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Abstract—In this paper a stochastic scenario

predictive control applied to molten salt storage systems in 

concentrated solar tower power plant is presented. The main goal of 

this study is to build up a tool to analyze current and expected future 

resources for evaluating the weekly power to be advertised on 

electricity secondary market. This tool will allow plant operator to 

maximize profits while hedging the impact on the system of 

stochastic variables such as resources or sunlight shortage. 

Solving the problem first requires a mixed logic dynamic 

modeling of the plant. The two stochastic variables, respectively the 

sunlight incoming energy and electricity demands from secondary 

market, are modeled by least square regression. Robustness is 

achieved by drawing a certain number of random variables 

realizations and applying the most restrictive one to the system. This 

scenario approach control technique provides the plant operator a 

confidence interval containing a given percentage of possible 

stochastic variable realizations in such a way that robust control is 

always achieved within its bounds. The results obtained from many 

trajectory simulations show the existence of a ‘’reliable’’ interval, 

which experimentally confirms the algorithm robustness. 

 

Keywords—Molten Salt Storage System, Concentrated Solar 

Tower Power Plant, Robust Stochastic Model Predictive Control

I. INTRODUCTION 

HE intention in present study is to design a tool giving 

molten salt solar plant operator and to evaluate his 

opportunities on secondary energy market 

that nominal power production is fixed on a week period. 

Offer and demand being unequal, only a fraction of projected 

nominal output will be used. Operator receives a volatile 

signal re-actualized every 10sec. and oscillating between 

−100% and +100%. So aside power input from sun radiation 

which may unpredictably vary with climatic conditions t

electricity network demand is also another stochastic variable. 

So, common framework for an optimal control of such a 

system is the Stochastic Model Predictive Control (SMPC)

which has been showing useful robustness in various 

industrial applications [2].  

For thermal concentration solar plants, various techniques 

are used to concentrate solar rays toward thermal receiver

This part will not be considered and the ‘’system’’ discussed 

here will be concerning the following part up to electricity 

production, see Fig. 1. 
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Fig. 1 Molten Salt Solar Plant 

 

Amongst the various performance control algorithms, the 

minimal variance performance model based control will be 

used here because it is a non intrusive one [4]. So in a first part 

system model will be described and mathematically 

formulated, in the second one optimal control algorithms are 

presented with the use of deterministic and stochastic MPC. 

The third part is concerning exploration of different strategies 

with associated robustness, and conclu

further possible researches.  

II. SOLAR P

1. From Fig. 1, solar rays are directed through heliostats to 

the receiver on top of the tower in order to heat up molten 

salt liquid which is stored in a thermally isolated tank. 

The hot molten salt liquid is released to a steam turbine 

generating the electricity on demand, and cold exiting 

molten salt liquid is recycled into another storage tank 

before being heated again in the receiver. Main problem is 

thus for solar plant operator to optimal

molten salt to fit at best (fluctuating) expected electricity 

demand. The following hypotheses will be set to keep 

model coherence and to provide the frame within which 

system equations can be formulated

1) Stochastic solar energy input w

price P(t) are de-correlated.

2) Minimal plant reaction time being typically 1min, 

working time step when discretizing the equations is 

taken as ∆ t = 15 min  

3) Measurements of molten salt level x in the tank and of 

(stochastic) solar power 

further processing such as filtering
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1 Molten Salt Solar Plant  

Amongst the various performance control algorithms, the 

minimal variance performance model based control will be 

used here because it is a non intrusive one [4]. So in a first part 

be described and mathematically 

formulated, in the second one optimal control algorithms are 

presented with the use of deterministic and stochastic MPC. 

The third part is concerning exploration of different strategies 

with associated robustness, and conclusion will open on 

PLANT MODEL 

1, solar rays are directed through heliostats to 

the receiver on top of the tower in order to heat up molten 

salt liquid which is stored in a thermally isolated tank. 

n salt liquid is released to a steam turbine 

generating the electricity on demand, and cold exiting 

molten salt liquid is recycled into another storage tank 

before being heated again in the receiver. Main problem is 

thus for solar plant operator to optimally release hot 

molten salt to fit at best (fluctuating) expected electricity 

demand. The following hypotheses will be set to keep 

model coherence and to provide the frame within which 

tem equations can be formulated: 

Stochastic solar energy input w1(t) and electricity kWh 

correlated. 

Minimal plant reaction time being typically 1min, 

working time step when discretizing the equations is 

Measurements of molten salt level x in the tank and of 

(stochastic) solar power are perfect and do not require 

further processing such as filtering  

ofit Optimization for Solar Plant Electricity 
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The system model will be taken as a linear discrete time 

one, in the form 

 

 ��k � 1� � �x�k� � 
u�k� � w�k�                   (1) 

 

with tank volume state vector x(t) = [x1(t), x2(t)]
T
, extracted 

volume control vector u(t) = [u1(t), u2(t)]
T
, and energy random 

input w(t) =[w1(t), 0], see Fig. 2, and where index 1 refers to 

hot fluid circuit and 2 to cold one. 

 

 

Fig. 2 Source-Sink Model of Solar Power Plant 

 

Other system parameters are M the heliostat surface (m
2
), γn 

the steam turbine power (MWh) limiting electricity production 

at time k, and xjmax the upper bound of level xj. Matrices A and 

B are: 

 

� � 1 00 1� ;     
 � �1 11 �1� 

 

Finally, control vector components are supposed to be 

bounded above inside the interval [ujmin,ujmax] so that control 

space U is defined by {u∈ U uj ∈(0,[ujmin,ujmax])}. 

2. Input vector w1(t) has been evaluated from sunshine data 

recorded every hour between year 2000 and year 2005 

representing over 52400 values. From a representative 

week selected for each trimester of the years, a theoretical 

“perfect” sunshine has been reconstructed by collecting its 

maximal value for each of the 24 hourly intervals in the 

2184 collected days, see Fig. 3. Comparison of a typical 

day with previous theoretical one gives by mean square 

method a reducing factor for each trimester due to cloud 

random influence [5]. On the other side, demand wd from 

the network is defined from two signals <w>av and 

<w>fluc, respectively representing the week projected 

production and the real demand expressed as a percentage 

of week projected production. Volatile real demand given 

by the sector to operator has been collected over a year 

period with 15min frequency representing an array of 

34365 values, out of which difference with predicted 

demand can be plotted as a percentage (note that this 

difference can have either sign), see Fig. 4. To simplify 

the numerical burden, the relation between energy output 

from the tank u and delivered electricity Γout from steam 

turbine is taken as a linear one Γout = Γnu where Γn 

elements are > 0. 

 

 

Fig. 3 Averaged Theoretical Sunshine per Trimester 

 

 

Fig. 4 Distribution Function of Demand Difference in % vs. 

Occurrence in % 

 

From these elements the problem of optimized production 

can be formulated.  

III. MODEL PREDICTIVE CONTROL APPLICATION 

Briefly stated, deterministic predictive command consists in 

reassessing discrete command problem as a minimization 

problem which is here solved by linear programming (LP) 

method. System cost function depending on state and input 

variables, on system constraints, is researched by solving LP 

problem at each time step for a certain number n of time steps 

in advance representing the receding horizon H(n) [6]. 

Opposite to usual PID type control, next command value is 

determined from actual and future system values requiring the 

knowledge of future system evolution and of inputs behavior. 

The problem then formulates in the general form  

 

(P)  ������� � 0                                                 (2) 

               s.t.      x = x− + ��w− −  u− , 

          Γnu � wd− εd , 

 xmin � x � xmax−εmax,  

 u∈U 
 

where x−= x(j−1) and command input space U is constrained 

by {u∈ U uj ∈(0,[ujmin,ujmax])}. Because space U is non 

convex, usual methods [7] do not apply directly and stability 

issue may not be fully satisfied [8]. In the following a more 

direct destocking strategy minimizing a cost function by only 
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considering x�n�, x� !, x�"# will be developed. Let the cost 

function  

 $% � �%&% � '%(%                                   (3) 

 

where &% � )
*+,-�*+./ ∑ 12�23)  and (2 � )

*+,-�*+./ ∑ 42�23)  

represents respectively normalized cumulative sun incoming 

energy and off-loaded cumulative energy during T 

periods. λ7�x� and µ7�x� are antagonistic state dependent 

weighting factors on ω7 and η7 such that when x gets close to 

x� ! then  λ7 is significantly higher than '%  resulting in 

restoring x up to its optimal level. Conversely, when x gets 

close to �;<*  then '%  is higher than �%. They can for instance 

in simplest linear case be described as follows: 

 

 = �% � >? � &% � (%'% � 1 � �% � 1 � >? � &% � (%
@                    (4) 

 

where  

>? � *A�*+,-
*+,-�*+./                                     (5) 

 

By introducing Χ7 � (%  and Υ% � &% � (% , it is clear that (P) 

can be reformulated as a trivial system 

  

(P’)  ���%D? E$% � Χ7 � >?Υ% � Υ%²@G � 0               (6) 
               s.t.     42 � HI/�4 L HMN� , 

          >? � 1 � Υ% � >? 

 

However such system would not guarantee robust control in 

the long run since it does not take into account future states of &% and (%  to establish optimal weighting factors �%O and  '%O. 

Predictive control is obtained by considering three time steps 

and pondering the impact of future states through a relevant 

sequence. The improved cost function becomes as follows 

 

 $%R � �S� &S � 'S�(S � T�US                           (7) 

 

where I = [0, 1, …, 1] is a vector counting T+1 parameters, 

and US=[ε7W), … , ε7WSY is a relaxation vector representing the 

gap between expected demanded power and actual generated 

power given the resources at hand. Improvement of model 

robustness requires smoothing antagonist linear factors �%  and 

'% . As research for optimum smoothing factors is not in the 

scope of this paper, the following trigonometric looped system 

is empirically chosen: 

Z�% � )
N � )

N cos �^_1 � >%Y�
'% � 1 � �%

@                         (8) 

 

To introduce stochasticity in predictive command, trajectory 

theory will be used to generate scenarios while implementing 

non necessary normal probabilistic constraints [9]. It can be 

shown that Ntraj random variable realizations represent βtraj % 

of possible realization values in the system [10], and βtraj ∈ 

[0,1] can be parametrized according to desired robustness 

degree. This means in turn that if operator can control Ntraj 

then he will control βtraj % of anticipated random variable 

realizations. Expression of a (sufficient) lower bound for Ntraj 

[11] in terms of various system parameters and constraints will 

be used here as a robust lower limit. 

 

Ìa<% � N
bcd,A ln )

fcd,A � g̀                          (9) 

 

However application of scenario method generates very 

large dimension stochastic variables, as wd, w1 ∈ R
n×N

traj and 

linear programming problem has to be solved Ntraj times. 

IV. OPTIMAL CONTROL OBJECTIVES AND RESULTS 

Two main objectives can be assigned for optimal control. 

Primary one is dealing with weekly command, determined 

from energetic potential x(k) in tanks, energetic contribution of 

previous time period w1(k-1), the running week t(k) and the 

demand of previous week wd(k-1). The second one, closely 

linked to the first, consists in determination of <w>av to be 

weekly published by operator, in fact an upper bound in terms 

of x0, w0 and week t0. From a data base refreshed every 15min 

on electricity network demand and on sunlight, primary 

objective is to generate the production level wd with fixed 

robustness while respecting constraints on state and command 

variables. Robustness εtraj (βtraj) is first determined over a one-

week step. w1 and wd are simulated and Ntraj most restrictive 

trajectories are selected corresponding to largest week demand 

and most unfavorable sunlight. 

To achieve robustness through scenario approach, the 

values εtraj = 10% (βtraj = 10%) is considered. Chosen horizon 

H(n) is here fixed to H(n) = 3 for computational simplicity. 

Calculations must be performed every 15 minutes, so there are 

n = 672 iterations. Finally, one gets Ntraj ≥ Ntraj (εtraj,βtraj) = 

286 from (8), which corresponds to a balanced compromise 

between computational burden and reliability of predictions. 

All the results are worked out and displayed with 

SolarPlantTool.xlsm software which generates all 

optimization loop and collects minimized costs obtained from 

linear programming (LP) tool. 90% robust control is achieved 

with the following determined samples: molten salt capacity 

over 1400000kWh is considered, expected demanded power is 

set between 15000 and 35000kW, and Umax = 55556kW. 

The following histogram shows end values of x, at 

midnight. For 89% of the time, molten salt tank is more than 

half full, providing enough stock to satisfy expected demanded 

power until sunrise 
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Fig. 5 Histogram of Simulated End Values of x vs. Occurence 

 

For clarity purposes, one may now focus on {2 days – 2 

nights} period. Fig. 6 below shows four significant events. 

First the red curve, representing generated power, matches 

<w>d, represented by the blue surface, as there is enough 

power in the tank. Around time step #21, ie at 5:00am, the LP 

knows the tank is running low on power, u is therefore 

adapted to minimize c. The resulted penalty which only 

amounts to 3563kW is then mitigated over the following time 

step #22. At 11:45am, the tank is full, even if Pv matched with 

<w>d for the whole morning. Pv is therefore far greater than 

<w>d since LP must satisfy the stock constraint xmax.  

 

 

Fig. 6 Expected Demanded Electricity Production vs. Generated 

Electricity 

 

Fig. 7 shows simulated levels of x corresponding to 286 

trajectories of <w>d . When x gets close to xmax the LP adapts u 

such that storage curve evolves in a saw tooth manner, 

allowing Pv to be as  close to <w>d as possible in order to 

lower losses impacting potential future profits. 

 

 

Fig. 7 Stored Resources 

ε is plotted in Fig. 8 below, through [286x96]=26880 time 

steps. The following chart only takes into account non-zero 

values of ε, i.d. 2122 values which represents 7% of simulated 

ε values.  The histogram shows that heavy penalties due to 

breach of demanded power constraint only appears .4% of the 

time which again proves actual control robustness. 

 

 

Fig. 8 Histogram of Simulated ε (< 0and > 0) over a Whole Week 

V.  CONCLUSION 

The problem of determination of optimal electricity 

production from a solar molten plant system with storage has 

been analyzed. The main difficulty of best matching 

production with demand both of random nature has been 

framed in an optimal predictive control model which allows 

plant operator to satisfy all constraints while optimizing 

financial return. From this result, conditions for decision to 

undertake construction of such plant are easily set up 

according to technical operating costs and money market 

conditions. It is also shown that the problem is numerically 

tractable with modest open and free software available in a 

educational environment in which present study has been 

developed, with simulations implemented in VBA Excel. 

Linear Programming parts have been solved with Excel 

Solver. Precision of present model can be easily improved by 

using quantile regression to evaluate more accurate demand 

prediction, and by extension of observation horizon, both 

being paid by a more sophisticated computing hardware.  
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