, 0), Sη(x̄, 0) reach
zero value simultaneously). Hence we have used the word
separation to denote ordinary separation.

The effect of mass transfer parameter on the velocity gradi-
ents and temperature gradient (Fη(x̄, 0),−Sη(x̄, 0), Gη(x̄, 0))
in the case of non-uniform double slot suction is pre-
sented in Fig. 3. The velocity and temperature gradients
(Fη(x̄, 0),−Sη(x̄, 0), Gη(x̄, 0)) increase with the increase in
mass transfer rates. Further, the point of separation moves
further downstream with the increase of A.

It is noticed from figure 4, that the point of separation moves
downstream when positions of the slots are moved further
downstream. Thus the point of separation can be delayed
by non-uniform double slot suction (A > 0) and also by
positioning the slots further downstream.

The effects of rotation parameter (λ) on velocity gradients
and temperature gradient (Fη(x̄, 0),−Sη(x̄, 0), Gη(x̄, 0)), with
parameter A = 0.5 in the case of non uniform double slot
suction is plotted in figure 5. Increasing value of rotation
parameter results, the point of separation moves upstream
direction.

IV. CONCLUSIONS

Non-similar solution of a steady laminar incompressible
(water) boundary layer flow over a rotating sphere with non-
uniform double slot suction has been obtained starting from
the origin of streamwise coordinate to the exact point of sepa-
ration. The present study effectively compares the significance
of non-uniform single and double slot suction of laminar water
boundary layer flows over a rotating sphere. The numerical
investigation shows that the point of separation can be delayed
using non-uniform double slot suction and also by increasing
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Fig. 4. Effect of slot movement on the velocity and temperature gradients
for A = 1.25, T∞ = 18.7oC,�Tw = 10oC,w∗ = 2π and λ = 3.
.................., x̄o = 0.3, x̄1 = 1.2. , x̄o = 0.6, x̄1 = 1.4. – – – –
– –, no slot.
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Fig. 5. Effect of rotation parameter of velocity and temperature gradients for
A = 2.0, T∞ = 18.7oC,�Tw = 10oC, x̄o = 0.5, x̄1 = 1.3, w∗ = 2π.

the mass transfer rate in the slots. Further, it is noticed that
by moving the double slot further downstream with (A > 0).
The increasing value of rotation parameter results, the point
of separation moves upstream direction.
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