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Abstract—A model of vortex wake is suggested to determine the 

induced power during animal hovering flight. The wake is modeled 
by a series of equi-spaced rigid rectangular vortex plates, positioned 
horizontally and moving vertically downwards with identical speeds; 
each plate is generated during powering of the functionally wing 
stroke. The vortex representation of the wake considered in the 
current theory allows a considerable loss of momentum to occur. The 
current approach accords well with the nature of the wingbeat since it 
considers the unsteadiness in the wake as an important fluid 
dynamical characteristic.  Induced power in hovering is calculated as 
the aerodynamic power required to generate the vortex wake system. 
Specific mean induced power to mean wing tip velocity ratio is 
determined by solely the normal spacing parameter (f) for a given 
wing stroke amplitude. The current theory gives much higher specific 
induced power estimate than anticipated by classical methods.  
 

Keywords—vortex theory, hovering flight, induced power, 
Prandlt’s tip theory. 

I. INTRODUCTION 
OVERING phenomenon is aerodynamically an extreme 
mode of flying that necessitates a  tremendous energy 

expenditure since all downward movement of air requisite to 
neutralize the effect of gravity on the hovering animal for the 
duration of the wing beat must be supplied by the beating 
wings. The mechanical power input is expected to  be 
unobtainable especially for  animals which  are not  
characteristically suited to utilize hovering flight as a 
locomotion means during their life cycle since their power 
budget can not tolerate such massive amount of power 
consumption. The flow field produced during hovering animal 
flight is extraordinarily difficult to treat mathematically and 
the associated wing kinematics is of great complexity to 
perceive. The resulting flow pattern is periodically-generated 
nearly equally spaced twisted vortex sheets. The complexity 
of this flow requires a more elaborate modeling of its structure 
to obtain an accurate computation of the induced velocity 
developed at the wing disk.  Numerical methods are the 
outcome of most flight models and the accompanying 
computing time is normally astronomical. However, the 
vortex lattice illustration of the wake utilized in present theory 
is computationally the most economical.         

                                                                                         
Early quantitative approaches introduced drastic 

simplifications to the wake structure such as neglecting the 
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unsteadiness of the wake by assuming that vorticity is 
distributed throughout the wake volume rather than in a 
discrete pattern. These methods can only describe the general 
airflow characteristic and it does not require any detailed 
knowledge of the internal process within the fluid. Most of the 
early studies on hovering flight adopted the actuator disk and 
its associated momentum jet. These methods assume that the 
flapping motion imparts continuous momentum to the air, and 
the lift force is generated as a result of accelerating the air 
vertically downwards. The momentum jet theory assumes that 
no flow passes through the boundary of the wake, and that 
both mass and momentum are conserved in the body of the 
wake. The classical methods are elegant in their simplicities 
and can reduce the complexity of the mathematical treatment 
enormously. In fact, animal flight produces a very complex 
wake structure which sequentially generates a highly 
complicated airflow pattern over the wings and around the 
resulting vortex sheets. Also the vorticity generation during 
hovering activity is discontinuous, consequently there can be a 
flow through the boundary of the wake which violates 
strongly the continuity requirement assumed by the 
conventional aerodynamic analysis. The validity of these 
assumptions in application to animal flight is therefore 
limited. Apparently these discrepancies can not be disregarded 
and should be sufficiently adequate to dispense with the 
utilizing of momentum jet theory in animal flight analysis  [1], 
[2], [3], [4], [5].   

The blade element theory of propellers has been widely 
used to study the animal flight. This theory assumes that the 
wing is operating under quasi-steady aerofoil states. The 
aerodynamic effects of wing motion are calculated by 
assuming that the aerodynamic forces produced by each 
element of the wing are identical to those that would be 
produced by such element traveling at the same steady 
velocity and angle of attack. [6] derived the general equations 
that apply to flapping flight. This type of analysis nevertheless 
requires a knowledge of lift and drag coefficients. The 
classical studies of flapping flight   composed of a blade 
element theory which provides the lift and drag forces and a 
momentum theory that gives the induced velocity at the wing 
disk [7], [8], [9], [10]. Theoretical and experimental 
predictions for the force coefficients contain numerous ‘gray 
areas’ of uncertainty which force the employment of a number 
of simplifying assumptions to obtain approximate estimates to 
them. It is evident that conventional aerodynamic analysis is 
incapable of providing a detailed knowledge of the flow field 
and can not fully tackle the animal flight problem. However, 
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the final equations resulted from the current vortex plate 
theory are independent of the lift and drag coefficients.  

A high degree of unsteadiness in the flow necessitates an 
aerodynamic modeling that based on a consideration of the 
local flow characteristic rather than on a global properties as 
in the case of classical methods. [11] was the first to put 
forward a flight vortex theory. He set up the general equations 
for his flight theory, but they were too complex to manage 
mathematically. [12] developed a vortex hovering theory; he 
suggested that the vortex sheet shed by the powered stroke 
rolled up immediately into circular vortex rings. [13] devised 
a new model based on what he called the pulsed actuator disc, 
his theory has proved useful for animals that characterize by 
low wake spacing. Exploiting the recent advances in near-
flow aerodynamics of insects and birds, [14] developed a 
theoretical framework to calculate the mean induced flow and 
how wing kinematics affects induced flow over flying animals 
body. This work [14] is derived from rotary aerodynamics. 
These aerodynamic theories also make use of various 
assumptions and simplifications to make  them mathematically 
solvable. Nevertheless, flying animals have a sophisticated 
type of wing design; it is capable of flapping and twisting 
simultaneously and able to respond to the inertial and 
aerodynamic forces normally encountered during flight, it also 
allows changes of velocities and angles. Such complexity has 
so far hampered any precise modeling of this complex 
aerodynamic phenomenon. 

The theory presented here is designed to model the wake 
structure of a hovering animal flight. Fundamentally, this type 
of mathematical modeling presents difficulties in computation 
and fairly realistic approximations are therefore imperative. 
This theory is therefore based upon a number of assumptions 
which reduce the structural and mathematical complexities of 
the wake and make it qualitatively and quantitatively 
manageable. The modeling of the wake to be considered in the 
present theory is the classical rigid wake model; this model 
assumes no distortion should take place to the geometry of the 
wake and all the wake elements are convected with the same 
velocity. The present flight theory retains qualitatively the 
surface traced out by the flapping wings during the feathering 
of the aerodynamically loaded stroke as the vortex wake shape 
under consideration. The twist of the vortex sheets are to be 
ignored and assumed rectangular. Thus the wake under 
physical deliberation consists of a chain of equi-spaced rigid 
impermeable rectangular vortex plates positioned in a 
horizontal plane in the flowfield and array vertically 
downwards beneath the wing disk. The vertical wake spacing 
is decided by the rate at which the vortex plates are convected 
downwards. However, limits on the accuracy of the solution 
are imposed by the hypothesis that the wake is not permitted 
to curl up under the action of local velocities. This paper 
provides primarily an estimate of mean induced power 
consumed during hovering action.  

II.  ASSUMPTIONS, DEFINITIONS AND  HOVERING KINEMATIC 
PATTERNS 

The formation of a pragmatically accurate and 

mathematically solvable hovering flight model does not rely 
upon a particularly rigid adherence to the exact geometry of 
the vortex sheet. Thus simplifying assumptions are introduced 
to conduct the analysis without unduly lengthy or complex 
computations. Throughout it is assumed that the fluid is 
incompressible, inviscid, and of uniform density. This study 
neglects all viscous lag effects and the azimuthal variation of 
the vorticity. The deforming effects induced by the presence 
of vorticity elsewhere in the flow field on the vortex plate 
under investigation are small enough to be neglected. The 
rotation which may occur due to the interaction between 
successive vortex plates in the wake is ignored; normally a 
newly generated vortex plate causes its predecessor to rotate. 
The movement of the wing during the functional stroke is 
assumed to be confined to a single plane and the resulting 
vortex sheet is characteristically planar. However, departure 
from planarity may cause a small increase in vortex plate 
energy, but such increase has little effect on the outcome of 
the theory and can be ignored.  At the commencement of a 
wing motion, a full establishment of steady-state vorticity 
production is normally delayed by what so-called the ‘Wagner 
effect’. The interaction between the bound vorticity and the 
trailed vorticity is merely responsible for this aerodynamically 
unfavorable state. However, the twist of an animal wing may 
be assumed such that the effect of Wagner in delaying the lift 
development, is counterbalanced by pushing the wings to high 
angle of attack at the start of the downstroke and reducing the 
incidence throughout the stroke, particularly for hovering 
birds.  The present theory assumes that the undesirable 
phenomenon of Wagner has a diminishing influence on the 
progress of the hovering process and can be ignored without 
introducing any serious errors in the calculation. The present 
study also neglects totally the roll-up of the vortex wake that 
may occur downstream of the wing disk since it has little 
influence on the animal itself and it takes place well 
downstream about 13 chord lengths behind the wing disk [15]. 
Also, rolling-up phenomenon should by no means affect the 
induced power consumption considerably because induced 
power is little influenced by the exact state of the vortex sheet. 
Finally, we assume that the interactions among vortex 
elements under physical deliberation are minimal. 

There are two categories of flight parameters associated 
with the animal features and the generated wake. The first 
category can be divided into two distinguished groups: the 
morphology and kinematics groups. The morphological 
parameters describe the structural features of the animal body 
and wing; those are the body mass bM , and wing semi-span 
b. The kinematic parameters feature the wing stroke 
dynamical characteristics; they are the stroke plane angle of 
the wing relative to the horizontal β, stroke amplitude ( )2 mΨ , 
and the wing stroke period T. 

                       ,ˆTT
b

t
πω =                                          (1) 

where ,T̂  is the non-dimensionalized stroke period. It is equal 
to 1/2 if both half strokes  generates lift and 1 if only 
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downstroke does so . The induced velocity of the vortex plate 
far downstream of the wing sω  will be derived later from the 
consideration of the vortex sheet impulse. By the above 
definition, normal spacing parameter, 
                                                                                         

                                   ,
s

t=f
ω
ω                                          (2) 

so that    
                                 .ˆ

 

sTT
b=f
ω

π                                          (3) 

We define another important non-dimensional parameter 
called the hovering parameter K as the square of the ratio 
between the ideal induced velocity jω   and wing tip velocity. 

The ideal induced velocity can be derived from the actuator 
disc concept [16], therefore     
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where ρ (=1.225 kg/m3) is the air density. From the above 
definition, hovering parameter 

                                          .2
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ω
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=                                   (5) 

Thus we can write 
 

                                    .
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 gMTTK b

ρπ Ψ
=                              (6) 

 
It is an unequivocally apparent that a comprehension of the 

wing’s kinematics during hovering is of paramount 
consequence in the progression of any vortex flight theory 
because each kinematic pattern necessitates theoretically 
somehow different physical deliberations from the others. 
Great advancements have been made recently concerning the 
kinematics of the wing motion during hovering  [13]. Three 
main functional patterns have been observed in the field as 
well as in the laboratory. The categorization of each pattern is 
based on the orientation of the stroke plane, each kinematic 
pattern is distinguished by the inclination of its stroke plane. 

The first pattern is the most commonly observed kinematic 
pattern among insects and hummingbirds. It is characterized 
by a roughly horizontal stroke plane, almost vertically 
oriented body, figure-of-eight wing movement, and 
symmetrical down-  and up-strokes wing movement. This 
elegant form of hovering requires peculiar wings’ structural 
anatomy as they need to rotate their wings quickly at the ends 
of each half-stroke so that they get oriented for the coming 
stroke, and so the fore edge is always leading; therefore 
upward-acting forces arise  in both half-strokes. This pattern 
was firstly identified by [10] which he called normal hovering. 
In his elementary survey, Weis-Fogh employed very 
simplistic approach based on a steady-state aerodynamic 
principles and a number of simplifying assumptions to 

analytically study this common form of hovering. He 
calculated the mean lift coefficients and found that most 
insects are operating within the capabilities of low Reynolds 
number aerofoils, with the exception of the chalcid wasp, 
Encarsia formosa, its estimated lift coefficient was rather 
much too high to be compatible with quasi-steady 
aerodynamics. Later, [13] carried out more accurate estimates 
of lift coefficient of two insects, a ladybird, Coccinella 7-
punctata, and a crane fly, Tipula obsoleta, his lift coefficient 
estimates were strikingly too large to be developed by the 
classical lift generation mechanism. [10] put forward a novel 
mechanism called ‘clap and fling’ that explains how the 
chalcid wasp supports its weight during hovering. In addition, 
such mechanism significantly enhances the initial circulation 
generation on the wing so that the discrepancy allied with the 
Wagner effect can be reduced to some extent. [17] provided a 
theoretical analysis that advocated this mechanism. 

The second kinematic pattern is common among some small 
hoverflies, birds, bats, and some dragonflies. It is 
characterized by an oblique stroke plane. In this hovering 
form, the upstroke is feathered with little vorticity being 
generated, they achieve this by flexing the wing in a complex 
manner to zero angle of attack so as to minimize the fluid 
resistance during the upstroke. The downstroke generates all 
the necessary vorticity to maintain the hovering body mass 
airborne at a fixed point in space for the duration of the entire 
stroke period. The animals typified by this strenuous mode of 
hovering are incapable anatomically of exploiting the less 
power-demanding mode that referred to above. In the analysis 
of this flight mode we disregard all vorticity produced during 
upstroke, this is justified by their relatively small values. 

The final kinematic pattern was originally unveiled by [13] 
and  found out that butterflies utilize uniquely a vertical stroke 
plane during hovering cycle. On the downstroke the wing is 
held perpendicular to the direction of its movement, but the 
upstroke is feathered so that it is parallel to the direction of 
movement. As far as I am aware, there is no detailed analysis 
of the vertically oriented hovering mode in the literature. 
Therefore we will not investigate this kinematic pattern in our 
study. 

III. INDUCED POWER 
   The majority of theoretical studies in animal flight 
mechanics have primarily concentrated energy consumption 
determination. Studies related to power characteristics 
calculation and measurement are plagued by theoretical and 
experimental complexities. Most aerodynamic theories have 
had the tendency to simplify the complex physics of the 
airflow in the vicinity of the flapping wings and the wake 
generated behind the flapping wings, so that a mathematically 
tractable model could be established.   

For a hovering flight activity to be sustained energy has to 
be produced and transferred to the fluid to increase its 
momentum, so a force impulse (lift reaction) is produced to 
support the animal’s weight. The power requisite to generate 
this rise in kinetic energy is termed as the induced power. 
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Induced power can be thought of as an energy-loss due to 
vortex shedding in the wake, it is equivalent to the mechanical 
power needed to generate the vortex wake system.  

The source of flapping power is the flight muscles. This 
power is normally produced by the mechanical movement of 
the flapping wings, the available amount of power is 
dependent upon the mass of the animal’s muscles [18]. Power 
demand during hovering is extremely high because the power 
essential to maintain the wings flapping to produce the 
necessary wake system is generated exclusively by the beating 
wings, and a considerable amount of this energy is lost due to 
the tip effects which is associated with the nature of wake 
dynamical structure of the animal flight. [19]  constructed  an  
attractive  theoretical  model  that  deals with flight  muscle 
performance, they   have  estimated   that   mechanical  power                

          
β

dω
 bω

 L

 V

 
 
Fig. 1. Diagram of the velocity triangle. 

dω  is the induced velocity 

generated at the wing disk,  bω is the flapping velocity, V is the 

resultant velocity, β is the plane stroke angle, and L is the lift 
generated during hovering action. 
 
output for all kind of flight muscles ranges between 80 and 
100 W kg-1. Only a few small birds are able to sustain 
hovering continuously without incurring an oxygen debt, 
however, most insects can sustain continuous hovering for 
long period of times because they produce useful aerodynamic 
functions during both downstroke and upstroke; they can do 
so since they are able to spin their wings quickly at the ends of 
each half-stroke in such a manner that they get  oriented for 
the  coming  stroke, this   extraordinary action is achieved by 
reversing the  upper and lower  surfaces through rotating the 
wings about their longitudinal axis by over 90 degrees  
between half-strokes. This structural ability is 
aerodynamically advantageous to insects as well as 
hummingbirds because they are able to utilize usefully both 
half-strokes to obtain aerodynamic uplift, unlike most birds 
which are structurally incapable of performing such action. 
However, both insects and hummingbirds possess a 
metabolism system powerful enough to support this 
extraordinary action of wing movements for long duration. 

Many scientists have estimated the power requirements 
during hovering on the basis of the steady-state ideal 
principles of actuator disk. [12] has departed from the existing 
ideal methods and adopted a new approach based on more 
realistic modeling of vortex wake structure. His estimates 

have clearly shown early methods significantly underestimate 
the induced power requirement. We define the induced power 
as the power needed to generate the vortex wake system and 
can be regarded as the power required to neutralize the effect 
of gravity on the body weight. The mean induced power is 
estimated (Fig. 1.) as 

 
                             ,sin βωbi LP =                                     (7) 

            
where L is the lift generated during hovering action, this 
quantity is constant and equals the animal’s weight (Mb g), 
and bω  is the wing flapping velocity. From the velocity 
triangle (Fig. 1.) it is obvious that 
  

                                   ,sin db ωβω =                                   (8) 
 
where dω  is the induced velocity at the wing plane. Using 
equations (7) and (8), we find that 
   

                                       ,*
diP ω=                                     (9)       

 
where )/(* gMPP bii =  is the specific mean induced power. It is 
manifested from equation (9) that the specific mean induced 
power equals the mean induced velocity at the wing plane. 
The main challenge of the present vortex-plate model is to 
evaluate the mean induced velocity generated at the wing disk 
due to the combined aerodynamic effects of the bound 
circulation and the remainder of the vortex wake. 

IV. THE VORTEX WAKE  
The most difficult aerodynamical challenge normally 

encountered when studying animal flapping flight 
phenomenon is the description qualitatively or quantitatively a 
realistic presentation of the resulting vortex wake structure. 
Such wake description may allow a straightforward 
calculation of induced velocity at the wing disk. This theory is 
an attempt to propose a realistic vortex model for the wake 
structure by retaining the surface traced out by the beating 
wings during hovering as the vortex geometry under 
consideration because aerodynamic analysis strongly suggests 
that the geometry of the wake in the vicinity of the wing plane 
has much greater influence on the animal’s aerodynamics than 
the vortex sheet downstream of the wing, despite to whatever 
shape the vortex sheet may transform into along its journey. 
The contraction process will also be regarded as an important 
phenomenon in the mathematical  modeling of hovering flight. 
We therefore are in no need to make the sweeping assumption 
that the wake is fully rolled-up in the neighborhood of the 
wings. Admittedly, many experimental observations explicitly 
reveal that the behavior of a trailing vortex sheet behind a 
lifting wing experience the inescapable basic process of 
rolling-up primarily under the influence of the velocity it 
induces on itself, besides this phenomenon involves a 
downstream length scale of an order of four wing spans for its 
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completion. Also, all aerodynamists strongly give acceptance 
to the existence of vortex rings some distance from the plane 
of the wings. The latter was utilized as a modeling 
fundamental by [12].  Furthermore, the contraction process 
requires just one wing span length for its completion, thus this 
aerodynamic process has more instantaneous influence on the 
aerodynamics of the animal wing than the role-up 
phenomenon. Consequently, the contraction phenomenon is 
taken for modeling consideration in the current theory. 

The wake structure is a twisted complicated vortex sheets 
shed from the trailing edge of the wing in sympathy with 
changes in bound circulation along the wing span. We assume 
the aerodynamic interaction of the vortex sheets is such that 
far downstream they remain undistorted and travel vertically 
downwards as a rigid set of equally spaced vortex sheets. It is 
this mutual interaction and self-movement which causes the 
sheets to move normal to themselves with velocity sω . We 
neglect the  twist of the sheets from tip to centre and assume 
they are infinite in width. These assumptions will allow us to 
replace the system of a twisted vortex sheets by an infinite 
series of parallel vortex plates equally spaced, thereby 
replacing the complex vortex wake structure by a more 
simplified two-dimensional flow model that can be solved 
using complex potential methods which satisfy the condition 
of no flow through the rigid vortex plate surfaces. If the 
normal spacing of the plates were too small the air between 
the plates would all be transported downward. Hence, the 
continuity requirement would be valid to great extent. 
Therefore, classical aerodynamic techniques can be 
satisfactorily applied for animal flight analysis for infinitely 
small vortex sheets spacing. For large normal spacing between 
the vortex plates, spaces separating the plates allow some of 
the air to escape upwards round the edges, consequently 
reducing  the downward momentum. This momentum loss is 
associated with the dominant feature of the unsteady nature of 
animal flight and normally called the tip loss effect. This 
phenomenon causes a decrease in the normal velocity between 
the vortex sheets since some of the flow will rush radially  
towards the tip, which implies a significant reduction in the 
lift at the sheet tip. Thus traditional aerodynamic methods are 
inappropriate for large spacing and a more elaborate modeling 
is needed. The primary objective of the current study is 
therefore to put forward an unsteady fluid dynamic model to 
account for such loss in the total downward momentum, and 
therefore allows calculation of induced velocity developed at 
the wing disk.  

The main challenge to this model is the aerodynamic 
problem of finding the flow past a cascade of rectangular 
vortex plates immersed in a uniform flow. The boundary 
condition of no flow through the vortex plates completely 
determines the vortex plate strength, which can be linked to 
the bound circulation distribution on the wing. 

Historically, Prandtl devised a method which simplifies the 
mathematical difficulties involved in considering the flow 
around a series of parallel vortex plates. The Prandtl’s tip 
loading approximation theory or so-called the tip loss factor 
theory has proved to be very successful in describing the flow 

around the vortex plates in application to ideal propellers. 
Therefore, we introduce Prandtl’s approximation theory for 
the flow past the vortex plates. Prandtl suggested that the flow 
about a helicoidal surface (similar in shape to the vortex 
sheets generated during flapping flight) can be simplified by 
taking the flow around a series of rigid parallel equi-spaced 
plates moving normal to themselves with constant velocity. 
Prandtl consequently conceived a method which simplifies the 
mathematical problems involved in describing the flow around 
the vortex plates. 

V.  PRANDTL’S TIP LOADING THEORY 
The preceding analysis is set to establish a circulation 

distribution formula across the wing span via Prandtl’s tip 
theory [20]. The aerodynamic problem is to find the flow past 
a cascade of parallel vortex plates of normal spacing l of 
length 2R in a uniform flow of speed sω . These plates 
apparently have no load on them. At each plate there is a 
discontinuous change in Φ  (velocity potential), due to a 
discontinuous change in the velocity parallel to the plate. The 
notations utilized throughout the succeeding derivation are 
those commonly used in conformal transformation. 
Circulation is mathematically given by 

 
                    ΦΦ−−Φ=Γ 2=)( .                                (10) 

 
The two-dimensional wake model is graphically shown in Fig. 
2., the Z-plane  (z=x+iy) is used to present the vortex 
elements. 

The conformal transformation is needed to simplify the 
problem for the physical Z-plane to the ζ-plane (ζ=ξ+iη) by 
taking  

                                   
i

l
Z

e
π

ζ
−

=                                    (11) 
 
Evidently the flow around the plates is reduced to circulatory 
flow around a flat plate of length 2 units. If we let 

                                
Z

Z
2
1

+=ξ                                    (12) 

 
Consequently the flat laming is transformed into a circle of 
radius 1/2 unit and centre at (0,0). Hence if   
  
                                      ,iΨ+Φ=W                                     (13) 
 
then the complex potential becomes 
    

               ),2log(
2
i 0 ZW
π
Γ−

=                          (14) 

 
for the circulatory flow around a circle.  However, from 
equation (12) 

                             .
2

12 −±−
=

ζζ
Z                              (15) 
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Fig. 2 Circulation distribution along the vortex plates. l is the normal 
spacing between vortex plates. 
 
Simple algebra easily yields  
 

           ,/icos
2

10 lZeW π
π

−Γ
= −                           (16) 

 
where )ˆ( sTT l ω=  is the normal spacing of the plates. The 
obtained function satisfies the condition of no flow through 
the vortex plates and both velocity components u and v 
approach zero and sω  respectively as y approaches infinity. 
Along x=0, Ψ=0, for negative values of y, it gives 
 

                       le y/ cos 
2

1- 0 π
π

Γ
=Φ .                             (17) 

 
It is apparent that as sl

vu
Z
W ω=

Γ
=−=∞→

2
i

d
d,y 0 . The 

elimination of the infinite velocity at the tip plates demands 
that we impose a Kutta condition at the tip plates with the 
requirement Φ=0; this is because there is a pressure 
equalization from the bottom to the top of the wing; so we 
take ).(y rR −−=  The circulation around the plate at distance 
r is therefore given by 

                      . cos 2)(
)(1- 

rR
l

s elr
−−

=Γ
π

ω
π

                (18) 

Prandtl’s approximation is assumed to give the variation of 
the circulation along the wing span of the animal’s wing. 
Thus, we find a value zero at the tip and symmetrical around 
the centre line of the wing and so the bound circulation 
distribution along the wing span (so we put b=R), after 
substituting for normal spacing parameter f  from equation (3), 
equation (18) becomes 

 

             ,
)-(1

 cosˆ
2)( 1- 2

2 χπχ
f-

TfT
b e=Γ                  (19) 

where ,/br=χ which is zero at the wing root and 1 at the wing 
tip.  

VI. MATHEMATICAL FORMULATION 
We present the subsequent technique to determine a mean 

value for the induced velocity generated at the wing disk dω . 
This analysis constitutes of a threefold process.  First the 
establishment of a straightforward relationship between f and 
K and between the wing swept area and initial plate area, and 
this will yield to the computation of vortex plate dimensions. 
Second the mathematical presentation of the mean induced 
velocity in terms of the normal spacing parameter f  and stroke 
angle. Third the determination of mean induced velocity in the 
vanishing of wake spacing. 
 
A. Determination of vortex plate dimensions 

The creation of lift force of a wing is tied to the existing of 
lifting (bound) vortex within the wing. The bound vorticity, in 
case of animal hovering flight, consists of two distinguished 
vortex types: the ‘shed vorticity,’ which is shed as a result of 
changes in circulation during the wing beat and the ‘trailing 
vorticity,’ which is passed into the wake as a consequence of 
circulation changing along the wing span; the latter is shed 
from the trailing edges of the wing to conform to Helmoholts 
theorem of vortex continuity, or, in other words,  formation of 
a trailing sheet behind the wing is inevitable due to the 
pressure differences in the spanwise direction as a result of 
generating lift around the wing. The shed vorticity is of 
relatively little importance to the aerodynamics of the wing 
and it would present considerable difficulties to quantify 
theoretically, and therefore it is recommended that we neglect 
this type of vorticity in our modeling; other popular theories 
[12,13] have considered such assumption. In accordance with 
aerodynamic principles the lift developed by the wing is in a 
manner that it decreases from a specific value at the wing root 
to zero at the wing tip. If at a section 1)(0  ≤≤ χχ  from the 
centre line of the wing the bound circulation is )(χΓ  and in 
going from χχχ d  to +   the bound circulation decreases to 

)()( d χχ Γ−Γ , therefore a trailing vorticity of strength 
χχ)ddd( Γ−  must be shed into the wake to conform to 

Helmoholts theorem of vortex continuity.  The total 
circulation of the bound vortex is therefore given by  

 

             .
1 

0 
)0()ddd(∫ =Γ=Γ−=Γ χχχT                    (20) 

 
This is equal to the maximum circulation which occurs  at the  
centre line of the wing,  so 
  

                   . cos ˆ
2 1- 2

2 f-
TfT

b eT
π

=Γ                              (21) 

 
This amount of circulation does not experience any reduction 
in magnitude once it is deposited in the wake. It is generated 
in every powered stroke; it is constant everywhere in the flow 
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field for a given stroke amplitude for a particular animal 
species even though such vortex plate may undergo some 
contraction during its journey far downstream providing that it 
remains stable and does not break away. Contraction 
apparently redistributes the circulation along the length of the 
vortex plates and the total circulation remains always constant. 
There are two aerodynamic principles however governing the 
bound circulation, one the wing tip loading must be zero, 
second the total circulation stays constant. In accordance with 
these two principles, the spanwise distribution of circulation 
given by equation (19) is considered to give the flow around 
the vortex plates, and χ can be thought of as a normalizing 
non-dimensional length which gives values of 0 at the centre 
line of the plate and 1 at the tip plate.  

Vortex sheet is primarily the main physical product of 
hovering flapping action and the impulse associated with it is 
important to determine in order to progress in the current 
modeling. Obviously this sheet undergoes the powerful basic 
principle of contraction phenomenon once it commences to 
convect downward away from the  tracings of the beating 
wings. It is well-established that contraction has greater 
influence on the vortex sheet during its presence in the 
neighborhood of the bound circulation. The momentum 
correlated with this vortex sheet is realistically conserved and 
does not suffer any loss due to the action of the unavoidable 
process of contraction. The impulse associated with the initial 
vortex plate acts vertically upward perpendicular to the plane 
of the planar plate; this impulse is merely responsible for 
balancing the animal’s weight for the duration of .ˆTT  We 
assume that the total impulse required to generate the vortex 
plate is not quantitatively influenced whether it is generated in 
the vicinity of other vortex plates or away from them. The 
total momentum associated with this vortex plate is given by 
plate area

iA  times total plate circulation TΓ  times fluid 

density ρ . This impulse holds the animal of weight gMb  
airborne at a fixed point in space for the duration .ˆTT   Newton
’s second law states that the rate change of momentum is 
equal to the force that is sustaining, therefore 
 

                    ( )
.ˆd

d gM
TT
A

t
A

b
iTiT =Γ=Γ ρρ                      (22) 

 
On substituting for TΓ  from equation (20) into equation (22), 
so the initial plate area becomes 
 

.
-f e  bπ

gM fTT
A b

i
1- 2

222

osc2

ˆ

ρ
=                             (23) 

Divide by 22 bmΨ  and substitute for K from equation (6), so 
the ratio of  initial plate area to swept area )2( 2bA md Ψ=  is  
 

.
 cos

   
1- 

2

fe

f
A
A K

d

i
 -

π
=                            (24) 

 
One particular advantage of this model lies in the fact that 
Prandtl’s approximation theory links remarkably the bound 

circulation with the induced velocity far downstream. This 
property coupled with the hypothetical assumption that the 
vortex sheet force impulse being equal to the animal’s weight 
can be utilized to combine mathematically the normal spacing 
parameter f and hovering parameter K in a  straightforward 
fashion. Vorticity is shed from the trailing edge of the wing in 
the form of  a complex vortex sheet. This sheet is a surface of 
discontinuity and its velocity is the sum of a discontinuous 
tangential velocity and a continuous normal velocity 
component. The latter is the velocity with which the vortex 
sheet is convected in ideal fluid motion; in this model we 
consider the normal velocity component as the induced 
velocity far downstream sω . Initially, the generated vortex 
sheet is assumed to lie wholly along the tracings of the beating 
wings before it starts to convect vertically downwards. An 
element of width ∂χ of vortex sheet has strength  

∂χχ  )/( ddΓ− . The impulse generated by this element is 
 

          mbI Ψ
Γ

−= 222
d
d)( χ∂χ
χ

ρχ∂ .                     (25) 

The total impulse generated can be determined by summing 
the contributions of all vortex sheet elements shed as a result 
of the wings beating from  mΨ+  to  mΨ− ,  so    
 

               .d2 
1 

0 

22 χ
χ

χρ ∫
Γ

Ψ−=
d
dbI m                       (26) 

Integrating by parts gives 

                         .d)(4 
1 

0 

2 χχχρ ∫ ΓΨ= mbI                      (27) 

This impulse must be sufficient to maintain the hovering 
animal at a fixed point in space for the duration of the wing 
stroke period .ˆTT  Thus 
 

                               g.=M
TT
I

bˆ                               (28) 

 
After substitution for )(χΓ  and I, equation (27) becomes    
 

     ∫ −=
Ψ

1

0

1-
2

m
42

b
22

.d)-(1e cos 2
 4
 ˆ

 χχχ
πρπ

f
fb

gMTT
  

        (29) 

The left hand-side of equation (29) has already been defined 
as the hovering parameter K. We define the non-dimensional 
impulse of the vortex sheet as 
 

 .d
e cos

)-(1e cos     2=  d)(  2=    
1- 

1-
1

0

1

0

χ
χχχχχ

f

f
I

T −

−

Γ
Γ ∫∫f     (30) 

 
Combining equation (29) and equation (30) yields  
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                 .
 

cos
2

1

f

eI
K

f
f

π

−−

=                                    (31)                                     

 
It can be deduced from equations (24) and (31) that 

                             .f
d

i I
A
A

=                              (32) 

Mathematically, fI  slowly approaches its final theoretical 

limit. This implies that no perfectly horizontal stroke plane is 
aerodynamically possible because theoretically the final limit 
of  fI   requires a very high value of f  to reach and such 
value is improbable to be obtained from the known hovering 
animal. Furthermore, whenever any flapping wing is engaged 
in lift development an additional velocity field is induced at 
the wing plane in order to accord with aerodynamic principles. 
This induced velocity automatically establishes an inclination 
in the stroke plane to allow the earliest part of the vortex sheet 
generated at the highest point of wing elevation to convect 
vertically downward, and by the end of the stroke the whole 
sheet generated will be brought down to a horizontal plane 
and its associated momentum will therefore be vertical. 
Ellington (1984) revealed clearly in his filmings that all 
hovering insects seem to have a noticeably inclined stroke 
plane angle.  

The relationship in equation (32) can be utilized to find  the 
initial vortex plate dimensions of area ( 22  b IA fmi Ψ= ). If 

we assume that the contraction phenomenon acts equally 
along the circumference of the vortex plate, then the length of 
the plate is taken as  2  b I f  and the width as 

 b I fmΨ .This evidently gives a rectangular shape for the 

initial vortex plate. 
 

B. Determination of mean induced velocity 
We have assumed that the rate of change of vertical impulse 
dI/dt of the vortex sheet is equal to that of the initial horizontal 
vortex plate, so we can mathematically write 
  

               ,dAdA
t
I

i id d
22 ω2ω2

d
d ρρ ==                         (33) 

where  ωd and iω are the local induced velocities along the 
wing disk and the initial vortex plate respectively. From the 
relationship between  dA and , iA equation (33) can be written 
as 
 

                   . ifd I ωω =                                    (34) 

 
As a result of mutual interaction among the vortex plates, the 
induced velocity of the initial vortex plate iω  will increase as 
the plate travels vertically downwards. The increase in the 
initial vortex plate velocity can be expressed as  

 
           ais ωωω 2+=                                 (35) 

 
where aω  is the axial induced velocity component due to a 
semi-infinite chain of  vortex plates and can be accurately 
calculated by the Biot-Savart Law. Using equation (34) and 
substituting for iω  from equation (35) and for sω  from 
equation (2) and taking the mean yield 

.d 
)(

2-1
I  1

0

ζ
ω

ζω
ω
ω ∫ ⎥

⎦

⎤
⎢
⎣

⎡
=

s

af

t

d

f
                 (36) 

The purpose of the subsequent material is to present a 
derivation of expressions for the induced velocity field due to 
a particular class of vorticity distribution using the Biot-Savart 
Law.  Here, the wake structure is a chain of finite strength, 
identically similar rectangular planar vortex plates moving 
vertically downwards with equal speeds. One qualifying 
aspect of this vortex representation of the wake structure 
considered here is the practicality in integrating the Biot-
Savart law.  

Consider the rectangular vortex plate with sides 2  b I f  

and  b I fmΨ . A small vortex filament of length y∂  (see 

Fig. 3.), strength 11  )/( rr ∂∂∂Γ , located at a point  ,0),( 11 yrP  in 
an idealized incompressible, inviscid potential flow. The 
velocity induced by this filament at a point ),0,( 22 zrP  in the 
field can be calculated with the help of Biot-Savart Law. We 
start with writing 

 1  1 ,/  // rr ∂∂∂ω∂∂ω ΓΓ∂=                              (37) 

where Γ∂ ∂ω/ is the velocity per unit circulation induced at 
Γ∂ ∂ω/ ,2P can be  given by the Biot-Savart Law, thus 

1P

i

j
k 2r

1r

2P

 Fig. 3. Notation for calculation of induced velocity field by a 
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rectangular vortex plate.  Point ,0),( 11 yrP  on the vortex plate 
where a vortex filament of length y∂  and of strength 

11  )/( rr ∂∂∂Γ  is situated. Field point ),0,( 22 zrP  where a velocity 
field u is generated. 
 

,ds
4
1=/ 3∫ ×

−Γ
r

r
π

∂∂ω                              (38) 

where ds is the differential element of the vortex and simply is 
equal to dy j  and r is the radius vector from 1P , where a 

differential element ds is located to 2P  in the filed and written 
as    yrrr +−= i)( 12 j kz+  

 
yrrr +−= i)( 12 j kz+                              (39) 

Thus .d) k )-(-i(= d 12 yrrzsr ×  
The velocity components induced at 2P  due to the 

aerodynamic influence of one neighboring vortex plate 
therefore are 
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where fIby mΨ=

2
1

1  and  aω is the axial induced velocity 

component, and 
  

[ ]∫∫
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4
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3/2 222
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zyrr
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ω   (41)                            

 
where  rω is the radial induced velocity component. The 
interior integral for both equations (40) and (41) can be easily 
solved by making the following substitution, 

22
12 )(= zrry +− tan Θ  where Θ  is a dummy variable, 

consequently 
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                                                                       ……..  (42) 
and 

[ ] [ ] . 
)( )(

 /
4 122

12
1/2 222

4
12

12

1 dr
zrrzIbrr

rzIb Ib

Ib m

m
r ∫

+

− +−+Ψ+−

ΓΨ−
=

f

f f

f ∂∂
π

ω  

……..  (43) 
 

To simplify these equations we write 
,, 12 ff IbrIbr == χζ  therefore equations (42) and  

(43) become 
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Integrating by parts with respect to χ ,  substituting for the  
radial circulation  distribution )(χΓ  of the vortex plate, and 
summing the contributions of the semi-infinite chain of vortex 
plates give 
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= and 
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velocity field u can be expressed as 
 

k i= aru ωω +                                  (48) 
 
Equation (46) can be used together with equation (36) to 
determine straightforwardly the mean induced velocity at the 
wing disk, ,dω  for a given normal spacing parameter f  and 
wing stroke amplitude. 
 
C. Determination of mean induced velocity in the vanishing 
wake spacing 
In the limit of vanishing periodicity ( )∞→ f  we anticipate 
that the circulation is constant along the wing  span, and 
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mathematically /2
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 cos 1- π
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Therefore equation (47) is reduced to 
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We start with Θ=− tanNAχζ  so equation (49) becomes 
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where  
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From tables of integrals [21], equation (50) can be solved to 
give 
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After further simplifications equation (51) becomes  
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This equation does not converge quickly for high values of  f, 
therefore there is a need to eliminate the sum sign in the 
equation (52). To do so, we will utilize the following 
mathematical technique which can be represented as follows: 
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where ξ=N/f. If we let ξ=N/f  and  ,2π=Ψm and in the 
vanishing wake spacing  ( )∞→ f  equation (52) may be 
written as  
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The integral in equation (54) can be readily solved to produce  
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In the limit of vanishing wake spacing equation (36) can be 
written as 
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On substitution of equation (55) into equation (56) and 
solving numerically we obtain .53.0/ ≈sd ωω This is close to 
the theoretical limit of 0.5.  

VII. RESULTS 
An overwhelming majority of theoretical studies in animal 

flight mechanics have primarily concentrated upon 
determination of energy consumption during hovering and 
steady forward flights because the energetic cost of flapping 
flight dictates the life style of living animals. The vortex  plate 
theory  presented  here  is concerned with evaluation of the 
induced power requirement for animals hovering with 
horizontal stroke plane angle flight mode ( 2/1ˆ =T ) and 
inclined stroke plane angle flight mode ( 1ˆ =T ). The current 
theory recognizes that precise estimate of the induced power 
requirement during hovering flight phenomenon is a 
formidable task because no flight theory that can explicitly 
account for all parameters associated with energy 
consumption during hovering flight. Any such attempt will 
doom to failure since our state of knowledge in this regard 
does not serve us to comprehend categorically the methods of 
working which employed by flapping wings during their 
operation and how efficient mechanical power delivered by 
the muscles of the wings is converted to useful mechanical 
work. Admittedly, there are many gray areas in such regard 
that yet to be resolved, therefore any suggested theoretical 
flight model can not be tested and verified appropriately. 

The portion of the mechanical power that is delivered to the 
environment by the flapping wings in order to support the 
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body weight during hovering flight is termed as the induced 
power, and  the current  flight theory is  intended to  calculate  
the  induced  power. It is also equivalent to the power 
dissipated in generation the vortex wake system. The mean 
induced power is calculated as the force supported by both 
wings (Mb g) times the mean induced velocity ( ).dω   The ratio 
of the mean induced velocity to wing tip velocity ( td ωω ) is 
calculated numerically by equation (36) and equation (46). 
The  value  of  td ωω  can   be   approximated,  

 
TABLE I  

MORPHOLOGIC AND KINEMATIC PARAMETERS FOR 
REPRESENTATIVE HOVERING ANIMALS 

Species Body  
Mass, 
Mb (kg) 

Semi-
span, 
b(m) 

 
Period, 

T(s) 

Half 
stroke 
angle, 

Ψm 
(deg.) 

Hovering 
parameter

,  
K 

Ref. 

Horizontal Stroke Plane 
Hummingbird,  

Amazilia 
fimbriata 

 
5.1×10-3 

 
0.059 

 
0.0286 

 
60 

 
0.0167 

 
[10] 

Crane fly,  
Tipula obsolete 

 
0.114×10-3 

 
0.0127 

 
0.022 

 
61 

 
0.0098 

 
[13] 

Crane fly,  
Tipula 

paludosa 

 
0.498×10-3 

 
0.0174 

 
0.0172  

 
60 

 
0.0078 

 
[13] 

Lady bird,  
Coccinella 7-

punctata 

 
0.344×10-3 

 
0.0173 

 
0.0186 

 
88.5 

 
0.0251 

 
[22] 

Bumble bee,  
Bombus 
lucorum 

 
0.231×10-3 

 
0.0141 

 
0.0072  

 
65 

 
0.0133 

 
[22] 

Inclined Stroke Plane 

Pied flycatcher,   
Ficedula 

hypoleuca 

 

12×10-3 

 

0.115 

 

0.07 

 

50 

 

0.07815 

 

[23] 

Pigeon,  
Columba livia 

 
333×10-3 

 
0.316 

 
0.15 

 
60 

 
0.1456 

[24], 
[25] 

Nectar-feeding 
bat,  

Glossophaga 
soricina 

 

10.5×10-3 

 

0.129 

 

0.0658 

 

60 

 

0.0331 

 

[26] 

 
with an accuracy of  ±1%, according to the following formula,  
 

                ,
1329.0

75.0
λω

ω
+

=
ft

d                          (57) 

where  .2 πλ mΨ= This  formula allows a  quick  estimate of  
the   mean  induced   velocity for hovering animals provided 
that f  lies between 1 to 12. Indeed, most hovering animals are 
characterized by normal spacing parameter that lies within this 
range. For a given hovering parameter K the normal spacing 
parameter f  can be calculated by the following approximated 
formula   
 

f = 42.2337(1-1.003 )(F Ke− ),                     (58) 
where F(K) = 0.01027 6023.0−K , its accuracy lies within ±1% 
for all animals. 

The theory is applied on a selected number of hovering 
animals (Table I) and mean induced power is calculated for 

each species (see Table II). Rayner’s theory (1979) finds that 
flycatcher needs 0.230 W to hover continuously. However, the 
current theory gives slightly higher value 0.238 W 

) W/N03.2( ≈*
iP and the difference between the two 

estimated values is about 4%. Full  agreement is found for the 
mean specific induced power requirement for the pigeon 
between the current theory and that of  Rayner’s  

). W/N8.3( ≈*
iP  An  extensive  calculations   for   many  

species  have  been  conducted by  the current  theory  and  
that  of  Rayner’s and it is found that the two theories give  
very close estimates for the mean induced power for values of 
half-stroke angles between 45° and 75° for small hovering 
animals(f>1). However, the difference becomes greater  for 
high and low values of stroke angles. In fact, the current 
theory gives lower estimate of mean induced power for low 
values of half-stroke angles (<30°) than Rayner’s theory, and 
for high values of half-stroke angles (>75°) the current theory 
gives slightly higher values of mean induced power than 
Rayner’s theory. [26]  carried out a study to calculate 
empirically the cost of hovering for nectar-feeding bat, 
Glossophaga soricina by using a  method that based  on  
aerodynamic  theory. Their estimates  for  the mean specific 
induced power needed for the bat to hover continuously is 
1.427W/N, the current theory gives 1.415W/N. Apparently, 
the agreement is within 1% between the two estimates.  

 
TABLE II  

MEAN SPECIFIC INDUCED POWER IN HOVERING 
Species Hovering 

spacing 
parameter, 

f 

Wing tip 
velocity, 

tω (m/s) 

Ideal 
velocity, 

jω (m/s) 

Mean specific 
induced power 

)(*
diP ω=  

(W/N or m/s) 
Horizontal Stroke Plane 

Hummingbird,  
Amazilia 
fimbriata 

 
4.797 

 
12.962 

 
1.674 

 
2.004 

Crane fly, 
 Tipula obsolete 

 
6.452 

 
3.630 

 
0.360 

 
0.418 

Crane fly,  
Tipula paludosa 

 
7.133 

 
6.340 

 
0.560 

 
0.664 

Lady bird,  
Coccinella 7-

punctata 

 
3.795 

 
3.790 

 
0.600 

 
0.693 

Bumble bee,  
Bombus lucorum 

 
5.440 

 
12.400 

 
1.430 

 
1.669 

Inclined Stroke Plane 
Pied flycatcher,  

Ficedula 
hypoleuca 

 
1.932 

 
5.161 

 
1.440 

 
2.026 

Pigeon,  
Columba livia 

 
1.311 

 
6.612 

 
2.520 

 
3.799 

Nectar-feeding 
bat, 

Glossophaga 
soricina 

 
3.232 

 
6.160 

 
1.098 

 
1.415 

 
 
    [13] estimated the mean induced power requirements for a 
wide range of species. The current theory is in a good 
agreement with Ellington’s work. Full agreement has been 
found for the crane fly, Tipula obsolete and the ladybird, 
Coccinella 7-punctata. Ellington’s mean induced power 
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estimate for the bumble bee is 1.65W/N and the current theory 
gives a value higher by 1%  than  Ellington’s estimate. 
However, extensive  calculations have been  conducted on 
various type of insect species and the agreement between both 
theories have been found to fall within full agreement and 5% 
for horizontal stroke plane flight mode.   

VIII.   CONCLUSION 
The current theory calculates the mean induced power 

requirement during animal hovering flight.  The distinguishing 
characteristics of the current work can be summarized as 
follows: (1) The current  work recognizes  that unsteady 
effects is an important aerodynamical feature with respect to 
animal flight, (2) the circulation distribution along the vortex 
plate is calculated via Prandtl’s tip theory, unlike previous 
theories which assume preset circulation distribution profiles, 
(3) less dramatic assumptions  are used in developing the 
current theory, (4) the simplicity of the vortex structure 
proposed by the current theory has made modeling 
mathematically manageable, and (5) the theory is equally 
applicable to both birds and insects.  
    A model of a chain of rectangle vortex plates structure is 
found reasonably appropriate for hovering animals flight 
phenomenon. This structure has allowed to derive a simple 
formula for calculation of mean induced power; it is based 
only on normal spacing parameter f  and stroke angle. The 
current theory anticipates higher values for the mean induced 
power than traditional approaches which have been found to 
underestimate the induced power computations. 

A comparison with previous theories have been made, a 
remarkable agreement has been observed with Rayner’s 
theory for inclined stroke plane angle flight mode and 
Ellington’s theory for horizontal stroke plane flight mode, 
although both theories have different theoretical 
manifestations of the problem domain from the current theory.   
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