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Accurate visualization of graphs of functions of two
real variables
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Abstract—The study of a real function of two real variables can
be supported by visualization using a Computer Algebra System
(CAS). One type of constraints of the system is due to the al-
gorithms implemented, yielding continuous approximations of the
given function by interpolation. This often masks discontinuities of
the function and can provide strange plots, not compatible with
the mathematics. In recent years, point based geometry has gained
increasing attention as an alternative surface representation, both for
efficient rendering and for flexible geometry processing of complex
surfaces. In this paper we present different artifacts created by mesh
surfaces near discontinuities and propose a point based method that
controls and reduces these artifacts. A least squares penalty method
for an automatic generation of the mesh that controls the behavior of
the chosen function is presented. The special feature of this method
is the ability to improve the accuracy of the surface visualization
near a set of interior points where the function may be discontinuous.
The present method is formulated as a minimax problem and the non
uniform mesh is generated using an iterative algorithm. Results show
that for large poorly conditioned matrices, the new algorithm gives
more accurate results than the classical preconditioned conjugate
algorithm.

Keywords—Function singularities, mesh generation, point allo-
cation, visualization, collocation least squares method, Augmented
Lagrangian method, Uzawa’s Algorithm, Preconditioned Conjugate
Gradient

I. GENERAL FRAME OF STUDY

With the introduction of the computer into the learning
environment the way Mathematics is conveyed has changed.
The traditional sequence Definition- Theorem-Proof has re-
ceived a complement with examples where visualization plays
an important role. This is true in numerous mathematical
domains, such as Geometry, using the so-called Dynamical
Geometry Packages, and also Analysis and Algebra with Com-
puter Algebra Systems (CAS). Questions about the study of
functions and curve discussion have been studied by [20], [11],
[12] and others. In particular, various limitations of the usage
of the computer have been discussed. Many educators have
replaced the traditional sequence mentioned above by another
one, beginning with computer assisted experimentation. A well
known case of CAS experimentation prior to theoretical study
is curve discussion. It happens that a discontinuity of the
function or the non-existence of a limit at some point are not
shown by the display, despite the fact that a proof is easy to
write. Such a cognitive conflict can appear, in a stronger form,
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when studying functions of two real variables. In order for the
eye to catch the situation, most Computer Algebra Systems
enable a dynamical point of view, using the mouse to turn
the surface around. This can help to discover discontinuities
or points where partial derivatives cannot exist, but how to be
confident of the exactness of the visual impression? As we
will see, discontinuities can be hidden. Functions of two real
variables are generally introduced in an Advanced Calculus
course, where the students discover generalizations of notions
learnt in their first Calculus course. The respective roles of
the first and second derivatives are extended in the new frame
to discover extrema, saddle points and points of inflection.
When arriving at the visualization stage, drawings are harder
to obtain by hand-work and computerized help is welcome.

Plots are obtained via commands similar to the 2D-
commands and the student is confident that what is seen
is what has to be seen. We can illustrate the first problem
encountered with the example of a paraboloid: when drawn on
the black/white board it looks as in Figure 1(a), but generally
a CAS plots something like (b) or (c), because of a bounding
box. Even when the bounding box is no displayed, it cuts the
paraboloid in a visible way.

(a) (b) (c)

Fig. 1. Three views of the same paraboloid

In Figure 1(a),the general shape of the surface can be
imagined, but this is doubtful for Figure 1(b). The different
choices of the ranges for x and y are responsible for this
disparity in the display.

We illustrate now a problem of another nature. Consider the
function defined by

{
f(x, y) = xy

x2+y2 if (x, y) �= (0, 0)
(0, 0) = 0

and whose graph is displayed in Figure 2 for −1 ≤ x ≤
1,−1 ≤ y ≤ 1 (we used the program called DPGraph1). It

1http://www.dpgraph.com
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”seems” that something special happens in a neighborhood
of (0, 0), leading the student to check whether the function
has a finite limit at (0, 0) or not. The grid itself supports the
intuition that when approaching the origin on different straight
lines, something changes, whence the non-existence of a limit
at (0, 0).

Fig. 2. The function is not continuous at the origin.

A. Different plots with different computer packages

Consider the function of two real variables given by
f(x, y) = 1

1−(x2+y2) . It is a rational function, continuous
all over the plane, excepted at the points of the unit circle.
When approaching these points from inside the unit circle,
the function has a positive infinite limit and a negative positive
infinite limit when (x, y) approaches a point of the unit circle
from outside. We should mention that a precise proof of this
fact is rarely written in a standard course in Multivariable
Calculus; sometimes the situation is studied in more details
using polar coordinates. The cylinder given in the 3-space by
the equation x2 + y2 = 1 plays the role of an asymptote to
the graph of the function, the graph approaching the cylinder
in two different ways, according to which part is considered,
either inside or outside. Three different plots, obtained with
DPGraph are displayed in Figure 3, according to the data: (a)
−2 ≤ x, y ≤ 2, −3 ≤ z ≤ 3; (b) −3 ≤ x, y, z ≤ 3; (c)
−2 ≤ x, y ≤ 2, −5 ≤ z ≤ 5.

The three plots are similar but show differences: the cylinder
is always ”nice”, but the graph of the function presents various
indentations2:

• the inner-upper sheet is indented in (a), not in (b) and
(c), but the z-values seem to become too large for them
to be fully plotted in (c).

• the lower sheet has strong indentations in all cases,
instead of being ”full”, as could have been expected.

The impossibility for a CAS to plot a graph close to a
singularity has been already studied for plane curves, and
various behaviors described by [20], [11] and others. Here

2The color plots can be viewed at the following URL: http://ndp.jct.ac.il/
...

Fig. 3. The graph and its asymptotic cylinder, using DPGraph.

we have a similar situation for surfaces in 3-space, even
more complicated as the singularities are not isolated. Let us
see what happens with another computer package. Figure 4
presents plots of the same function obtained with Maple’s
commands plot3d ((a) and (b)) and implicitplot3d ((c) and
(d)), over different domains containing the unit circle.

The various plots, obtained either with different commands
over the same domain, or with the same command over
various domains, look very different. Figure 4(a) show needles
oriented either upwards or downwards on both sides of what
looks like a plane. Figure 4(b) shows such needles but together
with some kind of a solid, looking like the solid appearing in
Figure 4(c), and Figure 4(d) shows isolated needles, in greater
number than Figure 4(a). Figure 4(b) and 4(c) seem to fit the
intuition, but with irregular shape. Moreover, where intuition
would like to see a rupture due to the discontinuity, there are at
some place holes, and at other places bridges. What happened?
These plots show too many differences to be correct, and they
do not allow an accurate graphical study of the given two-
variable function.

Fig. 4. Four strange plots for the same function, all false

In this paper, we present new algorithms in order to over-
come the above problems.

II. TECHNIQUES OF VISUALIZATION OF PLOTS OF

SURFACES USING MESH GENERATORS

Triangle meshes are the most common surface represen-
tation in computer graphical applications. Because of their
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simplicity and flexibility, they replace traditional CAD surface
representations, like NURBS surfaces (see [21]), in many
areas where processing performance is an important issue.
The reason for this is that triangle meshes are significantly
more flexible, since surfaces of any shape and topology can
be represented by a single mesh without the need to satisfy
complicated interpatch smoothness conditions. The simplicity
of the triangle primitive allows for easier and more efficient
geometry generation and geometry processing algorithms.

Obviously, since the triangle primitive is mathematically
much simpler compared to a NURBS patch, more of them have
to be used to obtain the same approximation quality. However,
if a smooth surface has to be represented by a triangle
mesh (a piecewise linear surface), the approximation order is
quadratic, i.e., halving the edge lengths reduces the error by a
factor of 4 which means the number of triangles is inversely
proportional to the approximation error. Hence, even with the
weaker asymptotic behavior, a good approximation (for the
typical precision requirements in graphics applications) can
be achieved with a moderately fine mesh whose vertex density
and distribution is adapted to the surface curvature, i.e., to the
shape complexity.

Despite their being more flexible than NURBS, triangle
meshes can also have restrictions and disadvantages in some
special applications. Most algorithms working on triangle
meshes require topologically consistent surfaces. As a con-
sequence, manifold extraction or topology cleanup steps are
necessary for mesh generation methods (see [2] and [3]).

Representing sharp features, like edges or corners in tech-
nical data sets, is a well studied problem for triangle meshes.
Because the surface is no longer differentiable, the approx-
imation power breaks down to linear order. Additionally,
alias artifacts are introduced by insufficient sampling, which
cannot be removed by increasing the sampling density [18]. In
order to remove these artifacts and reduce normal noise, the
sampling has to be aligned to the principal curvature directions
[19]. If surface splats are to represent sharp features, all splats
that sample these features have to be clipped against one or
two clipping lines (for edges and corners respectively) that are
specified in their local tangent frames. Therefore, for 2D plots,
an accurate representation may be achieved when building the
mesh on the isoclines of the function.

III. GRAPHIC REPRESENTATION OF A REAL FUNCTION OF

TWO REAL VARIABLES

When dealing with functions of one or two real variables,
the accuracy of the Cartesian grid used for the interpolation
influences the graph quality, especially near points of discon-
tinuity. In Computer Algebra Systems there are two types of
algorithms for viewing plotting functions.

A. Visualization based on a Cartesian mesh
Three-dimensional plot commands represent a real function

of two real variables in a three dimensional view by approxi-
mating the function on a Cartesian grid. The two dimensional

domain is discretized in a series of rectangular lagrangian
elements, and on each element, the approximation is used.
As an example, the two-dimensional Lagrangian interpolation
arising out of linear bases defined on a rectangular element of
size hx × hy are built as follows. Denote ξ = x

hx
; ν = y

hy
.

Then

φ1(ξ, ν) = [
1
2
(1 − ξ)][

1
2
(1 − ν)],

φ2(ξ, ν) = [
1
2
(1 + ξ)][

1
2
(1 − ν)],

φ3(ξ, ν) = [
1
2
(1 + ξ)][

1
2
(1 + ν)],

φ4(ξ, ν) = [
1
2
(1 − ξ)][

1
2
(1 + ν)].

More sophisticated and accurate interpolations such as
quadric, cubic, and Hermitian cubic 2-dimensional interpo-
lation functions may be used (see [21], Section 2). These
interpolations are often used in computational software. In
order to build a graph of a function, the domain is decomposed
into a finite number of elements based on a collection of
n+ 1 points P0(x0, y0), P1(x1, y1), . . . , Pn(xn, yn) for each
element [xk, xk+1] × [yj , yj+1]. On this element the function
is approximated by a function built in a way similar to what
has been described in the previous subsection. For a given
function f of the two real variables x and y, the interpolation
used may be written as a double sum: a first summation over
all the elements of the discretization of the domain, and a
second one for the interpolation over the given element:

Fapp(x, y) =
∑
Cells

i=4∑
i=1

f(xi, yi)φ(
x

hix
,
y

hiy
). (1)

B. Visualization based on a parametric representation of the

curve
In this type of plotting the Cartesian coordinates are func-

tions of two real Parameters x = x(s, t); y = y(s, t)3. Then
the discretization of the domain is performed in the (s, t)-
plane. The domain in this plane is separated into a finite
number of elements based on a collection of n+ 1 points

P0(x(s0, t0), y(s0, t0)), P1(x(s1, t1), y(s1, t1)), . . . ,
Pn(x(sn, tn), y(sn, tn)) (2)

for each cell [sk, sk+1]× [tj , tj+1]. On this cell the function is
approximated by a function built as above. For a given function
f , the interpolation is given as follows:

fapp(x, y) =
∑
Cells

i=4∑
i=1

f(x(si, ti), y(si, ti))φ
(

s

hix
,
t

hiy

)
.

(3)
3Polar coordinates x = r cos t; y = r sin t, where s ≥ 0; t ∈ R , are

often used but tens of other kinds of coordinates are generally available in
standard CAS. We illustrate the case of polar coordinates in subsection III-E.
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C. Discontinuities and critical points of a function of two

variables on a Cartesian mesh

The plot command yields visualization as a surface plotting.
The main difference between the two situations described
above is in the mathematical treatment of the discontinuity
and of the critical points of the function. For a function f
defined on a domain D in the (x, y)-plane, local maxima,
local minima or saddle points can occur either at boundary
points of R, or at interior points (x0, y0) of D where the first
partial derivatives vanish, i.e. fx(x0, y0) = fy(x0, y0) = 0, or
at points where fx or fy fail to exist.

Here is the core of the strange apparitions in Figure 4 (the
needles): depending on the type of interpolation, the condition

fx(x0, y0) = fy(x0, y0) = 0 (4)

is different from the condition

fappx(x1, y1) = fappy(x1, y1) = 0. (5)

Moreover, these extrema conditions may appear at different
points (x0, y0) �= (x1, y1).

For polynomial quadratic interpolation functions (Hermite
and cubic basis functions), these last conditions request the
solution of a system of linear equations in order to determine
the (possible) local extrema. Such critical points may exist on
each discretization cell of the domain. This simple analysis
permits to understand why we are viewing plots with local
extrema without any connection with the known mathematical
behavior of the function: the local extrema plotted by the
software correspond to extrema of the approximation function
and not of the actually given function.

For linear interpolation functions of cubic type (most fre-
quently used in mathematical software), it could be shown that
the condition given by Equation (5) is not dependent on the
discretization steps hix and hiy for a command based on a
Cartesian grid (plot3d). In this case, the local extremum of
the discretization is obtained on the corner of the elements.

To illustrate (and understand) the creation of needles in
the plot of a function of two variables, consider the rational
function defined by

f(x, y) =
1

x+ y − 1
.

A MatLab 7 plot of this function for −4 ≤ x ≤ 4;−2 ≤ y ≤ 2
is displayed in Figure 5.

The needles appear near the discontinuity line whose equa-
tion is x + y = 1. In order to understand this effect consider
a Cartesian discretization for the square given by 0 ≤ x ≤
2; 0 ≤ y ≤ 2, using n2 points. We have h = hx = hy = 2

n .
The approximated function for plotting is determined by the
values of the points x = ih; y = jh and an interpolation
function

fapp(i, j, h) =
1

h(i+ j) − 1
.

Fig. 5. MatLab plot of f(x, y) = 1/(x + y − 1) with mesh discretization

Using a linear interpolation, one may estimate the plotting
value along a line close to the discontinuity line x + y = 1,
let’s say the line whose equation is x+ y = 1+ ε , where ε is
an arbitrary small real number. Along the line whose equation
is x+ y = 1+ ε, the function should be constant and equal to
fx+y=1+ε = 1

ε ; ε > 0. However, because of the Cartesian grid
discretization, the plotting software uses approximate values
of the function at the relevant corner of the grid. Figure 6
shows plots of the approximated function along a line close
to the discontinuity line for constant h and different values of
ε.

Fig. 6. Numerical Solution of f(x, y) = 1/(x+y−1) along the line whose
equation is x + y − 1 = ε

D. Discontinuities of a function of two variables using a

parametric representation of the surface.

The condition given by Equation (5) for polar coordinates
leads to a solution dependent on the grid discretization steps.
Then, the viewing of local extrema on the graph based on
Cartesian grid cannot be repaired by playing with the size of
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the mesh but may be repaired by playing with the discretiza-
tion size and the domain range for plots based on parametric
representations (e.g. Maple’s command parametricplot3d).

E. Transforming the question from Cartesian coordinates into

polar coordinates

An illustration of the problem may be seen for the different
plots obtained for the given function. Figure 7 shows a partial
plot of the graph of the function defined in Section 2, con-
structed using polar coordinates. In Figure 4, no discontinuity
appears near the unit circle, but the plot in polar coordinates
(Figure 7) shows clearly the discontinuity of the function and
the asymptotic behavior.

Fig. 7. A plot in polar coordinates.

The use of isoclines of the function for the definition of the
parametrization of the function is a very efficient solution for
the reduction of artifact. Unfortunately, the determination of
isoclines for any function may be very difficult and require
special algorithms for automatic meshing.

IV. OPTIMAL POINT ALLOCATION FOR ACCURATE MESH

GENERATION

The other strategy for an optimal allocation of mesh points
is to control the error on the mesh by using a point based
technique. In this section, we present an algorithm for auto-
matic meshing where the error of the function is controlled on
a zone of discontinuity.

A. Algorithm for Mesh Generation

A pointbased geometry representation can be considered as
a sampling of a continuous surface, resulting in 3D positions
pi, optionally with associated normal vectors ni or auxiliary
surface properties like, e.g., colors or other material properties.
If normal vectors are not given, they can be estimated by

analyzing the local neighborhood of each sample point. Be-
cause there is no connectivity information available, these local
neighborhoods are usually constructed using either Euclidean
neighborhoods or k nearest neighbors (see [18]).

Consider the general problem of finding the optimal mesh
points pi for the representation of the function z = f(x, y)
defined on the whole two dimensional domain of the visual-
ization is called Ω. The function f(x, y) has a discontinuity
along the line g(x, y) = 0. Suppose that we define an initial
Cartesian mesh defined by a set of points qj = (xj , yj); j =
1, . . . , N . We may define a discontinuity boundary B as the
set of points of the mesh located at a neighborhood of the
discontinuity: B = {ql l = 1, ...,m g(ql) = ε}, where ε is a
small number. For mesh points belonging to B, a continuous
surface builded by a mesh generator will create discontinuities
in the graphic representation. As we discuss in the previous
section, a way to avoid this is to control the gradient of the
functions f(x, y) near the surface g(x, y) = 0.

Consider now the displacement vector u = (ui, vi) of
each mesh point qi, the condition to impose should be
grad(g)|i · u = εi The optimal displacement of each point of
the mesh may be formulated as a least squares problem. This
L2 least squares may be described in terms of the following
Formulation. It consists of the minimization of a functional Id
with respect to the unknown displacement vector a; where

Id =
k∑

i=1

[RL(a,xi)]2 + c
m∑

i=k+1

[RB(a,xi)]2 (6)

in which RL(a,x) = Lvh − f x in Ω
RB(a,x) = Bvh − g x on ΓThe operators L and B, and
the vectors f and g are defined as follows:

L = grad(f)qiB = grad(g)qif = 0g = −g(qi); (6)

A corresponding discrete formulation of the least squares
method, also called collocation least squares, consists of
selecting a series of collocation points inside the domain and
on the boundary, and minimizing the following functional :

For i = 1, . . . , k, xi corresponds to the interior collocation
points and for i = k + 1, . . . ,m to the boundary collocation
points (see [14]).

Important boundary conditions can be emphasized with
large weights c, forcing the boundary residuals to be small.
However, the addition of the integral of the boundary residual
may cause the integral of the interior residuals for a given
solution vector ā to remain large. This scaling problem may
defeat the computational objective of satisfying the conserva-
tion laws. This is particularly true when the weight c is very
large. In this case, the condition number of the least squares
matrix becomes very large (Sermer and Mathon in [23]).

The purpose of the new method is to control the spatial
distribution of the error in the classical collocation least
squares method. The improvement of the solution is generally
needed at specific points of the domain such as area of large
gradients, edge of rectangular domain, etc... The classical way
to improve the solution is to refine the mesh in order to reduce
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the numerical error. The present paper present an alternative
method based on constraint optimization. The discretization
is fixed and we introduce a local error parameter ε. The
improvement of the error is performed by constraining the
least squares method. The goal of the new method is to
control the spatial distribution of the error more than to reduce
drastically. It is important to realize that the improvement of
the error was obtained without changing the size of the cell of
the collocation points but by reformulating the least squares
method.

B. General Algorithm for Mesh Generation

The different steps of the mesh generation algorithm may
be summarized as follows:

• Define the initial cartesian mesh M0.
• Define a level ε.
• Compute the discontinuity Zone B.
• Formulate Problem (Ph).
• Solve Problem (Ph) and determine the optimal displace-

ments ui.
• Generate the point cloud ({qi, f(qi)); (qi + ui, f(qi +
ui))}.

• Use the marching cube method for the generation of the
mesh from the point cloud.

In the following section, we will present an algorithm of
solution for Problem (Ph).

C. Least squares formulation

In this section, an alternative formulation of the approximate
least squares problem, called Problem Ph, is first presented.
Then we present a penalty method similar to the augmented
Lagrangian method for the solution of the minimization prob-
lem Ph. The special feature of this method is the possibility
of working with a given value of c and improving the condi-
tioning of the least squares matrix by introducing an iterative
algorithm. Then error estimates of the approximate solution
are given. Finally, a comparison of the present method with
the classic least squares method is developed.

At a point x of any subregion Ω′ ⊆ Ω̄, the point error may
be characterized by the function ε(x) defined as follows:

ε(x) = T (uh(x) − u(x)) (7)

where the differential operator T is defined by :

T =
{
L if x ∈ Ω
B if x ∈ Γ. (8)

Let the subregion Ω′ be a set of points where a high degree
of accuracy of the approximated solution is required. For
example, in the collocation least squares method, Ω′ may be a
selected set of interior collocation points, or it may be defined
as a set of boundary points.

When the operator T is linear with respect to the solution,
the pointwise operator equation (Equations (7) and (8)) at any
point x ∈ Ω′ may be written as a function of ε(x) as follows:

Tuh(x) − b = ε(x) (9)

where the function b is defined by:

b =
{
f if x ∈ Ω
g if x ∈ Γ. (10)

Note that when Equation (9) is satisfied, the approximate
solution uh(x) satisfies exactly the partial differential equation
(Equations (7) and (8)) at a point x of Ω′.

In the proposed least squares formulation, the interior resid-
ual and the boundary residual are set equal to the function
±αε(x) at each point of Ω′. The term αε(x) represents the
range of variation allowed at each point inside Ω′ and α is
a positive scaling factor. The condition of zero residual is
replaced by the alternative condition

Condition A:(Tvh − b− ε(x))2 = α2ε(x)2, (11)

at each point of Ω′.
The proposed least squares approach can be formulated via

the minimization of the integral of the interior residuals that
still satisfy condition A at each point of Ω′.

For a given function ε(x), the formulation of this minimiza-
tion problem can be written as follows:

min
a

∫
Ω

[RL(a,x)]2dΩ

Such that [T (�Φ(x)�)a − b− ε(x)]2 = α2ε(x)2x ∈ Ω′

Problem (Lh)

When the collocation least squares method is used, the func-
tion ε(x) is a vector of small numbers of dimension equal to
the number of collocation points.

Note that for ε(x) = 0 and Ω′ = Γ, Problem Lh reduces to
the approximate least squares formulation (Problem Ph), i.e.

min
a

∫
Ω

[RL(a,x)]2dΩ

Such that B(�Φ(x)�)a − g = RB(a,x) = 0x on Γ
Problem (Ph)

Problem (Ph) is the special case where the constraints
associated with the minimization are only defined on the
boundary Γ. In the following, we present a penalty method
similar to the augmented Lagrangian method for the solution
of the minimization problem Lh.
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V. ALGORITHMS OF RESOLUTION

The algorithm proposed for the determination of the saddle
points of the mini-max problem (Lh) is a version of the
Uzawa’s algorithm for quadratic programming as presented
by different authors ([24], [15], [5]). The proposed algorithm
may be described as follows:

λ0(x) specified arbitrarily (12)

With λn(x) known, calculate an, then λn+1(x) (13)

(A1 + 2cA2) an + 2
∫

Ω′
T (Φ(x))λn(x)dμ = F

(14)

λn+1(x) = λn(x) + ρn(c(T (�Φ(x)�)an − b)+ (15)

(1 − α2)λn(x)) (16)

The parameter ρn is an acceleration parameter defined in
Uzawa algorithm and depending on the iteration n.

A. Collocation Least Squares Method

The methodology presented above may be applied to the
determination of the optimal error associated with collocation
points in the sense defined above. Consider now the minimum
acceptable error necessary to respect the global mass balance,
at each collocation point. This problem may be formulated as
follows:

min
∫

Ω

[RL(a,x)]2dx

Such that RB(a,xj) = (1 ± α)ε(xj) j ∈ J

Such that RL(a,xi) =(1 ± α)ξ(xi) i ∈ I

Problem (Pc)

where ε(xj) and ξ(xi) represent the point error at a boundary
collocation point (set J) and an interior collocation point (set
I), respectively.

Using the preceding approach for each collocation point,
the first order condition for the minimum corresponding to
problem (Pc) may be written as:

(A1 +A2)ā + 2
∑
j∈J

λ(xj)B(Φ(xj))

+2
∑
i∈I

μ(xi)L(Φ(xi)) = F

(1 − α2)λ(xj) = −cj(B(�Φ(xj)�)ā − g)
(1 − α2)μ(xi) = −ci(L(�Φ(xi)�)ā − f)

(17)

where

F =
∫

Ω

L(Φ(x))f(x)dΩ +
∑
j∈J

2cjB(Φ(xj))g(xj)

+
∑
i∈I

2ciL(Φ(xi))f(xj)

A2 =
∑
j∈J

2cjB(Φ(xj))B(�Φ(xj)�)

+
∑
i∈I

2ciL(Φ(xi))L(�Φ(xi)�) (18)

The functions λ(xj) and μ(xi) correspond to the residual
errors associated with the boundary collocation points and the
interior collocation points respectively.

λ(xj) = −cjε(xj); μ(xi) = −ciξ(xi) (19)

The version of the Uzawa algorithm corresponding to our
formulation of the collocation least squares method for this
particular problem reduces to:

λ0(xj), μ0(xi); j = 1, 2, · · · k
i = k + 1, · · · ,m specified arbitrarily

With λn(xj) and μn(xi)

known, calculate anthen λn+1(xj);μn+1(xj)

(A1 +A2) an + 2
m∑

j=k+1

λn(xj)B(Φ(xj))

+2
k∑

i=1

μn(xi)L(Φ(xi)) = F

λn+1(xj) = λn(xj) + ρn(cj(B(�Φ(xj)�)an − g) +
(1 − α2)λn(xj))

μn+1(xi) = μn(xi) + ρn(ci(L(�Φ(xi)�)an − f) +
(1 − α2)μn(xi)) (20)

For a given value of the penalty coefficient c the above
algorithm converges to the three following vectors (see section
4.2):

ā = lim
n→∞an,

λ(xj) = lim
n→∞λn(xj)

and μ(xi) = lim
n→∞μn(xi).

It is important to note that the values λ(xj)
cj

and μ(xi)
ci

correspond to the punctual error that one can allow at the
collocation points xj and xi, respectively, and still respect the
global mass balance.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

771

B. Convergence of the proposed Algorithm

In this section, we present a study of the convergence of the
algorithms proposed in this work for a constant ρ (ρn = ρ)
and a constant c (ci = cj = c). Proof of convergence for
the classic Uzawa’s Algorithm may be found in ([15]). As
far as the authors know , the proposed version of the Uzawa
algorithm has not been studied yet.

The algorithm presented in the preceding section, in Equa-
tions (21) to (20), may be written in matrix form:

ξ0; specified arbitrarily (21)

With ξn known, calculate anthen ξn+1 (22)

(A1 + 2cTTT ) an + 2TT ξn = F (23)

ξn+1 = ξn + ρ(c(Tan − b) + (1 − α2)ξn). (24)

If one denotes by N the dimension of the unknown vector
a and by m the total number of collocation points, then the
m×N matrix T , and the vectors ξn and b, of dimension m
are defined as:

T (xi) =
{
L(�Φ(xi)�) if 0 ≤ i ≤ k
B(�Φ(xi)�) if k + 1 ≤ i ≤ m

}
. (25)

ξn(xi) =
{
λn(xi) if 0 ≤ i ≤ k
μn(xi) if k + 1 ≤ i ≤ m

}
. (26)

b =
{
g(xi) if 0 ≤ i ≤ k
f(xi) if k + 1 ≤ i ≤ m

}
. (27)

(28)

The product TT ξ represents the following column vector of
dimension N :

TT ξ =
m∑
i=1

ξ(xi)T(xi). (29)

The convergence of the Algorithm (Equations (24)) is a
consequence of the following theorem:

Theorem 5.1 (Theorem C): For any ξ0 ∈ Rm, the algo-

rithm (Equations (24)) converges if and only if , for any

positive eigenvalue of the matrix A−1
1 TTT :

0 < Λ1 < · · ·Λi · · · < Λm0 (30)

∣∣∣∣1 + 2cΛi + ρ(1 − α2(1 + 2cΛi))
1 + 2cΛi

∣∣∣∣ < 1 (31)

For these conditions and the restriction,

1 < α2 < 1 +
2
ρ
, ρ > 0,

the following holds

lim
n→∞{an, ξn} = {ā, ξ̄},

where {ā, ξ̄} is the unique solution of equations 17.
The proof is given in Appendix A .

Here are two important remarks about Theorem C:

Remark 5.2: By the analysis of the mathematical curve, we

have:

ρ→
∣∣∣∣1 + 2cΛi + ρ(1 − α2(1 + 2cΛi))

1 + 2cΛi

∣∣∣∣ < 1, (32)

and the proof of Theorem C, another equivalent criterion of

convergence, may be found in terms of the smallest and the

largest eigenvalues Λ1 and Λm0 respectively.

The algorithm [ (24)] converges if, and only if, the following

two conditions are satisfied:

Λ1 >
1 − α2

2α2c
=

1
2c′

(33)

0 < ρ < 2
2cΛm0 + 1

α2(2cΛm0 + 1) − 1
(34)

Equation (33) expresses the fact that a necessary condition

of convergence of the present algorithm is that the smallest

eigenvalue Λ1 is greater than half of the inverse of the

corrected penalty coefficient.

Remark 5.3: The optimal value of ρ for rapid convergence

may also be found by the geometric considerations (See [15]).

ρopt =
2Pm0Pm1

2α2Pm0Pm1 − Pm1 − Pm0

(35)

where :

Pm0 = 1 + 2cΛm0 (36)

Pm1 = 1 + 2cΛ1 (37)
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A consequence of this last result is that for large values of c
, the optimal value of ρ is ρ = 1

α2 . In the general case, ρ and
α are chosen simultaneously and must satisfy the inequality

1 < α2 < 1 +
2
ρ
, ρ > 0.

A comparison between the penalty algorithm and the PCG
algorithm has been presented in [24].

VI. EXAMPLES

In this section we compare three different approaches:
1) The classical surface mesh approach
2) The parametric approach.
3) The point based approach using the penalty algorithm.

Two different functions were chosen:f(x, y) = 1
x+y−1 for

Case 1 (v.i. subsection VI-A and Figure 8) and f(x, y) =
1

x2−y2 for Case 2 (v.i. subsection VI-B and Figure 11).

A. Case 1

Figure 8 illustrates the plots of the function using classical
Cartesian regular mesh. Artifacts near the discontinuity line
x+ y − 1 = 0 appear.

Fig. 8. Plot of f(x, y) = 1
(x+y−1)

using surface plotting

When choosing the parametric representation u = x+y; v =
x− y, the graph plot is regular (see Figure 9).

On Figure 10, the automatic algorithm based on the penalty
method produces a regular plot without introducing parametric
variables.

B. Case 2

Figure 11 illustrates the plots of the function using classical
Cartesian regular mesh. Artifacts near the discontinuity line
x+ y − 1 = 0 appears.

When choosing the parametric representation u = x+y; v =
x− y, the graph plot is regular (Figure 12).

Fig. 9. Plot of f(x, y) = 1
(x+y−1)

using parametric plotting

Fig. 10. Plot of f(x, y) = 1
(x+y−1)

using control gradient algorithm

On Figure 13, the automatic algorithm based on the penalty
method produces a regular plot without introducing parametric
variables

1) Convergence of the Algorithm: Case 1: In all analysis
convergence occurred in about ten iterations. Convergence
was defined to occur when successive norms of the boundary
residual were equal to six significant figures. It was found that
optimal convergence was achieved with ρ = 0.71. For values
greater than ρ = 0.71 non monotonic convergence occurs,
while for values of ρ less than 0.71 monotonic convergence
was observed.

Case 2: Table I illustrates the influence of the parameter ρ
on the number of iterations when the weighting function c is
large and the parameter α is very close to one. The number
of iterations corresponds to an error on the boundary of less
than −2.

VII. CONCLUSION

An alternative least squares formulation has been proposed
for the optimal allocation of points using a point based
approach. The advantage of the present formulation is in
achieving control of the local error at each collocation point
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Fig. 11. Plot of f(x, y) = 1
(x2−y2)

Fig. 12. Plot of f(x, y) = 1
(x2−y2)

using Parametric surface plotting

near discontinuity points without degrading the accuracy of
the global surface meshing.

The practical advantages of this approach are the possibility
of automatic plotting of 2D functions having discontinuities.
The influence of the penalty weight c on the accuracy of the
classic least squares formulation is found to be important.
Moreover, we show the existence of optimal weights that
improve the accuracy of the least squares.

In the new formulation proposed, the determination of this

TABLE I
INFLUENCE OF ρ ON THE NUMBER OF ITERATIONS FOR CASE 2 c = 103

AND α = 1 + 10−9

ρ = 0.5 ρ = 1 ρ = 1.5 ρ = 2

Number of 50 25 17 13
Iterations

Fig. 13. Plot of f(x, y) = 1
(x2−y2)

using Control gradient algorithm

optimal weighting is more easily found than in the classic
method.

APPENDIX

For any n ∈ N, there exists a unique decomposition of ξn

:

ξn = ξn
1 + ξn

2 (38)

where ξn
1 ∈ R(T ) and ξn

2 ∈ Ker(TT ) (Kernel of TT )

R(T ) = {q|q ∈ Rm,∃v ∈ RN such that q = Tv} (39)

From equation (50); ξn+1 − [1 + ρ(1 − α2)]ξn ∈ R(T ) and
then :

ξn+1
2 = [1 + ρ(1 − α2)]ξn

2 = [1 + ρ(1 − α2)]nξ02 (40)

Let us define ξ̄n and ān by:

ξ̄n = ξn − (ξ̄ + [1 + ρ(1 − α2)]nξ02) (41)
ān = an − ā

where ξ̄ and ā are solutions of the equations 17; ξn , an are
solutions of equations 24.

Notice that by definition, ξ̄n ∈ R(T ) for all n, and if
|1 + ρ(1 − α2)| < 1 (eq. 41 ) then limn→∞ ξ̄n = 0, and
limn→∞ ξn = ξ̄.

By subtraction of equations 24 and 17, one can easily see
that :

(A1 + 2cTTT ) ān + 2TT ξ̄n = 0 (42)
ξ̄n+1 = (1 + ρ(1 − α2))ξ̄n + ρcT ān (43)

By elimination of ān between the two last equations, one can



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

774

obtain:

A−1
1 TT ξ̄n+1 = (1 + ρ(1 − α2))A−1

1 TT ξ̄n

−2ρcA−1
1 TTT (I + 2cA−1

1 TTT )−1A−1
1 TT ξ̄n (44)

Let us define the sequence {zn}n≥0 by zn = A−1
1 TT ξ̄n , by

definition of ξ̄n ,zn ∈ R(A−1
1 TTT ) and :

zn+1 = [(1 + ρ(1 − α2))I
−2ρcA−1

1 TTT (I + 2cA−1
1 TTT )−1]zn

(45)

Since R(T ) and R(A−1
1 TTT ) are isomorphic , the conver-

gence of zn to zero will imply the convergence of ξ̄n and ān

to zero.
Consider now {Λi}m0

i=1, the strictly positive eigenvalues of
A−1

1 TTT ordered such that:

0 < Λ1 < · · ·Λi · · · < Λm0. (46)

There exists a vector basis {wi}m0
i=1 of R(A−1

1 TTT ) such that
1) wi is an eigenvector of A−1

1 TTT associated with Γi

2) ((A1wi, wj)) = 0 for 1 ≤ i, j ≤ m0

((., .)) represent the scalar product on R
¯

N .
Since zn ∈ R(A−1

1 TTT ) ; zn =
∑m0

i=1 z
n
i wi and from

equation 45 one can easily obtain :

zn+1
i = [

1 + 2cΛi + ρ(1 − α2(1 + 2cΛi))
1 + 2cΛi

]zn
i (47)

This last relation implies that zn converges to zero, if and only
if :

|1 + 2cΛi + ρ(1 − α2(1 + 2cΛi))
1 + 2cΛi

| < 1. (48)

For these conditions and with the restriction 1 < α2 < 1+ 2
ρ

(see Equation 41), we have

lim
n→∞{an, ξn} = {ā, ξ̄}.
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