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Abstract—The belief K-modes method (BKM) approach is a new
clustering technique handling uncertainty in the attribute values of
objects in both the cluster construction task and the classification one.
Like the standard version of this method, the BKM results depend on
the chosen initial modes. So, one selection method of initial modes
is developed, in this paper, aiming at improving the performances of
the BKM approach. Experiments with several sets of real data show
that by considered the developed selection initial modes method, the
clustering algorithm produces more accurate results.
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I. INTRODUCTION

C
Lustering techniques [16] are among the well known

machine learning techniques to discover groups and

identify interesting distributions in the considered data , and

the K-modes method [14] is considered as one of the most

popular of them. These techniques are used in many domains

such as medicine, banking, finance, marketing, security, etc.

They work under an unsupervised mode when the class label

of each object in the training set is not known a priori.

The capability to deal with datasets containing uncertain

information is very important due to the fact that this kind of

datasets is common in real life data mining applications.

In fact, experts, in most real problems, may encounter

several difficulties when expressing any classification

parameters values and it may be more flexible to allow them

providing their uncertainty relative to classification variables

using a non-classical theory of uncertainty rather than exact

values.

However, in such situations, standard methods cannot

be applied for clustering such training objects. Thus and

in order to overcome this drawback, many researches

have been done to adapt standard methods to this kind of

environment. The idea was to introduce theories that could

represent and manage uncertainty. Several kinds of clustering

techniques were developed, more precisely we mention

the extensions of the K-modes method, : fuzzy K-modes

method [15], [17], belief K-modes method (BKM)[3], etc .

In our work, we will focus on belief K-modes method (BKM).

The belief K-modes method is a clustering approach

adapted in order to handle uncertainty problem. Its main

contributions are to provide one approach to deal with on one
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hand the construction of clusters where the attribute’ values

of training objects may be uncertain, and in the other hand the

classification of new instances characterized also by uncertain

values based on the obtained clusters. The uncertainty is

represented by the Transferable Belief Model (TBM), one

interpretation of the belief function theory. It is considered

as a useful theory for representing and managing uncertain

knowledge introduced by [27]. It permits to handle partial

or even total ignorance concerning classification parameters,

in a flexible way, and offers interesting means to combine

several pieces of evidence. So, BKM is based on both the

standard K-modes paradigm and belief function theory to

handle uncertainty.

In fact, there are more developed classification techniques

based on this theory to manage uncertainty, we mention,

as supervised techniques, belief decision trees (BDT) [7],

[11], belief k-nearest neighbor [6] which have provided

interesting results. For unsupervised ones, belief function

theory was also applied and that is the purpose of these

clustering works [8], [9], [10], [22]. Contrary to these latter

clustering approaches, the BKM method [3] deals with objects

characterized by uncertain attributes either in the construction

and the classification phases.

Like the standard hard version of this method, the BKM

results depend on the chosen initial modes. Indeed, several

works have been developed to deal with this latter problem:

Huang [14] presented two methods of initialization for

categorical data for K-modes method showing that if diverse

initial modes are chosen then it could lead to better clustering

results. Sun et al [28] developed an experimental study

on applying Bradley and Fayyad’s iterative initial-point

refinement algorithm [5] to the k-modes clustering to improve

the accurate and repetitiveness of the clustering results. Khan

S.S. et al [18] proposed an algorithm to compute initial

modes using Density based Multiscale Data Condensation.

An other research work [19] extended the idea of Evidence

Accumulation to categorical data sets by generating multiple

partitions as different data organization by seeding K-modes

algorithm, every time, with random initial modes. The

resultant modes are then stored in a Mode Pool and the most

diverse set of modes were computed, which were used as

initial modes.

However, these latter techniques work in a certain

context and fail to deal with this problem within uncertain

environment.

To address the problem caused by the randomly choice

of the initial modes under uncertainty, in this present study,
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we develop one selection method for choosing initial modes

instead of choosing them randomly using the dissimilarity

matrix to provide the maximum of dissimilarity measure.

In this work, we focused on this initial step of the BKM

process. So, we suggest to define selection method in order

to improve clustering results based on the distance measure

concept.

The remainder of this paper is organized as follows :

Section 2 gives an overview of the belief function theory. In

Section 3, we describe the BKM approach. As an improvement

of this approach, in Section 4, we develop a new initial

modes selection method instead of the randomly choice used

in the initial version of BKM method. Finally, Section 5

presents and analyzes experimental results carried out on these

two K-modes belief versions of the U.C.I. machine learning

repository’s data sets [20].

II. BELIEF FUNCTION THEORY

A. Introduction

The belief function theory is appropriate to handle uncer-

tainty in classification problems. So, In this section, the basic

concepts of this theory as understood in the Transferable Belief

Model (TBM), which is among the interpretations of this non-

classical uncertainty’s theory, are recalled briefly (for more

details see [23], [24], [27]).

B. Background

Let Θ be a finite non empty set of elementary events to

a given problem, called the frame of discernment. It also

referred to as the universe of discourse or the domain of

reference. This set contains hypotheses about some problem

domain. All the subsets of Θ belong to the power set of Θ,

denoted by 2Θ and defined as follows:

2Θ = {A : A ⊆ Θ} (1)

Each element of 2Θ is called a proposition or an event.

The elements of Θ are called the elementary propositions.

The impact of a piece of evidence on the different subsets of

the frame of discernment Θ is represented by the so-called

basic belief assignment (bba), called initially [23] basic

probability assignment. The bba is defined as follows:

m : 2Θ �→ [0, 1]∑
A⊆Θ

m(A) = 1 (2)

Each quantity m(A), named basic belief mass (bbm), is

considered to be the part of belief that supports the event A,

and that, due to the lack of information, does not support any

strict subset of A.

The subsets A of the frame of discernment Θ such that

m(A) is strictly positive, are called the focal elements of the

bba m.

The pair (F,m) is called a body of evidence where F is the

set of all the focal elements relative to the bba m.

The union of all the focal elements of m are named the core

and are defined as follows:

ϕ =
⋃

A:m(A)>0

A (3)

A belief function, denoted bel, corresponding to a specific

bba m, assigns to every subset A of Θ the sum of masses of

belief committed to every subset of A by m [23]. It is defined

as follows:

bel : 2Θ �→ [0, 1]

bel(A) =
∑

φ �=B⊆A

m(B) (4)

The belief function bel represents the total belief that one

commits to A without being also commited to A. The bbm

m(∅) is not included in bel(A) as ∅ is both a subset of A and A.

The plausibility function pl associated with a mass function

m quantifies the maximum amount of belief that could be

given to a subset A of the frame of discernment. It is equal

to the sum of the bbm’s relative to subsets B compatible with

A. The plausibility function pl is defined as follows [1]:

pl : 2Θ �→ [0, 1]

pl(A) =
∑

A∩B �=φ

m(B) (5)

A belief function is said to be vacuous belief function

if Θ is its unique focal element [23]:

m(Θ) = 1 and m(A) = 0 for all A ⊂ Θ, A �= Θ (6)

Such bba where Θ is the unique focal element, quantifies the

state of total ignorance since there is no support given to any

strict subset of Θ.

A certain belief function is a belief function such that

it has only one focal element and which should be a

singleton. Its corresponding bba is defined as follows:

m(A) = 1 and m(B) = 0 for all B �= A and B ⊆ Θ (7)

where A is a singleton event of Θ. This function represents a

state of total certainty as it assigns all the belief to a unique

elementary event.

A belief function is said to be a simple support function

(SSF) if it has at most one focal element different from the

frame of discernment Θ. This focal element is called the

focus of the SSF.
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A SSF is defined as follows:

m(X) =

⎧⎨
⎩

ω if X = Θ
1 − ω if X = A for some A ⊂ Θ
0 otherwise.

(8)

where A is the focus and ω ∈ [0, 1]

C. Combination rules

Let m1 and m2 be two bba’s defined on the same frame

of discernment Θ. These two bba’s are collected by two

’distinct’ pieces of evidence and induced from two experts

(information sources). These bba’s can be combined either

conjunctively or disjunctively [26].

• The Conjunctive Rule: when we know that both sources

of information are fully reliable, then the bba representing

the combined evidence satisfies [26]:

(m1 ∩©m2)(A) =
∑

B,C⊆Θ;B∩C=A

m1(B)m2(C) (9)

• The Disjunctive rule of combination: when we only know

that at least one of these sources of information is to be

accepted, but we do not know which one. So, this rule is

defined as follows [26]:

(m1 ∪©m2)(A) =
∑

B,C⊆Θ;B∪C=A

m1(B)m2(C) (10)

Note that since the conjunctive and the disjunctive rules of

combination are both commutative and associative, combining

several pieces of evidence induced from distinct information

sources (either conjunctively or disjunctively) may be easily

ensured by applying repeatedly the chosen rule.

D. Decision Process

The TBM is based on a two level mental models:

• The credal level where beliefs are entertained and repre-

sented by belief functions.

• The pignistic level where beliefs are used to make deci-

sions and represented by probability functions called the

pignistic probabilities.

When a decision must be made, beliefs held at the credal level

induce a probability measure at the pignistic measure denoted

BetP [27].

The link between these two functions is achieved by the

pignistic transformation.

BetP (A) =
∑
B⊆Θ

|A ∩ B|

|B|

m(B)

(1 − m(φ))
, for all A ∈ Θ (11)

III. BELIEF K-MODES METHOD

K-modes approach is considered as an efficient clustering

method for classification problem. That’s why, it is widely

applied to a variety of problems in artificial intelligence. It

extends the K-means [21] one by using a simple matching

dissimilarity measure for categorical objects, modes instead of

means for clusters, and a frequency-based method to update

modes in the clustering process to minimize the clustering

cost function.

Despite its accuracy when precise and certain data

are available, the standard K-modes algorithm shows

serious limitations when dealing with uncertainty. However,

uncertainty may appear in the values of attributes of instances

belonging to the training set that will be used to ensure the

construction of clusters, and also in the classification of new

instances which may be characterized by uncertain attribute

values.

To overcome this limitation, a belief K-modes method

(BKM) [3] was developed, a new clustering technique based

on the K-modes method within the belief function framework.

In this part of our paper, we expose the notations used within

BKM framework. Next, we present the two major parameters

of the belief K-modes method needed to ensure both the

construction and the classification tasks, namely clusters’

centers and the dissimilarity measure.

A. Notations

The following notations will be used in the following:

• T: a given data set of n objects.

• Xi: an object or instance, i = 1, ..., n.

• A = {A1, ..., As}: a set of s attributes.

• Θj : the frame of discernment involving all the possible

values of the attribute Aj related to the classification

problem, j = 1, ..., s.

• Dj : the power set of the values of the attribute Aj ∈ A,

with |Dj| = 2|Θj |

• xi,j: the value of the attribute Aj for the object Xi, in

the certain case.

• mΘj {Xi}: expresses the beliefs on the values of the

attribute Aj corresponding to the object Xi, with

mΘj {Xi} = {(cj,h, mi(cj,h))|cj,h ⊆ Dj}.

• mi(cj,h): denoted the bbm given to the category cj,h ⊆
Dj relative to the object Xi.

• mQl
(cj,h): denoted the bbm given to the category cj,h ⊆

Dj relative to the mode Ql of the cluster Cl.

B. The BKM parameters

As with standard K-modes method, building clusters within

BKM needs the definition of its fundamental parameters,

namely, cluster modes and the dissimilarity measure. These

parameters must take into account the uncertainty encountered

in the training set and that pervade the attribute values of

training objects.
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1) Cluster mode: Due to the uncertainty and contrary to the

traditional training set where it includes only certain instances,

the structure of considered training set is represented via

bba’s respectively to each attribute relative to each object,

this training set offers a more generalized framework than the

tradional one. Within this structure of training set, the belief

K-modes cannot use the strategy used by the standard method

which is the frequency-based method to update modes of

clusters.

The idea is to apply the mean operator to this uncertain

context since it permits combining bba’s respectively to each

attribute provided by all objects belonging to one cluster.

Note that using the mean operator offers many advantages

since it satisfies these properties namely the associativity, the

commutativity and the idempotency.

Using the mean operator solves also the non-uniqueness

problem of modes encountered in the standard K-modes

method.

Given a cluster C = {X1, ..., Xp} of objects, with Xi =

(xi,1, ..., xi,s), 1 ≤ i ≤ p. Then, the mode of C is defined

by : Q = (q1, ..., qs), with:

qj = {(cj, mcj
)|cj ∈ Dj} (12)

where mcj
is the relative bba of attribute value cj within C.

mcj
=

∑p
i=1 mi(cj)

|C|
(13)

with C = {X1, X2, ..., Xp} and |C| is the number of objects

on C. mcj
expresses the belief about the value of the attribute

Aj corresponding to the cluster mode.

2) Dissimilarity measure: The dissimilarity measure has to

take into account the bba’s for each attribute for all objects in

the training set, and compute the distance between any object

and each cluster mode (represented by bba’s). Many distance

measures between two bba’s were developed which can be

charaterized into two kinds, namely the distance measures

based on pignistic transformation [2], [12], [29], [30] and

those between bba’s defined on the power set [4], [13].

For the first category, one unavoidable step, which consists

in the pignistic transformation of the bba’s, may lose

information given by the initial bba’s. So, this kind of

distance is not suitable within the BKM context.

While the second kind of belief distance measures are

applied directly to bba’s and not to the pignistic probabilities.

These measures are defined on the power set. However, the

measure developed by Fixen and Mahler [13] is a pseudo-

metric since the condition of nondegeneracy of one distance

metric is not respected. The other mentioned measure [4]

within this category, verifies the basic properties for any

distance measures namely, nonnegativity, nondegeneracy and

symmetry. Thus, the BKM approach adapts this latter belief

distance to this uncertain clustering context to compute the

dissimilarity between any object and each cluster mode.

Indeed, this distance measure takes into account both the

bba’s distributions provided by the objects and one similarity

matrix D which is based on the cardinalities of the subsets

of the corresponding frame of one attribute and those of the

intersection and union of these subsets.

Let m1 and m2 be two bba’s on the same frame of

discernment Θj , the distance between m1 and m2 is :

d(m1, m2) =

√
1

2
(‖ �m1‖2 + ‖ �m2‖2 − 2 < �m1, �m2 >) (14)

where < �m1, �m2 > is the scaler product defined by:

< �m1 , �m2 >=

2Θj∑
w=1

2Θj∑
z=1

m1(Bw)m2(Bz)
|Bw ∩ Bz|

|Bw ∪ Bz|
(15)

with Bw, Bz ∈ Dj for w,z = 1,...,2Θj , and ‖ �m ‖2 is then the

square norm of �m : ‖�m‖2 = < �m, �m >

This scalar product is based on the bba’s distributions (m1,

and m2) and the elements of one similarity matrix D, which

are defined as follows:

D(Bw , Bz) = |Bw∩Bz|
|Bw∪Bz|

, where Bw, Bz ∈ Dj .

Thus, the dissimilarity measure between any object Xi and

each mode Q can be defined as follows:

D(Xi, Q) =

m∑
j=1

d(mΘj{Xi}, m
Θj{Q}) (16)

where mΘj{Xi} and mΘj{Q} are the relative bba of the

attribute Aj provided by respectively the object Xi and the

mode Q.

C. The BKM algorithm

The BKM algorithm has the same skeleton as standard

K-modes method. The different construction steps of this

approach are described as follows:

(1) Giving K, the number of clusters to form.

(2) Select randomly K initial modes from the dataset ob-

jects.

(3) Assign all other objects to appropriate clusters based on

the minimum of dissimilarity measure using Equation

16.

(4) Once all objects have been allocated to clusters, compute

seed points as the clusters’ modes of the current partition

using the mean operator (see Equations 12 and 13).

(5) Update the partition of all objects according to their

distances respectively to clusters’ modes computed in

the previous step.

(6) Go back to step 4, reiterate the step 4 and 5 and stop

when no more new assignment. In other words, all

objects have no changed clusters.

Once the clusters’ construction is done, the classification of

a new object that may be charaterized by uncertain attribute
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values, we have to assign it to the most similar cluster

based on its distance over the obtained clusters resulting from

the construction phase, and using the distance measure (See

Equation 16).

IV. SELECTION METHOD FOR CHOOSING INITIAL MODES

A. Principle

As mentioned above, clustering accuracy of BKM algorithm

for categorical uncertain data depends upon the choice of

initial data points (modes) which affect the clustering results.

The BKM method, like the standard version of the K-modes

method, produces locally optimal solutions that are dependent

on the initial modes by selecting randomly K initial cluster

modes from the data set to cluster. Since, the algorithm is

significantly sensitive to this choice, the BKM algorithm is

run multiple times to reduce this effect.

As known, the aim of clustering is to group a set of objects

into classes of similar objects by decreasing the dissimilarity

within the same cluster and increasing this measure between

distinct clusters.

So, in this section, we propose a new method for the selection

of the K initial modes to improve our approach. Our method

consists in choosing K objects from the data set which

provide the maximum of dissimilarity measure between them.

It means that the chosen K initial modes are the K objects

which are the most far ones. The modes should be placed

in a cunning way because different locations cause different

results. However, to place them as much as possible far away

from each other is the better manner to have the initial K

modes.

The purpose of this method is to make the initial modes

diverse, which can lead to better clustering results.

Since the selection method of the initial modes affect

convergence of our BKM method, our intention is to study

the impact of the new proposed selection method of the initial

modes on the clustering results, in order to improve our initial

approach results (BKM).

B. Algorithm for choosing initial modes

As shown in the section 3, the quality of clustering results

depends on the initial values of the modes. This is a complex

problem for which many approaches have been proposed

within certain context [5], [14], [18], [19], [28].

In [14], the author includes two initial mode selection

methods. The first one selects the first K distinct records

from the dataset as the initial K modes. The second one

is implemented based on the frequency concept. Indeed, it

consists in calculating the frequencies of all categories for all

attributes and assigning the most frequent values equally to

the initial K modes. After that, each obtained mode must be

replaced with the most similar record from the given dataset.

In fact, within our framework, we have bba’s representing the

attribute values not the certain categories. So, we opt to use

the distance concept instead of the frequency one.

The initial version of our BKM method starts with

randomly chosen K objects as the initial modes which is the

most popular way to start the algorithm.

In our case, and in order to overcome this drawback, a new

method for choosing the initial modes was proposed, instead

of the standard one.

The main idea is to select the K objects as K cluster modes

based on the dissimilarity measure notion instead of the

randomly choice.

To this end, we have to compute the dissimilarity matrix

corresponding to n objects and assign the two objects which

provide the highest dissimilarity measure to the two first

cluster modes. When K is equal to two, the procedure is

completed and the selection of our initial modes is done.

Otherwise, for the other objects, we need to calculate their

distance sum respectively to the already fixed modes and

associate to the following mode the object with highest

dissimilarity measure (the most far from the chosen modes).

After we have these modes, a new iteration has to be done

for the remaining objects. We iterate until the selection of the

K initial modes has been done.

This algorithm has as inputs a predefined number of modes

(K) and the data set to cluster. It is composed of the following

steps:

(1) Compute the dissimilarities matrix D, n×n, where Di,j

is the distance between the object Xi and the object Xj

based on the distance measure defined by Equation 27

with i, j ∈ {1, .., n}.

(2) Allocate the two objects Xi and Xj which provide the

highest dissimilarity measure (Di,j = max(D)) to the

two first clusters’ modes.

(3) For the other objects (n - number of chosen cluster

modes), compute their distances’ sum respectively to the

already chosen modes

(4) Assign the object with the highest distance measure to

the following mode.

(5) Repeat 3 and 4 till the K initial modes have been chosen.

C. Example

Let us illustrate our method by a simple example. Assume

that a firm wants to group its staff by taking into account

their attributes.

Let T be a training set (see Table 1) composed of seven

instances characterized by three categorical attributes:

• Qualification with possible values {A, B, C}.

• Income with possible values {High , Low, Average}.

• Department with possible values {Finance, Accounts,

Marketing}.

For each attribute Aj for an object Xi belonging to the

training set T, we assign a bba mΘj{Xi} expressing beliefs
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on its assigned attributes values, defined respectively on:

Θ1 = {A, B, C}
Θ2 = {High, Low, Average}
Θ3 = {F inance, Accounts, Marketing}.

If we consider that only the department attribute is known

with uncertainty. The structure of the data set T is defined by

the Table 1.

TABLE I
DATA SET T RELATIVE TO BKM

Objects Qualification Income Department

X1 A High mΘ3{X1}
X2 B Low mΘ3{X2}

X3 C Average mΘ3{X3}
X4 C Average mΘ3{X4}

X5 B Low mΘ3{X5}

X6 A High mΘ3{X6}
X7 B Low mΘ3{X7}

Where:

• mΘ3{X1}({Finance=0.5; mΘ3{X1}({Finance,Accounts})
=0.3 and mΘ3{X1}(Θ3)=0.2

• mΘ3{X2}({Finance})=0.8 and mΘ3{X2}(Θ3)=0.2
• mΘ3{X3}({Marketing})=0.8;

mΘ3{X3}({Finance, Accounts})=0.1
and mΘ3{X3}(Θ3) = 0.1

• mΘ3{X4}({Accounts})=0.8 and mΘ3{X4}(Θ3)=0.2
• mΘ3{X5}({Marketing})=0.8 and mΘ3{X5}(Θ3)=0.2
• mΘ3{X6}({Finance, Accounts}) = 0.8

and mΘ3{X6}(Θ3) = 0.2
• mΘ3{X7}({Accounts})=0.8 and

mΘ3{X7}(Θ3)=0.2

If we consider this training set T defined by Table 1.
Let us try to apply the proposed method for selection the 2
initial modes.
We have initially to define the dissimilarities matrix. To this
end, for each object Xi , compute the dissimilarities D(i, j),
where i, j ∈ {1, .., 7}, using the dissimilarity measure defined
by Equation 16.
The dissimilarities matrix is defined as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

X1 X2 X3 X4 X5 X6 X7

X1 0 2.212 2.724 2.667 2.751 0.524 2.667

X2 2.212 0 2.777 2.8 0.8 2.566 0.8

X3 2.724 2.777 0 0.777 2.063 2.768 2.777

X4 2.667 2.8 0.777 0 2.8 2.566 2

X5 2.751 0.8 2.063 2.8 0 2.8 0.8

X6 0.524 2.566 2.768 2.566 2.8 0 2.566

X7 2.667 0.8 2.777 2 0.8 2.566 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Note that D(i, j) = 0, if i = j.

Max(D) = 2.8. The first D(i, j) = 2.8 is obtained for i = 2
and j = 4.

So, we allocate the two objects X2 and X4 to the two initial

modes.

If we have K > 2, we will iterate until obtaining the K initial

modes as explained by the algorithm (see Section IV.B).

V. EXPERIMENTS

A. Framework

We have developed programs in Matlab V6.5 for the

evaluation of the proposed selection method for the initial

modes. Then, we have applied these programs to real

databases obtained from the U.C.I repository of Machine

Learning databases [20]. Since there are not available real

datasets containing uncertainty within the belief function

framework, we have modified these databases by introducing

uncertainty in the attribute values of their instances in order

to obtain uncertain data sets like within BKM framework.

We assume, as within BKM framework, the choice of

numbers of clusters (K) to form is the same as the known

classes number of actual datasets. A brief description of these

databases is given in Table 4. #instances,#attributes, #classes

denote respectively the total number of instances, the number

of attributes and the number of classes.

TABLE II
DESCRIPTION OF DATABASES

Database #intances #attributes #classes

Congressional voting records database 435 16 2

Balance scale database 625 4 3

Wisconsin breast cancer database 699 9 2

Solar Flare database 1389 10 3

Nursery database 12960 8 5

B. Uncertain data sets: Artificial creation

Attributes’ values of training instances are perfectly

known in the standard K-modes method and also in the

belief clustering methods. However, in this work like the

BKM framework, uncertainty is introduced in the values of

attributes and it is presented through bba’s concept given on

the set of possible attribute values. So, the question is how

construct these bba’s to obtain uncertain data sets, since there

is not real databases within the belief framework.

These bba’s are created artificially by taking into account

these following basic parameters:

• The real attributes’ values of the training instances.

• Degree of uncertainty p (one for each attribute): it will

vary in [0, 1] interval. The fixed value of p has a direct

effect on the quality of results. In fact, for a large value

of p, the number of the correctly classified instances will

decrease.

We will consider these four different intervals of p for

our simulations:

– Level 1: we take 0 < p ≤ 0.25
– Level 2: we take 0.25 < p ≤ 0.5
– Level 3: we take 0.5 < p ≤ 0.75
– Level 4: we take 0.75 < p ≤ 1

• Percent of uncertain objects in a dataset: it represents

the percent of generated uncertain objects for one given

dataset.

The idea is to assign to each attribute, a bba over the set

of remaining attributes of this object, based on the set of

their possible values . After precise the uncertainty degree

respective to each attribute, we affect 1 − f , where f is a

randomly number that must be less or equal to p (p is the
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uncertainty degree) as bbm to the certain attribute’s value and

f to the frame of discernment corresponding to this attribute.

So, each bba has 2 focal elements as defined by the SSF

(see Equation 8), where the focus is the real attribute value

and w = f . These resulting bba’s describe our belief about

the value of the actual attributes’ values which the object has.

C. Evaluation criteria

Huang [14] proposed a measure of clustering results called

the clustering accuracy r computed as follows: r =

∑
k

i=1
ai

n
,

where n is the number of instances in the dataset, k is the

number of clusters, ai is the number of instances occurring

in both cluster i and its corresponding labeled class. This

criterion is equivalent to the ordinary PCC which represents

the percent of correct classification of the instances which

are classified according to the considered procedure (BKM

methods). It is given by:

PCC =
number of well classified instances

total number of classified instances
× 100

(17)

The obtained cluster is considered as the class of the instance.

Consequently, the number of well classified instances

corresponds to the number of instances for which the cluster

obtained by the BKM approaches is the same as their real

class.

In our simulations, in order to obtain an unbiased estimation

of the PCC, we have used a certain number of tests and after

that we will calculate the final PCC as the average of all

obtained ones. Since the initial modes affect the clustering

results, we will use the following validation procedure which

consists in randomly permutation of the n instances of a

given data set to cluster, at each run, and the K first objects

will be extracted to compute the initial clusters’ modes. The

procedure is repeated 10 times, each time using another K

first instances as the initial clusters’ modes.

Obviously, in each fold, we compute the corresponding

PCC and the final PCC is given by the mean of the already

computed ones. It is M.PCCs

D. Experimental results

Our simulations were performed for two cases, namely,

the certain case and the uncertain case for a larger number

of datasets. Note that the experimentations were performed

using a Centrino 1.6 GHz PC with 1024 Mo of RAM running

Windows XP. Note that all obtained PCC’s values for both

cases, showing in the following tables, are expressed in

percentage.

1) Certain case: The first case tests the efficiency of our

method (the initial version) and its improved version when

there is no uncertainty in attributes’ values, it means that each

attribute is known with certainty and it has an unique value,

and compares the results with ones obtained by applying the

BKM method.

TABLE III
EXPERIMENTAL RESULTS : CERTAIN CASE

Database M.PCC % M.PCC %

(BKM1) (BKM2)

Congressional voting records database 88.35 88.75

Balance scale database 79.20 80.25

Wisconsin breast cancer database 72.48 74.25

Solar flare database 87.85 88.25

Nursery database 90.75 91.25

Note that the second column (BKM1) is relative to results

of the initial version of the BKM method which is based on

the standard selection method for choosing the initial modes

(random choice). However, the last one (BKM2) represents

those of the improved BKM method, second version, by

inducing the proposed method advanced in Section 5.

It can be seen that the clustering results have improved

when the modes are chosen by our proposed method in

comparison to the random selection of initial modes. Figure

1 represents these results graphically.

Fig. 1. M.PCC on the certain case

From this figure and Table 2, we can conclude that

by applying the extended version (BKM2), based on

the developed method for selection the initial modes, an

improvement of the PCC’s values is mentioned comparing to

those obtained by the first version of our BKM approach.

2) Uncertain case: The following tables (Tables 4, 5, 6, 7

and 8) summarize different results carried out from testing

the methods (the initial BKM in the first part of each column

and the extended version using the developed selection initial

modes method in the second one) in uncertain context to

the same five datasets respectively to the four intervals of

uncertainty degree p defined before and the different values of

the uncertainty percent of dataset intances which are defined

as follows : 25%, 50%, 75% and 100%.

To conduct experimental comparison and to verify the

efficacy of our proposed approach (BKM2), let us move to
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the following tables.

TABLE IV
EXPERIMENTAL RESULTS (CONGRESSIONAL VOTING RECORDS, M.PCC

ON THE UNCERTAIN CASE)

Percent 25% 50%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 91.25 92.58 89.13 90.75

0.25 < p ≤ 0.5 90.11 93.76 87.52 89.57

0.5 < p ≤ 0.75 88.82 89.55 86.03 88.75

0.75 < p ≤ 1 85.17 88.45 83.57 84.95

Means % 88.84 91.08 86.56 88.50

Percent 75% 100%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 88.15 88.80 86.23 87.95

0.25 < p ≤ 0.5 87.48 88.45 81.13 83.75

0.5 < p ≤ 0.75 85.57 87.54 76.29 80.25

0.75 < p ≤ 1 84.12 86.44 71.63 75.56

Means % 86.33 87.80 78.82 81.87

TABLE V
EXPERIMENTAL RESULTS (BALANCE SCALE, M.PCC ON THE UNCERTAIN

CASE)

Percent 25% 50%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 82.26 83.75 80.12 82.12

0.25 < p ≤ 0.5 79.89 82.15 79.95 82.75

0.5 < p ≤ 0.75 78.23 80.42 76.30 79.56

0.75 < p ≤ 1 75.83 77.56 76.01 78.75

Means % 79.05 80.97 78.09 80.79

Percent 75% 100%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 79.29 81.35 77.22 79.75

0.25 < p ≤ 0.5 78.56 80.78 77.15 79.45

0.5 < p ≤ 0.75 75.59 77.75 74.35 77.65

0.75 < p ≤ 1 74.44 76.65 71.23 73.95

Means % 76.97 79.13 74.98 77.7

TABLE VI

EXPERIMENTAL RESULTS (WISCONSIN BREAST CANCER, M.PCC ON THE

UNCERTAIN CASE)

Percent 25% 50%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 75.24 78.56 75.13 77.55

0.25 < p ≤ 0.5 73.55 75.55 73.21 75.75

0.5 < p ≤ 0.75 71.03 73.42 70.81 73.55

0.75 < p ≤ 1 70.99 72.45 69.18 71.15

Means % 72.70 74.99 72.08 74.5

Percent 75% 100%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 74.08 77.45 73.91 75.95

0.25 < p ≤ 0.5 72.42 74.45 71.51 74.85

0.5 < p ≤ 0.75 68.69 70.55 68.88 70.4

0.75 < p ≤ 1 68.87 70.56 68.02 70.57

Means % 76.97 79.13 74.98 77.7

TABLE VII
EXPERIMENTAL RESULTS (SOLAR FLARE, M.PCC ON THE UNCERTAIN

CASE)

Percent 25% 50%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 95.95 96.05 94.42 94.57

0.25 < p ≤ 0.5 92.5 92.75 91.54 92.57

0.5 < p ≤ 0.75 89.55 90.05 87.56 89.25

0.75 < p ≤ 1 85.5 87.75 82.55 84.55

Means % 90.87 91.65 89.017 90.23

Percent 75% 100%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 92.75 93.55 87.85 88.05

0.25 < p ≤ 0.5 88.75 90.45 86.4 87.75

0.5 < p ≤ 0.75 81.7 83.45 79.75 81.05

0.75 < p ≤ 1 78.90 80.95 75.45 77.05

Means % 85.52 87.1 82.36 83.47

TABLE VIII
EXPERIMENTAL RESULTS (NURSERY, M.PCC ON THE UNCERTAIN CASE)

Percent 25% 50%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 95.9 95.95 94.5 94.72

0.25 < p ≤ 0.5 93.75 94.05 91.75 92.05

0.5 < p ≤ 0.75 89.98 90.12 88.52 89.05

0.75 < p ≤ 1 87.75 88.05 82.55 83.75

Means % 91.84 92.04 89.33 89.89

Percent 75% 100%

Degree BKM1 BKM2 BKM1 BKM2

0 < p ≤ 0.25 94.0 94.05 89.9 90.05

0.25 < p ≤ 0.5 90.55 91.15 88.75 89.05

0.5 < p ≤ 0.75 86.75 87.25 83.95 84.45

0.75 < p ≤ 1 79.56 80.35 74.51 75.75

Means % 87.71 88.2 84.27 84.82

It is found that the clustering results produced by the

proposed method (initial version: BKM1) are very high in

accuracy. However, including the developed selection initial

modes method (BKM2) instead of the randomly choice used

initially, as with the standard version, improves the obtained

results and we mention an increase in the PCC’s values.

In fact, these PCC’s show that our method presented

interesting results, these results confirm that our approach is

well appropriate within the uncertain context.

Detailed results (PCC), for each data set, within this

uncertain case and for different values of our uncertainty

parameters, are given by figure 2.

As with the certain case, the results show that the proposed

approach deals with uncertain instances as good as with

certain instances. For instance, if we analyze the results

shown in Figure 2, we remark that the PCC (uncertain case)

remains high in average as in the certain case. These results,

certify that our proposed approach is also well adapted to

classify instances with uncertain attribute values.

Note that the PCC’s decrease in average where uncertainty

degree increases for a fixed uncertainty percent as shown in

Figure 2.
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Fig. 2. M.PCC on the uncertain case(BKM1 compared with BKM2)

For example for the Congressional voting records database

and if we consider that 100% of instances are uncertain, the

PCC value becomes 71.63% when the uncertainty degree

is in [0.75, 1[, which is considered as a high uncertainty,

comparing to 86.23% with a low uncertainty (the uncertainty

degree is as follow: 0 < p <= 0.25) as shown in Table 4.

Figure 2 allows us to make a comparison between BKM1

clustering results and the BKM2 ones. It shows the effect of

initial modes on clustering results. In fact, this improvement

of results proves that the developed method for selection

initial modes provides an interesting approach to choose them

comparing to the standard one consisting in a random choice

from the data sets objects.

As a conclusion, we have to note that these values are

purely experimental and that depend on the used database

and even on the used uncertainty degree and the considered

uncertainty percent within a given database.

In fact, the clustering results produced by the proposed

method are very high in accuracy. The PCC’s show that our

method presented interesting results. So, these results confirm

that our approach is well appropriate within the uncertain

context.

VI. CONCLUSION

Our objective through this work is to develop one initial

modes selection method under uncertainty for the BKM

approach in belief function theory framework as explained in

TBM. Our method is developed to cope with the problem of

of choosing random initial modes.

First, we have exposed the BKM approach, then we

have improved it by developing a new selection method for

choosing the initial modes based on the dissimilarity measure

concept. The BKM method is the result of the combination

between the standard K-modes method as clustering technique

and the belief function theory to handle uncertainty problem.

This uncertainty concerning attributes values can appear in

both phases namely construction and classification one.

We have performed simulations on commonly used datasets

obtained from the U.C.I repository [20] in order to evaluate

and compare the performances of our belief clustering

methods on the accuracy of the clustering results. Using the

PCC as an evaluation criterion, the encouraging results of the

experiments show the efficiency of our extended approach in

both the certain and uncertain cases.

We plan to use our approach, using the developed initial

modes selection approach, for real life problems especially in

detection intrusion problems. In addition to the uncertainty

on attribute values, another line of research will be to assume

that each object in the training set may belong to more than

one cluster, this uncertainty in the cluster membership can be

represented via belief functions. However, this extension of

the current work will allow us to compare our method with

the belief clustering one proposed in [9].

An interesting future work is to make our method able to

cluster datasets characterized by continuous attributes. Thus,

the proposed method will be more flexible to handle mixed

numerical and categorical databases.
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