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Abstract—The performance of schedules released to a shop floor The remainder of this paper is structured as follows: after
may greatly be affected by unexpected disruptions. Thus, this papiee literature review in Section I, Section Il describes the
considers the flexible job shop scheduling problem when processipgSp. Section IV discusses the modified hGA architecture.
times of some operations are represented by a uniform diStrib“tiR'halysis of the computational results is presented and

with given lower and upper bounds. The objective is to find % cussed in Section V. Einallv. the research summary is
predictive schedule that can deal with this uncertainty. The pap [scu ! : - rinatly, u y

compares two genetic approaches to obtain predictive schedule. GRyered in Section VI.

determine the performance of the predictive schedules obtained by

both approaches, an experimental study is conducted on a number of Il. LITERATURE REVIEW
benchmark problems. For decades the emphasis of literature that discusses
scheduling problems is put towards deterministic scheduling
problems where the data parameters are assumed to be fixed
and known beforehand. Nevertheless, recently more attention

[. INTRODUCTION is given to schedule systems where some data parameters are

. . .unknown or are represented by some probabilistic
LEXIBLE job shop scheduling problem (FJSP) "Sdistributions. Since most scheduling problems are classified as

computationally difficult problem to solve. However, in . L )
) - P-hard, heuristic and meta-heuristic approaches received
real manufacturing systems unforeseen incidents happen. For - . L
mlfch attention to deal with the presence of uncertainty in the

this, classical models that assume deterministic data abou ; ' . . .
) . . . o Eroblem s data parameters. This section gives a brief survey
processing times of operations, machines availability; et f stochastic scheduling approaches found in literature
may; in theory; produce an optimal or near optimal schedul%, 9 app S . .
! . . .'References [3]-[9] addressed stochastic single machine with
but its performance may deteriorate when implemented in - . . ) ' .
N . uncertain jobs processing times. Single machine environment
practice; i.e.; released to the shop floor; due to unexpecte'%jecteol to machine breakdowns was considered by others
disruptions. Nevertheless hen incorporating the da - o )
ISTUPY v W ! porating e [10]-[12]. Similarly, [1] used a modified GA to find

uncertainty in the formulation of the already NP-hard FJS P : : -
o . dbust solution in single machine environment subjected to
the problem becomes even more difficult and complicated ) .
a%qchastm release dates of jobs.

solve. A number of methods are suggested in literature to d

- . : . Also, [13] analysed effects of machine breakdowns and
with stochastic parameters of a certain scheduling problem. . . o . .
. . rocessing time variability on the quality of job shop
However, based on the desire of the decision maker thés)sc%ed les using slack-ime based robustness measure. The
methods can be classified and accordingly choose a method u using . - robu - ure.
s - erformance of simple dispatching heuristics versus
that fulfils his need. For example, some decision makers fa\Pr . . . . . .
a solution that can hedge against the worst possible scena?ig'omhmlc solution techniques in job shops subjected to
untertain processing times were studied by [14] and [15]

thers prefer lution that h high lity on aver ; . . ;
others preter a solutio at has a high quaily on ave a% owed that dispatching rules are more robust to interruptions
whereas some look for a solution that minimizes the risk 9hfam the optimum seeking off-ine scheduling algorithms

ending with a bad solution. Reference [1] presented a GA t .
uses sampling technique to estimate the robustness of a Sirr??éerence [16] proposed a two step algorithm based on

; . o sjunctive graph representation to minimize maximum
machine schedule subjected to small variation in release dafes: . .
. . afeness and absorb the impact of random machine
They stated that, in a similar way, other types of stochasfic L -
roblem data can be easily incorporated. In this paper Wéeakdowns on the predictive schedule of a job shop by
P y P ) pap Inserting idle time. Furthermore, [17] and [18] used GA

modified a hybridized genetic algorithm (hGA) proposed bFE(r]oposed in [19]) to improve the robustness and flexibility of

[2] to deal with FISP when some operations are represen S . :
. o - - € job shop schedules when minimizing maximum tardiness,
by or subjected to variations characterized by a uniform . . .
summed tardiness and total flow-time measures using two

processing time. The study compares two methods, a metr}ogustness measures, a neighbourhood-based robustness
based on sampling technique similar to [1] and a method tHa ' 9
easure and a lateness-based robustness measure.

optimizes the objective function based on the EEXpeCtel;ﬁAuthors in [20] presented a fuzzy mathematical model of

rocessing time of the operations (i.e. simple method similar . ) .
Itoo determi%istic approach? ( P scheduling parallel machines with sequence-dependent cost

while considering uncertainties in processing times. [21]
proposed a two-stage scheduling decision framework to
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machines as a random variable with respect to ttal t variation of operation is due to, e.g., incompleteunreliable

weighted flow time. Furthermore, [23] presentedeal-time
simulation-based decision support system to contha
production of a stochastic flexible job shop sutgdcto
stochastic processing times. Readers are refeor¢2idl-[27]
who gave detailed review of literature related ¢hesluling
under uncertainty.

In light of the literature, scheduling under unaarty can
be classified into number of categories dependingttee
adopted strategy by the decision maker on how &utréeo
uncertainties. Hence, methods compared in this rpéks
under the categoryproactive (robust) schedulingvhich is
defined as a schedule with relatively insensitivaldy to a
changing environment ([25] and [26]). Furthermotég
choice of the optimization method depends on thvell®f
uncertainty. Therefore; in our opinion; if the egpe level of
uncertainty is low enough decision makers and/bedualers

information or unavoidable stochastic variabilitglated to
machine’s tools and/or workers skills, etc. The cessing
time uncertainty can be described by a set of afisible
scenarios (infinite}. Each unique set of processing tinges
obtained by equally selecting a value from the cissed
interval of each operation:

pi{jk € [Bijk'p_ijk] Oigd {1, 2, ...,n},
j0{1,2,..q9}L kO{1,2,.. m Q)
In practice the actual operations’ processing tohesome
operations may not be known or difficult to veriiyntil the
operation has finished processing. In such caseingiag an
expected value helps the scheduler or decision make
obtaining a schedule that satisfies a certain pmdoce

might consider using two possible optimization-lthsemeasure. In this work, the expected processingstiip; |

algorithms. The first is to adopt an algorithm tbatimizes a
schedule based on the average values of paramettdrs
uncertainties (such as processing time). The sedsntb
implement an algorithm based on sampling technfpra the
random distributions of these parameters. The lapgroach
subjects different schedules’ sequences to diffesmts of
uncertainties and then selects the one that pesfamgll on
average. To the best of our knowledge, there isanmtevious

study that addresses a comparison of the two form@

algorithms for obtaining predictive schedules o€ tRIJSP
when some operations are represented by or suthjectiew-
to-medium processing time variations. Hence, tha gb this
work is to evaluate and compare the quality andstlation
robustness of predictive schedules obtained udieget two
choices in flexible job shop environment where phecessing
times of some operations are represented by oesidn to
low-to-medium uncertainty. Specifically, processimges of
these operations are represented by an intervaqoilly
possible real value between given lower and uppemds.
For clarity and ease of referencing, the algorithihat
optimizes expected average data will be referredsts,,,
and the algorithm that is based on sampling wilbbeeferred
to asMSyrop.

Ill. PROBLEM DESCRIPTION

This work considers a non-preemptive flexible jdio
scheduling problem (FJSP) with the objective of imining
the makespan. There is a set 6f {Ji, J,, ..., Jo} jobs and
each jobi has a set oD = {Oy, Op, ..., Oy} operations
whereq, denotes the total number of operations ofJoltach
operationQ; is to be processed in a subset of machihgd ]
M = {M;, My, ..., Mg}. An operation O; cannot start
processing until its precedence operati®g,, has finished its
processing. Alln jobs are available at time= 0 and the
processing timep;;of some operationd; of job J in

of operations that are represented by or subjectedriations
according to a uniform time intervals are given by:

Elpijx] = ((Eijk + ﬁijk)/z) (2)

IV. HYBRIDIZED GENETICALGORITHM FORTHE FJSP

Reference [2] proposed hybridized genetic algorith@A)
fchitecture for the deterministic FISP and redlitstrated
that the approach is very effective in minimizihg imakespan
of this problem. Recently, authors ([28]) showest tiis hGA
can be modified to deal with FISP subjected to agend
machine breakdowns by replacing its fithess fumctim the
following subsections, we describe the originaledetinistic
hGA and then show how it can be modified to mininihe

makespan of schedules according to average expected

processing times data or according to the sampéognique
method.

A.Deterministic hGA for the FISP

Reference [2] used permutation-based representation
chromosome representation; where each operation is
represented by triple,(,j) such thak is machine assigned to
the operationi is current job number, arjds the progressive
number of that operation within job A schedule for FISP
with three jobs and three machines can be represeoy
(221-131-111-212-322-223-332). In this architectutbe
initial population is created by two ways. The ffivgay is to
generate half of the population randomly. The sddoalf of
the population is generated using a schedule agrigin
heuristic calledini-PopGen Ini-PopGen starts by randomly
assigning priority to jobs. Then, based on thisonity an
operation is scheduled on the machine (from the dfet
appropriate machines) that can finish it sooneis Phocedure
considers the processing time and the work loadthan
machine while assigning operations.

Chromosomes decoding follow an active decoding

machineM, may equally take any real value between giveprocedure, wherein no operation can be starteieearithout
lower p;; and upperp;; bounds. This processing timedelaying at least one other operation or violatitiye
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technological constraints. After the active decgdirthe
schedule is improved by a local search proceduat réssults
in a local optimal schedule (Lamarckian learnirigbwever,
this local search procedure is only applied evfigeneration
and number of moves is limited to a maximlon_iter moves
without improvements.

Two chromosomes are selected from the populatian.
first, roulette wheel technique is used to form alshmating-
pool based on a selection probability given by:

Poy =2 ind =1,..,N (3)

el — ,
Frot

Where,Ps is the probability of choosing thied" individual;
N: is the population size;q: is theind" individual fitness;
and F: is the total fithess of all individuals in theroent
generation.

Then, if the individual in the donors’ mating-pqmsses a
crossover probability., ann-
to selectn chromosomes from the population to form th
receivers’ mating-sub-pool. Then, the best indiaiddone
with lowest fitness value, makespan) in the subkohosen
for reproduction.

The crossover operator is based on tReecedence
Preserving Order-based CrossovéPOX) ([29]) and was
modified not to treat the parents symmetrically.tddion of
individuals is implemented through using two opersat The
first operator is aMachine Based MutatioMBM), where a
random number of operations (denotecheend) are selected
and reassigned to another machine. After that, fieodi
Position Based Mutation(PBM) is applied. PBM was
originally designed for JSP using single triple rpetation-
based chromosomes representation. Thus, the PBM
modified so that no infeasible chromosomes are ywed and
it starts by randomly selecting an operation withime
chromosome and then reinserting it at another iposit

B.Modified hGA for the FISP

In this section, we describe how the original deiaistic
hGA can be modified to solve the FISP to find salex
using the two method#)S., andMSyron

Historical records of a certain shop floor can jlev
approximated distribution uncertainties that caedfit; such

2517-9950
No:4, 2012

For the suggested comparison between the two m&timod
this work, the ordinary objective function of theterministic
FJSP with minimum makespan is given by:

MS,in = min {max(C)HIV]; = {I, T, ..., I} 4)

here, MS,, is the minimum makespan, ang;, is the
completion time of joh/; can be applied and/or modified as
follows. First, the same ordinary objective funati@) is used
for optimizing theMS,,, method. The only difference is when
using the processing times of operations repredehge or
subjected to uncertainty. In this case, the expeptecessing
operations’ times replaces the uniform interval cessing
times and then these expected processing times/ahgeused
to generate the sequence of the predictive schedoleever,
for the second methoMSyr., the procedure is not straight
forward. Here, according to [30], the solution ofick

Size tournament method is usedPPiective fitness function has to be implemented @n
dandomly modified sample set of characteristics (ata

parameters) and then combining a number of evalustof
the same schedukesequence solution in the objective fitness
function. A possible sampling objective fitness forcertain
processing times can be represented by a weigherdge of

m derived evaluations such that:

MS%ROb(S) = %Zﬁl wi o (Msmin (s), ¢ (pf]k)>
Vie{l,2,..,n}Lje{1,2,..,q}ke{l,2.,m} (5

where, wl is the weight related to the derived dcte s
sequence evaluatioa,(pfjk) is sampling function that takes a

rihdom sample of a certain processing time scepélgjoand

m is the number of samples used to evaluate thedsitds.
Therefore, the previously described hGA in subsedi/-A
is modified to first use (4) with the expected mrssing times
for MSexp method, and then modified by replacirgdfitness
function by (5) forMSyr., method. The hGA used for each
method will be referred to a¥lS,-hGA and MSyrahGA,
respectively. Using different objective fitness dtian in the
hGA will lead to obtaining different schedule seqces.
Thus, each schedule’s sequence may respond differen

as machine breakdowns, processing times variatiorféSruptions as some may be able to absorb thedctsfimore

cancelations or arrivals of new jobs, etc. In FJ2B] showed
that such distributions can be used as a guide \whearating
the predictive schedule. This can be achieved bggmating
the probability distribution of that specific untainty with the
machine routing and sequencing of operations soabverall
performance, measured by makespan, of the schélulet
affected to a high degree in case such disrupticors.

Previous studies like [1], [13], [17], [18], [283tc, showed
that such objective can be achieved by replacirgfitmess
function of the GA by a fitness function that stis the new
objective, usually referred to asbust fitness functionThe
main purpose of such robust fithess evaluationtfans is to
guide the evolution of solutions towards solutitmat are not
or slightly affected by perturbed data parameters.

than others. Furthermore, since GA utilizes a paftuh of
solutions in its search, this gives higher chartoesxplore a
diverse set of solutions. Hence, GA will have higbleances
of finding schedule sequences that are less semditi data
uncertainties.

V.ANALYSIS AND RESULTS
Numbers of FISP benchmarks with a wide range @fssiz
from 5 x 3 to 20 x 15 found in literature are uded the
experiments. These benchmarks are Ex1 taken frdin §ad
examples MKO01, MKO03, MK0O7 and MK10 proposed by [32]
For this work, the expected processing tilifp; ;| of an
operation is to be equal to processing time of tigegration in
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the original problem. Hence, the upper and lowercessing
time bounds of an operation affected by uniformiatan in
its processing time is calculated by:

evaluation function (described in subsectionB)/minimizing
MS,y, is first run to obtain schedules with sequencerretl to
asexpected sequenc&hen,MS,s-hGA, with the systematic
application of sampling function evaluation (5), used to
obtain schedule with sequence referred to sasnpling
sequence In order to draw more accurate responses, five
a?chedules for each of the hGA different settingeath test
case is used. After the sequences are obtainedepbfations
of each problem instance with randomly modifiedgessing

Para_lm(’ater/;’ reprgseqts the level of variability of thetimes according to the disturbances are evaludteid.results
operation’s processing time. In order to contr@ ttumber of in 5 (number of obtained schedules’ sequences) x 4

operations that are affected by the processing vian@bility, . e _
the parametero has been used. Table | shows differen&dISturbances levels) x 400 (replications) = 8088 tuns per

o test instance.
combinations of the two parametessandg, that are used to Since this comparative study is done to compare the
generate the different test cases of the expersnent

performance of the predictive schedules’ sequeritaireed
using MS,, method and predictive schedules’ sequence
obtained using th&1S,r., method, all obtained sequences are

[Eijkﬁijk] =E [Pijk] X[A-p5),0+p] (6)

where, f is the percentage difference from the origin
expected processing time.

TABLE |
DIFFERENTPROCESSINGTIME VARIATION’S COMBINATIONS

% of affected operations & disturbanc subjected to the same processing time variatioturtiances

Disturb 3 ; . :
isturbance ype level ’ / and their performance is compared in terms of:
DT1 Low, low 020 015 1) The relative error RE) predictive makespan deviation
, with respect to the best-known lower bound valundd
DT2 Low, medium 0.20 0.40 as:
DT3 Medium, low 040 0.15
DT4 Medium, medium 040 0.40 RE = [(MScomp — LB)/LB] x 100 Q)

where,MS,n is the initial predicted makespan obtained
using either method, antB is the best-known lower
bound. It is worth pointing out that since for ever
replication the processing times are randomly medijf
estimating itsLB value is not possible. Therefore, the
usedLB is the saméB reported in literature for the same
test case group. The relative error measures thestoess

in the objective function space, i.e. quality raimess.

2) The average absolute relative makespan deviation
between the initial predicted schedule makespanthaad
actual realized makespan after the 400 disturbances
replications according to the following equation:

A.Hybridized genetic algorithm parameters

The number of function evaluatioms, i.e. the number of
samples used to evaluate the schedula (5) requires being
sufficient. This is due to the fact that usingn@afier m value
may lead to selecting a non-robust solution, whilsing a
larger value leads to unacceptable increase in
computational time. Hence, the selected valum & related
to the total number of operations of each instafidee m
value is set to 50% of the total number of operations] a
hence, the correspondiny1S,r,shGA is referred to as
MS;oroshGA. All sequence evaluations are given the same
importance and hence the weightn (5) is set to 1.

All test codes are implemented and executed usifg @

the

an Intel® Core™ 2 Quad CPU @ 2.4 GHz with 3.24 GB
RAM. For comparability and ease of implementatialhhGA

are closely related and the parameters are expetathe
tuned according to the performance df1S,-hGA
(minimizing MS,p). The parameter values that are chosen for
the two-stage hGA algorithm are as follows: popatatsize
200, crossover probability 0.7, mutation probapili.3,
number of generations 200, number of parents in the
receivers’ mating sub-pool 4, number of generatidos
perform local searcld = 10, maximum number of moves
without improvement in the local seardbc_iter = min

Ave.Abs RMS, =
S {J [MS(@)zy MS(q)p]Z/[MS(q)p]Z} x100(8)

where, q is the replication predictive schedule, and the
subscriptsP, R andp : refer to predictive (or the original
released schedule to the shop floor), realizeth@actual
schedule after disturbance simulation), and thegssing
time disturbance number, respectively.

The performance measures addressed above exangne th
average values related to the obtained replicdtiectsedules

[tot_noper 150], and the worst chromosome is replace ekeryat each combination before or after the disrupti@rse of the

= 3 generations.

essential concerns associated with any proposetioaheta

heuristic or a meta-heuristic method, to solve abjgm is

B.Analysis of robustness measures

To compare the performance of both methddS,,-hGA
and MS,5-hGA,

arbitrating the quality of its obtained solutiongrgdictive
. . " \ schedules in this study). Therefore, the first rmeaRE seeks
a simulation procedure is applied.to answer that concern by measuring how far arettained

Consequently, a standartS.,-hGA using the ordinary schedules from the optimal or near optimal schexful€his
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ensures that only methods that are capable of robtgi
predictive schedules of high quality, minimum males as
well as proving their repeatability, or robustn@sobtaining
such schedules, are given the credit. For thisoreaRE
measure is designed to work on the objective fonctipace
by comparing the quality of obtained solution ofyanethod
to a standard benchmark solution.

While RE measure quantifies the quality robustness
obtained predictive schedules, a#de. Abs RMS, measures,
on the other hand, assist evaluating the solutinustness of
these schedules and their sustainability in thee fad
uncertainties. To achieve this evaluation it isuieed to find a
way of comparing the original solution, i.e. preilie
schedule released to the floor shop, to the fioait®n, i.e.
the realized schedule after the disruptions.

This is achieved by using thedit distance concept
introduced by [33]. This concept is generalizednieasure the
distance between two schedules by considering ifferehce

in the main performance measure between the pheglict

schedule and the realized schedule, i.e. makespaatibn.

For this reason,Ave.Abs RMS, measureis used and is
interpreted as the relative mean of the deviatlmetsveen the
realized schedules after disruptions and the aalbineleased
predictive schedules. Moreover, it is considerec agiantity
that measures how close, in average, the realdeetisles are
to the predictive schedules.

C.Computational results
Table Il shows the detailed results obtained udtg,;

hGA and MSys-hGA. Due to space limitations, Table Il is

divided into two parts. It consists of 10 columie first
column represents the instance name and size. 8tend
column refers to used method to obtain the cornedipg
schedule. The remaining columns are labelled agupitd the
performance measures given above and give thetsesfulhe
400 replications of specific disturbance type foe modified
instances, i.e. test case groups. For each coltinenbest
performance; lowest average deviation percentagerinted
in bold-face. When considerin@E results in Table I, it can
be noted that including variations of the procegdimes in

the objective functionMS,s-hGA) to obtain a schedule has a

negligible effect on increasing the makespan ofpregictive
schedule. Therefore, the maximum increasREwhen using
the robust sampling objective functioS,s-hGA, compared
to the expected ordinary fitness function evaluativlS.-

hGA, is 6.09% (for the Ex1 test case group) ancheerage
0.61% for all modified instances. Furthermore, irosin
considered cases the sampled solutions obtainelll ),

hGA were sometimes slightly better than the exmecte
solutions obtained bW1S.-hGA like for the test cases MKO1,
MKO7, and MK10. This may be explained by the chaige

how the population is handled when using the samgpli

function evaluation, (5), which may allow escapfrgn local
optima. In addition, in terms oflve. Abs RMS,, the robust
solutions results acquired BYS,s-hGA are outperforming

those obtained byMS,hGA. Thus, using a schedule
sequence obtained B§S,s-hGA performs mostly better after

2517-9950
No:4, 2012

disturbance occurrence compared to a schedulenebtady
MS,hGA. These findings highlight the capability iS5
hGA to find solutions that are both quality robastd solution
robust.

TABLE Il

COMPUTATIONAL RESULTS—DEVIATION OF SCHEDULESWHEN SUBJECTED
To RANDOM UNIFORM PROCESSINGT IME VARIATIONS

of DTL DT2

Ave.Abs Ave. Abs
Inst. & Size Method RE MS, RE MS,
- MS.hGA 5217 147 5217 409
GX3)  \ygwhGA 5652 137 5826 356
vkoy  MSwhGA 1389 114 1389 277
(10x6) Mg <hGA 1333 116 1111  2.43
vkos  MShGA 000 088 000 2.29
(5%8)  Ms.<hGA 000 090  0.00 2.44
vkoy  MSwhGA 1053 083 1053 249
(20x5)  \is.<hGA 1098 080 932 2.38
vkio ~ MSwhGA 3964 080 3964 234
(20x15) s chGA 3939 062 4036 223

TABLE Il (CONTINUE)
COMPUTATIONAL RESULTS—DEVIATION OF SCHEDULESWHEN SUBJECTED
To RANDOM UNIFORM PROCESSINGTIME VARIATIONS

DT3 DT4

Ave.Abs Ave.Abs
Inst. & Size Method RE MS, RE MS,
- MSwhGA 5217 197 5217 548
GX3)  MgwhGA 5391 191 5478 491
kor  MSsNGA 1389 149 1389 381
(10%x6)  MsexhGA 1222 141 16.67  3.68
vkos  MSwhGA  0.00 117 0.00 3.24
(5X8)  MsehGA  0.00 1.19 0.00 3.12
wkoy  MSeNGA 1053 137 1053 411
@0X5)  VgwhGA 992 1.17 1128  3.92
vkl  MShGA 3964 117 3964  3.80
(20X19) s hGA 3867 090 4048  3.41

Values written in bold are the best values
VI. CONCLUSION

This paper presented how a hybridized genetic gfgor
for a flexible job shop problem can be modifiedital robust
solutions when it is subjected to low-to-medium cam
variations in the operations' processing times. th@s, two
methods were compared. Our computational resulbsveth
that obtained solutions are both solution robust goality
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robust. Furthermore, computational results reveaksu

interesting finding showing if an FISP is subjedted low-

to-medium level of processing time uncertainty, nthan

optimization-based method working with expectedcpesing

times value may obtain schedules that are as good
schedules obtained using a sampling technique metmal

hence saving the computational efforts.

As a future research direction, the current reseaen be
extended to study the impact of other kinds of pssing time
distributions on the conclusions found in this studurrently,
authors are exploring extending this study by depiely a
multi-objective approach that returns the Paretontfer
solutions so that a decision maker can select &natde
robust and/or stable schedule.
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