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Abstract—In this paper, we consider the problem of logic 

simplification for a special class of logic functions, namely 
complementary Boolean functions (CBF), targeting low power 
implementation using static CMOS logic style. The functions are 
uniquely characterized by the presence of terms, where for a 
canonical binary 2-tuple, D(mj) ∪ D(mk) = { } and therefore, we 
have | D(mj) ∪ D(mk) | = 0 [19]. Similarly, D(Mj) ∪ D(Mk) = { } and 
hence | D(Mj) ∪ D(Mk) | = 0. Here, ‘mk’ and ‘Mk’ represent a 
minterm and maxterm respectively. We compare the circuits 
minimized with our proposed method with those corresponding to 
factored Reed-Muller (f-RM) form, factored Pseudo Kronecker 
Reed-Muller (f-PKRM) form, and factored Generalized Reed-Muller 
(f-GRM) form.  

We have opted for algebraic factorization of the Reed-Muller 
(RM) form and its different variants, using the factorization rules of 
[1], as it is simple and requires much less CPU execution time 
compared to Boolean factorization operations. This technique has 
enabled us to greatly reduce the literal count as well as the gate count 
needed for such RM realizations, which are generally prone to 
consuming more cells and subsequently more power consumption. 
However, this leads to a drawback in terms of the design-for-test 
attribute associated with the various RM forms. Though we still 
preserve the definition of those forms viz. realizing such 
functionality with only select types of logic gates (AND gate and 
XOR gate), the structural integrity of the logic levels is not 
preserved. This would consequently alter the testability properties of 
such circuits i.e. it may increase/decrease/maintain the same number 
of test input vectors needed for their exhaustive testability, 
subsequently affecting their generalized test vector computation.  

We do not consider the issue of design-for-testability here, but, 
instead focus on the power consumption of the final logic 
implementation, after realization with a conventional CMOS process 
technology (0.35 micron TSMC process). The quality of the resulting 
circuits evaluated on the basis of an established cost metric viz., 
power consumption, demonstrate average savings by 26.79% for the 
samples considered in this work, besides reduction in number of 
gates and input literals by 39.66% and 12.98% respectively, in 
comparison with other factored RM forms.    
 

Keywords— Reed-Muller forms, Logic function, Hamming 
distance, Algebraic factorization, Low power design. 

I. INTRODUCTION 
HE low power design challenge is one that requires 
abstraction, modeling and optimizations at all levels of 
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design hierarchy; including the system, algorithmic, 
architectural, logic, circuit and process levels. Perhaps the 
driving factor for designing low power circuits in the recent 
times has been the remarkable success and growth of the 
important class of portable and personal computing devices, 
high-end wireless communication systems etc., which demand 
complex functionality, high throughput, low weight and long 
operation times before the battery is recharged. In these 
applications, average power consumption is a critical design 
constraint. Combining optimizations at all the levels results in 
orders of magnitude of power reduction [2]. Such an 
impressive reduction in circuit power will however be 
possible only if optimization flows and techniques at each 
level of design hierarchy are developed [24]. 

Logic synthesis has matured as a field to be universally 
accepted and is used in every major IC design and production 
house worldwide. A wealth of research results and a few 
pioneering commercial tools for low power logic synthesis 
have appeared in the last couple of years. Logic synthesis is an 
important part of the design cycle for a digital integrated 
circuit. This implies that in order to minimize power 
effectively, power component should be considered during the 
logic synthesis phase. In certain cases, gate level optimization 
results in more than 50% power reduction without sacrificing 
the circuit speed [2]. This approach promises to be very 
successful and useful, since the investment to reduce power by 
design is relatively small in comparison to other techniques 
and also because it is relatively untapped in potential.    

This paper presents a power optimization technique at the 
logic level, which is ultimately expected to minimize power 
consumption of the transistor level realization of the logic 
implementation by a new methodology, and also by taking 
advantage of existing techniques like logic restructuring for 
minimizing area. Logic restructuring techniques include 
common sub-function extraction and factorization. In this 
paper, algebraic factorization is widely considered and power 
optimization after logic extraction for a unique class of 
functions, namely CBF is addressed as follows.  

Problem statement: Given a Boolean function comprising a 
complementary ON/OFF set of elements (exhibiting bit-wise 
or position-wise negation), find a reduced and possibly 
minimal cover for the network, such that the final size and 
power cost of the network are reduced. Indeed, the power cost 
of the network is theoretically modeled as the summation of 
power cost at all the primary gate input, intermediate gate 
output and primary gate output nodes.  
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The aim of this work is to exploit the “regularity” inherent 
in complementary Boolean functions (CBF), in order to 
reduce the time needed for its logical synthesis to obtain a 
power optimal solution. In light of the above, this work 
addresses the issue of how to derive a minimized 
decomposition of complementary logic functions by 
predominant usage of XOR and/or XNOR gates, consistent 
with a standard cell library specification and also the means to 
develop an integrated framework for reducing such functions, 
so as to reduce the literal count and/or gate area of the final 
design. In this context, it should be noted that though power 
optimization is achieved by an area-centric approach. 

As an initial theoretical measure to forecast the possibility 
of power savings that is likely to be attained; transition count 
[3], as an integer measure, is used as a parameter to represent 
the switching activity at all the gate output nodes of all the 
logic levels. However, we observe that this integer metric 
does not correspond to/reflect the actual power consumption 
or savings that may be attained by one synthesis method over 
another. But overall, this parameter serves only as a useful 
indicator of possible power efficient implementations, which 
is validated by the problem cases considered in this work.  

The remainder of this paper is organized as follows. Section 
2 classifies the complementary Boolean functions into two 
types and also lists their associated conditionalities. Section 3 
provides concise background information pertaining to ESOP 
and also sheds light on different factored RM forms. Section 4 
presents the details regarding the methodology followed to 
group the terms and also explains the synthesis procedure. A 
specific problem case is also considered to serve as an 
illustration for the proposed synthesis technique. The 
simulation mechanism and results obtained for the different 
factored RM forms and that corresponding to the proposed 
method for a considerable number of case studies, realized 
using static CMOS logic style, is highlighted in section 5. 
Also graphical plots for the cost metrics pertaining to different 
realizations are included in this section. Lastly, we conclude 
and cite scope for further work in section 6. 

II. COMPLEMENTARY BOOLEAN FUNCTION 
Let F be a Boolean function with support of F [4], defined 

as, s[F] = {xn-1, xn-2,….,x0}. The support set basically lists all 
the variables that influence a function output. We now classify 
CBF into two types: CBF specified in terms of minterms     
(m-CBF) and a CBF defined by its maxterms (M-CBF). The 
details follow.   

A. Proposition 1: m-CBF  
A logic function is defined as a minterm-based CBF         

(m-CBF), if and only if equation (2) is satisfied.  
 
FON = {mi}; 0 ≤ i ≤ (n-1), such that 0 ≤ n ≤ 2 | s[F] |                        (1)  

where, for every mj ∈ {mi}, there certainly exists a mk ∈ {mi}, 
such that the binary 2-tuple (mj, mk) is described as pair-wise 
disjoint or bit-wise complementary. For this, the following 
condition has to be satisfied, given by, 

 
D(mj) ∪ D(mk) = { } and | D(mj) ∪ D(mk) | = 0                    (2) 
 
where, D(mj) and D(mk) represent the description set [19] of 
minterms ‘mj’ and ‘mk’ respectively.  

B. Proposition 2: M-CBF  
A logic function is understood to be a maxterm-based CBF 

(M-CBF), if and only if equation (4) holds well.  
 
FOFF = {Mi}; 0 ≤ i ≤ (n-1), where 0 ≤ n ≤ 2 | s[F] |                              (3) 
 
where, for each Mj ∈ {Mi}, there certainly exists a Mk ∈ 
{Mi}, in which case the binary 2-tuple (Mj, Mk) is identified to 
be pair-wise disjoint or bit-wise complementary. 
Alternatively, the following conditionality would hold good.  
 
D(Mj) ∪ D(Mk) = { } and | D(Mj) ∪ D(Mk) | = 0                  (4) 
 

The conditionalities (2) and (4) are elucidated in section 4.                     

III. ESOP AND FACTORED REED-MULLER FORMS 
Traditional logic design is usually based on two-level SoP 

(Sum of Product terms) and PoS (Product of Sum terms) 
forms. Infact, two-level SoPs have been widely used to 
represent and manipulate Boolean functions. Exact and 
heuristic SoP minimization has traditionally attracted attention 
of researchers over several years, because in many 
applications, it is important to have as compact a SoP 
representation as possible. [5] and [6] indicate the earliest 
research and a recent research work undertaken in this 
context. But two-level logic is of less significance in a VLSI 
design environment and is clearly library unaware, due to fan-
in restrictions (generally limited to three inputs for generic 
atomic operators) imposed on the gates in a standard cell 
library. Hence, multi-level logic seems to the practical design 
alternative and this is beneficial for enhanced performance 
even though there is a trade-off with logic depth [7].  
XOR based designs, on the other hand, have certain well-
known advantages over the above classical realization 
methods. Firstly, they pave way for a more concise expression 
for many basic arithmetic functions. Secondly, many practical 
digital circuits used in the fields of coding theory, linear 
system, telecommunication and arithmetic coding contain 
basic functionality which are inherently mod-2 sum. Finally, 
circuits containing XOR gate types have excellent design-for-
testability properties. 

 Exclusive Sum-of-Products (ESOP) have been introduced 
by I. I. Zhegalkin in 1927 [8] [9] and later independently 
rediscovered by S.M. Reed [10] and D.E. Muller [11]. A 
systematic classification of various families of Reed-Muller 
(Zhegalkin) expressions has been given in [12]. In simple 
terminology, an ESOP is an Exclusive-OR of zero or more 
cubes, where a cube is a product term composed of literals 
using Boolean AND operation and a literal is a Boolean 
variable appearing in positive or negative polarity. An ESOP 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

718

 

 

is reduced if it does not contain identical cubes. An ESOP is 
minimal if all cube pairs have distance 2 or more. An ESOP is 
exact minimum if it contains the minimum number of cubes 
among all ESOPs representing the given function. The 
following propositions are proved using the basic property of 
an XOR operation.  

A. Lemma 1 
Two identical cubes (Hamming distance – 0 cubes) can be 

added to any ESOP without changing the functionality 
represented by them. 

B. Lemma 2 
The XOR of two cubes that exhibit unity Hamming distance 

can be represented by a single cube. 
Inspite of their inherent advantages, XOR gate and 

Exclusive Sum-of-Products (ESOP) minimization, have been 
underestimated  for the following reasons: the XOR gate, as 
implemented in the widely used standard cell libraries, is 
almost two times larger and slower compared to equivalent 
fan-in NAND and NOR gates. Relatively few algorithms use 
ESOPs for internal representation of Boolean functions. 
Finally, the exact minimization of ESOPs is practical only for 
arbitrary functions of five input variables and special classes 
of functions up to ten variables [13], while heuristic 
minimization is based on search algorithms [25] and is 
computationally more expansive than SoP minimization. 
Although, for long, it has been conjectured that ESOPs require 
fewer products than sum-of-products expressions (SoPs) by 
experiments using randomly generated functions; for e.g. an 
ESOP requires only ‘t’ products to represent a parity function 
of ‘n’ variables, while the SoP requires 2(t-1); this is not always 
the case.  In case of Achilles’ heel functions with input file 
specification (2k, 2) for k = 0,1,…,2r; the number of products 
to represent this function would be ‘r’ for SoPs and (2r-1) for 
ESOPs.  Despite these individual comparison cases, ESOPs 
are found to be result in concise expressions than SoPs for 
arithmetic functions. For e.g. the sufficient number of 
products to represent an n-bit adder would be [2(n+1) - 1] for 
ESOPs,     [2(n+1) + n - 2] for other classes of AND-XOR 
expressions and [6.2n – 4n – 5] for SoPs [17]. 

However, the XOR gate and ESOPs continue to play an 
important role in logic synthesis, design-for-test and other 
areas of computer technology due to these important reasons: 
for many Boolean functions, the number of cubes in minimal 
ESOPs is less than the number of cubes in minimal SOPs. 
Since the XOR gate has excellent testability properties, as 
mentioned above, it subsequently leads to efficient methods 
for automatic test pattern generation [14]. Also, it is clear 
from the previous discussion, that for many types of practical 
circuits, even the selective use of XOR gates in logic synthesis 
yields better implementations in terms of both area and delay 
[15] [16]; although, in the paper, we study the effectiveness of 
XOR based designs mainly from a power perspective. 

Various classes exist in ESOP expansions involving only 
AND and XOR gate types. This is because any arbitrary logic 

function can be purely realized using only AND and XOR 
logic gates. For example, the RM, GRM and PKRM 
expressions form only a subset of the ESOP form. Slight 
modifications of the Shannon expansion in GF (2) are made to 
obtain Davio-1 (5), Davio-2 (6) (positive Davio expansion) 
and Davio-3 (7) (negative Davio expansion) axioms, which 
correspond to AND-XOR logic [17] [18].   

 
F = [(x · Fx) ⊕ (x’ · Fx’)]                                                        (5) 
                              
F = [Fx’ ⊕ {x · (Fx ⊕ Fx’)}]                                                    (6) 
 
F = [Fx ⊕ {x’ · (Fx ⊕ Fx’)}]                                                    (7) 
 

In (5), (6) and (7), the symbols ‘·’ and ‘⊕’ stand for AND 
and XOR operators respectively, while ‘+’ and ‘ ’ would 
henceforth correspond to logical OR and XNOR operations. 
‘x’ is the decision variable, ‘Fx’ is the positive residue 
(positive cofactor) of the function F and ‘Fx’’ is the negative 
residue (negative cofactor) of the function F. 

Recursive application of the above tree expansions results 
in various RM trees [18]. If only the positive Davio expansion 
(2) is used repeatedly for variable expansion with some fixed 
order of expansion of variables, a compact RM tree is 
generated. A GRM tree is created when a choice exists 
between positive Davio expansion and negative Davio 
expansion (3) for each variable. If equations (1), (2) and (3) 
are used along with the choice of equations (2) and (3) in each 
sub-tree, the PKRM structure is generated. Importantly, in all 
these structures only two kinds of gates (AND and XOR) are 
used for circuit realizations, apart from NOTs as necessary.  

Since obtaining minimal expressions for RM, GRM and 
PKRM forms is by itself a separate extensive procedure and 
even then it would contain many XOR operators; owing to the 
necessity for a reasonable comparison with that of our 
proposed realization, we have resorted to factoring those 
forms with useful minimization rules stated in [1]. We also 
make it clear that we consider only RM, PKRM and GRM 
forms with fixed polarity in this work. Though in PKRM and 
GRM expressions, both true and complemented literals can 
appear for the same variable, in case of standard cell based IC 
design (CBIC), this assumption would not hold good. 

The objective of factorization is to represent a Boolean 
function in a logically equivalent factored form but with a 
minimum number of literals. We have opted for algebraic 
factorization as it is simple and requires much less CPU 
execution time compared to Boolean factorization. This 
operation has enabled us to greatly reduce the literal count as 
well as the gate count needed for such realizations, while still 
preserving the definition of those structures.  This technique is 
also justified in the sense that we are primarily concerned with 
reduced and irredundant AND-XOR logic formats. Hence, the 
corresponding factorized expressions are identified as f-RM, 
f-GRM and f-PKRM expansions respectively. 
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IV. GROUPING METHODOLOGY AND SYNTHESIS PROCEDURE 
In [19], we introduced a new terminology, namely the 

description set of a Boolean term and the reader is referred to 
the same for details. In short, the description set of a canonical 
product is the set of all primary input literals that a minterm is 
dependent upon, in their respective polarities, for its 
evaluation to a logical HIGH state. Similarly, the description 
set of a canonical sum is the set of all primary input literals 
that a particular maxterm is dependent upon, in their 
respective polarities, for its evaluation to a logical LOW state. 
We now first discuss how the terms (minterms or maxterms) 
are grouped based on their description set and set union 
operation [19]; then proceed with the explanation of the 
proposed synthesis procedure. 

 Let ‘m1’ and ‘m2’ be two minterms, specified by their 
respective description sets as, D(m1) = {yn-1, yn-2, …, y0} and   
D(m2) = {yn-1, yn-2, …, y0}, where ‘yk’ assumes either of the 
logical states of ‘0’ or ‘1’, and k = (n-1), (n-2),….,0. If         
[yk ε D(m1)]  ≠ [yk ε D(m2)], for all ‘k’, then we have, 

 
D(m1) ∪ D(m2) = { } and | D(m1) ∪ D(m2) | = 0                   (8) 

 
Now we arrive at the conclusion that ‘m1’ and ‘m2’ are 

suitable candidates for grouping. The above illustration is 
suitable for maxterms as well. This grouping mechanism is 
suitable for all CBF. Care must be taken to perform only as 
many distinct and minimum number of grouping operations, 
as deemed necessary, and no terms are to be left un-checked 
and also that each grouping operation would be performed on 
only two distinct standard sum (product) terms.  

Now we proceed with a two-bit comparison at a time, 
starting with the most significant input literal and its next 
significant variable, until comparison between the least 
significant variable and its predecessor. In such a case, if ‘yn-1’ 

and ‘yn-2’ of D(m1) [likewise D(m2)] have the same Boolean 
values, then they could be combined by a logical inclusive 
operation as (yn-1  yn-2). On the other hand, if they are 
different, they could be combined by a logical exclusive 
operation as (yn-1 ⊕ yn-2). It should be remembered in this 
context that the above logical operations correspond only to 
the two minterms ‘m1’ and ‘m2’ considered. We then logically 
AND all such combined variables. We could also have an 
alternative solution in terms of logical OR-ing of all such 
combined variables. For this, the logical inclusive and logical 
exclusive operators have to be swapped and the resulting 
expression is to be complemented. In a similar manner, we 
could proceed with other sets-of-two minterms, which satisfy 
(8). Hence, it becomes clear that two expressions could be 
obtained; one corresponding to a logical conjunctive form and 
another corresponding to a logical disjunctive form. However, 
in general, we prefer the former solution rather than the latter, 
as NAND gates tend to be faster than NOR gates, when 
realized in static CMOS logic style [20]. 

For a Boolean function, F, which is not strictly CBF, its 
ON-set could be described by, FON = {mi}, where {mi} 

represents the set of all distinct minterms constituting the ON-
set of the function F. Then, for every mj ∈ {mi}, there exists 
an element, mk ∈ {mi}, where D(mj) ∪ D(mk) = { }, and (8) is 
satisfied. In addition, there also exists atleast one more 
element, mp ∈ {mi}, where the inequality, 1 < | D(mj) ∪ D(mk) 
| ≤ O(n-1) is satisfied. In this case, ‘mp’ could be combined 
with any of {mi}, such that | D(mp) ∪ any of D[{mi}] | is a 
minimum. This means that one or more variables would be 
common between the description sets of ‘mp’ and {mi}. So the 
above steps detailed in the previous paragraph may be 
followed for the remaining variables and the shared variables 
could be AND-ed with the resulting expressions. 

Once all the minterms have been checked, we then resort to 
algebraic factorization operations at this stage, by applying 
lemmas 1 and 2 as stated in the previous section and other 
elementary algebraic factorizations on the various logical 
disjunctions/conjunctions obtained, which results in a minimal 
and irredundant solution (where the minimality criterion is 
measured in terms of literal count and gate count). This 
synthesis procedure is significant, in the sense that XOR and 
XNOR gates with a fan-in of only 2 are used for realization. 
In case of other Boolean gates (viz. AND or OR), we can go 
for a cascade network, in order to adhere to the technology 
cell library specifications. Hence the synthesis mechanism is 
clearly library aware as evident from the above discussion.  

However, for the problem comprising maxterms, we adopt 
a similar but slightly different methodology. The initial set-of-
two maxterms comparison should be extended to 
accommodate an extra comparison between the most 
significant input variable and the least significant input 
variable. This would give rise to an extra term in the resulting 
expression. In order to avoid this, the maxterms-defined 
problem may be considered as a minterm-defined problem by 
applying the concept of output phase optimization. This is 
considered to be a wise and pragmatic approach for these 
types of problems. Secondly, though the logical inclusive and 
exclusive operations used for combining input variables 
would be the same; the expression obtained by logical 
disjunction would be negated instead of inverting that 
obtained by logical conjunction, as in the previous case.  

For a logic function, specified in terms of its maxterms, 
which is strictly not CBF, a similar grouping mechanism has 
to be followed as detailed for that of a minterm specified 
problem. The only difference being that the variables which 
are common are to be OR-ed with the resulting expressions.  

A. Example 
Let the ON-set of a 5-variable logic function be described 

by,  
 
FON (a,b,c,d,e) = m8 + m11 + m20 + m23                                   (9) 

 
For this problem, m8 and m23; similarly m11 and m20 satisfy 

(8). The gate-level implementations of the final solutions 
corresponding to the various forms viz. f-RM, f-GRM,           
f-PKRM and proposed forms are shown in figures 1, 2, and 3 
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respectively. Their corresponding Boolean relations are given 
by (9), (10), (11) and (12).   
 
Ff-RM = (d⊕e’) · [(bc’) ⊕ {a(b⊕c)}]                                    (10) 
 
Ff-GRM = (d⊕e’) · [(b’c) ⊕ {a’(b⊕c)}]                                 (11) 
 
Ff-PKRM = (d⊕e’) · [(b’c) ⊕ {a’(b⊕c)}]                               (12) 
 
FProposed = (a⊕b) · (b⊕c) · (d e)                                          (13) 
 

 
 

Fig. 1 Factored RM form realization 
 

 
 

Fig. 2 Factored GRM and PKRM forms implementation 
 

 
 

Fig. 3 Synthesized function based on proposed method 
 

A comparison between the various realization schemes in 
terms of technology-independent and technology-dependent 
parameters is shown in Table I. From the following table, we 
make some important inferences. Firstly, transition count [3], 
as an integer measure of switching activity at all the gate 
output nodes for a uniform input distribution, forecasts that 

the proposed form is likely to garner savings in power 
consumption over the other forms. The percentage savings 
obtained for the proposed form over the other forms is 
indicated within brackets in the corresponding columns (in all 
the Tables). This has been done for the other parameters as 
well. Also, transition count as well as power consumption of 
both the f-GRM and f-PKRM forms turns out to be the same. 

 
TABLE I 

COMPARISON BETWEEN VARIOUS REALIZATIONS 
Realization Transition 

count 
NG NL Power 

(nW) 
f-RM 
form 

3040 
(42.11%) 

8 
(50%) 

7 
(14.28%) 

16.001 
(38.64%) 

f-GRM 
form 

3552 
(50.45%) 

9 
(55.56%) 

7 
(14.28%) 

18.573 
(47.13%) 

f-PKRM 
form 

3552 
(50.45%) 

9 
(55.56%) 

7 
(14.28%) 

18.573 
(47.13%) 

Proposed 1760 4 6 9.819 
NG – Number of gates; NL – Number of input literals 

However, it should be noted that computation of transition 
count would be a cumbersome task for non-uniformly 
distributed input patterns (i.e. that which may exhibit spatial, 
temporal or spatio-temporal correlations). Also, it may not 
indicate the actual savings in power consumption that is likely 
to be achieved since it is independent of technology 
parameters and depends only on statistics of the primary input 
signals. This is also evident from the above table. 

V. SIMULATION MECHANISM AND RESULTS 
For a given Boolean function, minimized expressions and 

equivalent gate level realizations were obtained based on the 
different synthesis schemes viz., f-RM, f-GRM, f-PKRM and 
proposed. The gate level netlists were then realized using 
static CMOS logic style, by library matching with the cells 
normally available in a standard cell library. The gate level 
primitives have been described in terms of a MOS transistor 
schematic, using Mentor Graphics tools (DA - Design 
Architect) [21]. In this full-custom approach, the length 
dimension of all the transistors is dictated by a technology 
specification viz., 0.35 micron TSMC CMOS process, with a 
gain factor (βp/βn) of 2.5.  The SPICE netlist for the transistor 
level description corresponding to an industry-standard 
BSIM3 device model was obtained at the back-end and 
executed using ELDO circuit simulator. The simulation 
waveforms have been observed using XELGA waveform 
viewer tool. The above simulation procedure has been 
followed for all the gate-level netlists, corresponding to the 
respective synthesis schemes.  

A number of multiple-input, single-output non-regenerative 
logic functions (most of them CBF and few not-strict CBF) 
have been taken for analysis purpose and they are listed in 
Table 6 (made available as an appendix).  

Table 2 gives the transition count computed for a uniform 
input distribution for the minimized gate-level solutions 
obtained according to the different synthesis methods. Tables 
3 and 4 summarize the gate count and literal count, for the 
case studies considered as per the different realizations. Power 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

721

 

 

dissipation values obtained for the various samples 
considered, corresponding to different synthesis schemes have 
been listed in Table 5. The estimation of average power 
component of the circuits is through tagged probabilistic 
simulation scheme [22]. The reason for choosing this method 
is that the error component in this method is minimal, and to 
improve its efficiency, only tagged waveforms at the circuit 
inputs have been computed. The total power consumption 
value obtained for a representative input pattern (assuming 
uniformly distributed and uncorrelated input sequences) was 
then summed up in each case to estimate the mean savings in 
power dissipation for the proposed method over those 
corresponding to other methods, on an overall basis. A 
graphical comparison of the proposed scheme with those of 
other methods is depicted by figures 4, 5, 6 and 7. 

 
TABLE  II 

EVALUATION OF TRANSITION COUNT FOR VARIOUS REALIZATIONS 

Function ID f-RM form f-GRM 
form 

f-PKRM 

form 
Proposed 

form 

F14 608 608 608 352 

F24 480 736 480 352 

F34 352 608 608 352 

F44 568 824 824 352 

F54 480 480 480 352 

F64 512 512 512 384 

F74 696 696 696 352 

F84 440 440 440 344 

F94 492 830 830 408 

F104 12666 1024 1024 600 

F115 3040 3552 3552 1760 

F125 1920 1920 1920 1408 

F135 2688 2688 2688 1408 

F145 3296 3520 4228 2496 

F155 2432 2432 2432 1408 

F165 2360 3328 3712 1408 

F175 2816 2360 3712 1408 

F185 2816 2360 3712 1408 

F195 1536 2560 2560 1536 

F205 3376 3376 3376 2480 

F215 2480 2480 2480 1968 

F225 4368 4368 4368 2704 

F235 1408 2432 1408 1408 

F245 2048 2048 2048 1536 

F255 2808 2808 2808 3320 

F266 22336 22336 22336 8672 

F276 9088 9088 9088 7040 

F286 11648 13696 13696 7040 

F296 11648 13696 13696 7040 

F306 13696 15744 15744 7040 

Total 

(% increase) 

125102 

(45.38%) 

12355 

(44.69%) 

126066 

(45.79%) 

68336 

 
TABLE III 

COMPARISON IN TERMS OF GATES AVAILABLE IN THE CELL LIBRARY 

Function ID f-RM form f-GRM 
form 

f-PKRM 

form 
Proposed 

form 

F14 5 5 5 3 

F24 4 6 4 3 

F34 3 5 5 3 

F44 5 7 7 3 

F54 4 4 4 3 

F64 4 4 4 3 

F74 6 6 6 3 

F84 5 6 5 3 

F94 8 7 7 5 

F104 12 10 10 5 

F115 8 9 9 4 

F125 4 4 4 3 

F135 6 6 6 3 

F145 8 8 11 5 

F155 5 5 5 3 

F165 5 7 9 3 

F175 6 5 9 3 

F185 6 5 9 3 

F195 3 5 5 3 

F205 8 8 8 6 

F215 6 6 6 6 

F225 10 10 10 7 

F235 3 5 3 3 

F245 4 4 4 3 

F255 7 7 7 8 

F266 12 14 14 5 

F276 5 5 5 4 

F286 7 8 8 4 

F296 7 8 8 4 

F306 8 9 9 4 

Total 

(% increase) 

184 

(35.87%) 

198 

(40.40%) 

206 

(42.72%) 

118 

 
TABLE IV 

LITERAL COST COMPARISON FOR DIFFERENT SYNTHESIS SCHEMES 

Function ID f-RM 
form 

f-GRM 
form 

f-PKRM 

form 
Proposed 

form 

F14 4 4 4 4 

F24 4 4 4 4 

F34 4 4 4 4 

F44 5 5 5 4 

F54 4 4 4 4 

F64 4 4 4 4 

F74 5 5 5 4 

F84 5 4 5 4 

F94 7 8 8 7 
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F104 12 10 10 6 

F115 7 7 7 6 

F125 4 4 4 4 

F135 5 5 5 4 

F145 8 7 11 6 

F155 4 4 4 4 

F165 4 6 7 4 

F175 6 4 7 4 

F185 6 4 7 4 

F195 4 4 4 4 

F205 9 8 8 8 

F215 8 8 8 8 

F225 10 10 10 10 

F235 4 4 4 4 

F245 4 4 4 4 

F255 8 8 8 9 

F266 12 12 12 8 

F276 6 6 6 6 

F286 7 7 7 6 

F296 7 7 7 6 

F306 7 7 7 6 

Total 

(% increase) 

184 

(13.04%) 

178 

(10.11%) 

190 

(15.79%) 

160 

 
TABLE V 

POWER DISSIPATION FOR VARIOUS SCHEMES (IN NANOW) 

Function ID f-RM 
form 

f-GRM 
form 

f-PKRM 

form 
Proposed 

form 

F14 13.459 13.460 13.460 9.669 

F24 10.049 10.776 10.049 8.142 

F34 5.701 6. 444 5.701 5.701 

F44 10.399 12.159 9.646 8.145 

F54 10.123 10.849 10.123 8.234 

F64 11.384 14.947 11.384 11.253 

F74 14.793 13.810 13.810 9.668 

F84 8.635 7.801 8.635 5.992 

F94 7.553 13.294 8.943 10.678 

F104 14.621 18.210 18.210 15.171 

F115 16.001 18.753 18.753 9.819 

F125 10.123 10.123 10.123 8.234 

F135 14.793 13.810 13.810 9.668 

F145 16.154 17.229 23.390 12.274 

F155 13.459 13.461 13.459 9.664 

F165 14.497 20.574 23.604 8.145 

F175 16.180 14.592 21.797 8.187 

F185 16.810 14.592 21.797 8.187 

F195 8.025 12.228 12.228 8.025 

F205 13.816 14.136 14.136 10.556 

F215 13.089 13.089 13.089 13.108 

F225 16.565 16.565 16.565 13.054 

F235 5.701 6.444 6.444 5.701 

F245 11.384 14.496 14.496 9.481 

F255 11.717 11.717 11.717 15.719 

F266 22.341 25.953 25.953 16.342 

F276 20.623 19.745 20.623 17.519 

F286 11.729 14.316 14.316 8.254 

F296 13.415 14.142 14.142 9.894 

F306 17.877 23.805 23.805 12.223 

Total 

(% increase) 

391.016 

(21.56%) 

425.076 

(27.85%) 

444.208 

(30.95%) 

306.707 
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Fig. 4 Relative power consumption comparison of different methods 
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Fig. 5 Relative transition count pertaining to different methods 
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Fig. 6 Number of gates for different realizations 
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Fig. 7 Number of input literals required for the various implementations 
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VI. CONCLUSION AND SCOPE FOR FUTURE WORK 
The computational complexity associated with logic 

minimization has posed challenges since the beginning of the 
field in the early 60’s; indeed solutions for some central 
questions, which remained elusive, have been obtained only 
within the last few years and others remain open [23]. This 
work addresses an important issue of practical relevance. A 
better technique of logic minimization and implementation, 
especially for a unique class of Boolean functions viz., CBF is 
discussed in this paper. We witnessed that the proposed 
systematic formulation for the logic simplification problem 
has also resulted in better solutions for some logic functions 
which are not strictly CBF. The significance of our 
contribution is substantiated by improvement achieved for a 
crucial design metric, in comparison with other realizations. 

On the basis of computation of transition count, as an 
integer measure of switching activity, the proposed grouping 
methodology and synthesis mechanism predicted mean 
savings in power consumption over the other factored RM 
forms by 45.3%; while the simulation results enabled 
optimization in power consumption by 26.8%. We have also 
been successful in achieving decrease in gate count by 39.7% 
and reduction in the number of input literals required for 
implementation by around 12.9%.  

For a number of 4-variable functions requiring ‘t’ products 
[17], the average number of products for fixed polarity RM 
(FPRM) form, Kronecker RM form (KRM), SoP, PKRM form 
and ESOP are found to be 5.50, 4.73, 4.13, 3.84 and 3.66 
respectively; while for a number of 5-variable functions 
requiring the same number of products [17], the average 
number of the products with respect to KRM, PKRM and 
ESOP is found to be 10.066, 6.976 and 6.162. Hence it 
becomes clear that among the AND-XOR type logical 
expressions, ESOP is the most general class, and requires the 
fewest products to represent given functions. Hence it would 
be worth pegging ESOPs as candidates for comparison with 
that of our proposed forms in terms of the critical design 
metric of power consumption. Also, we could consider 
analyzing multiple input and multiple output logic 
architectures to study the beneficial effects of sharing between 
the terms. A strategy to estimate the advantages of this 
proposed synthesis technique for other CMOS based 
realization styles is also in the pipeline. Another important 
step would be to develop a framework for the proposed 
synthesis scheme on the lines of a decision diagram structure.   

ACKNOWLEDGMENT 
The authors wish to thank Mrs. Sirisha Yellapragada for her 

help with the simulations and artwork. 

REFERENCES   
[1] U. Narayanan, and C.L. Liu, “Low power logic synthesis for XOR based 

circuits”, Proc. of IEEE/ACM International Conf. on Computer Aided 
Design, pp. 570-574, 1997. 

[2] Sasan Iman, and Massoud Pedram, Logic Synthesis for Low Power VLSI 
designs, Springer-Verlag Publishing, Berlin Heidelberg, 1998. 

[3] P. Balasubramanian, R. Chinnadurai, and M.R. Lakshmi Narayana, 
“Minimization of Dynamic Power Consumption in Digital CMOS 
Circuits by Logic Level Optimization”, WSEAS Trans. on Circuits and 
Systems, vol. 4(4), pp. 257-266, April 2005.   

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. 
Yakovlev, Logic synthesis of Asynchronous controllers and Interfaces, 
Springer Series in Advanced Microelectronics, Springer-Verlag, Berlin 
Heidelberg, 2002. 

[5] K. Nguyen, M. Perkowski, and N. Goldstein, “Palmini-Fats Boolean 
minimizer for Personal Computers”, Proc. of ACM/IEEE Design 
Automation Conference, pp. 615-621, 1987. 

[6] S. Kahramanli, and S. Tosun, “A novel essential prime implicant 
identification method for exact direct cover logic minimization”, Proc. 
of 2006 International Conference on Computer Design, pp. 10-16, 2006. 

[7] Giovanni De Micheli, Synthesis and Optimization of Digital Circuits, 
Mc-Graw Hill, New York, 1994. 

[8] I.I. Zhegalkin, “O tekhnike vychisleniy predlozheniy v simvolicheskoy 
logike” (About a Technique of Computation of Expressions in Symbolic 
Logic), Mat. Sb., vol. 34, pp. 9-28, 1927. 

[9] I.I. Zhegalkin, “Arifmetizatsiya simvolicheskoy logiki” (Arythmetization 
of Symbolic Logic), Mat. Sb., vol. 35, pp. 311-377, 1928.  

[10] S.M. Reed, “A class of multiple-error-correcting codes and their 
decoding scheme”, IRE Trans. on Information Theory, vol. PGIT-4, pp. 
38-49, 1954.  

[11] D.E. Muller, “Application of Boolean algebra to switching circuit design 
and to error detection”, IRE Trans. On Electron. And Comp., vol. EC-3, 
pp. 6-12, 1954.  

[12] D.H. Green, “Families of Reed-Muller Canonical forms”, International 
Journal of Electronics, vol. 70(2), pp. 259-280, February 1991.  

[13] T. Sasao, “An exact minimization of AND-EXOR expressions using 
BDDs”, Proc. of IFIP WG 10.5 Workshop on Applications of the Reed-
Muller Expansion in Circuit Design, pp. 91-98, 1993.  

[14] U. Kalay, M. Perkowski, and D. Hall, “A minimal universal test set for 
self test of EXOR-Sum-of-Products circuits”, IEEE Trans. on 
Computers, vol. 49(3), pp. 267-276, March 1999. 

[15] C. Yang, M. Ciesielski, and V. Singhal, “BDS: A BDD-based logic 
optimization system”, Proc. of 37th ACM/IEEE Design Automation 
Conference, pp. 92-97, 2000. 

[16] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for bi-
decomposition of logic functions”, Proc. of 38th ACM/IEEE Design 
Automation Conference, pp. 103-108, 2001. 

[17] T. Sasao, Logic Synthesis and Optimization, Kluwer Academic 
Publishers, Massachusetts (USA), 1993. 

[18] S. Chattopadhyay, S. Roy, and P.P. Chaudhuri, “KGPMIN: An Efficient 
Multilevel Multioutput AND-OR-XOR Minimizer”, IEEE Trans. on 
CAD of Integrated Circuits and Systems, vol. 16(3), pp. 257-265, March 
1997. 

[19] P. Balasubramanian, and C. Ardil, “Compact Binary Tree Representation 
of Logic Function with Enhanced Throughput”, International Journal of 
Computer, Information, and Systems Science, and Engineering,          
vol. 1(2), pp. 90-96, 2007. 

[20] B. Zeidman, “An Introduction to Application Specific Integrated 
Circuits”, Tutorial: Proc. of Embedded Systems Conference, USA, 1999. 

[21] Available: http://www.mentor.com 
[22] C.-S. Ding, C.-Y. Tsui, and M. Pedram, “Gate-level Power Estimation 

using Tagged Probabilistic Simulation”, IEEE Trans. on CAD of 
Integrated Circuits and Systems, vol. 17(11), pp. 1099-1107, November 
1998. 

[23] Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni 
Vincentelli, “Complexity of Two-Level Logic Minimization”, IEEE 
Trans. On CAD of Integrated Circuits and Systems, vol. 25(7), pp. 1230-
1246, July 2006. 

[24] A.P. Chandrakasan, and R.W. Broderson, “Minimizing power 
consumption in digital CMOS circuits”, Proceedings of the IEEE,      
vol. 83(4), pp. 498-523, April 1995. 

[25] S. Stergiou, and P. Papakonstantinou, “Exact minimization of ESOP 
expressions with less than eight product terms”, Journal of Circuits, 
Systems and Computers, vol. 13(1), pp. 1-15, February 2004. 

 
 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

725

 

 

 
APPENDIX 

 
TABLE VI 

FUNCTION IDENTITY AND SPECIFICATION 
Function ID ON-set logic description 

F14 {0,3,12,15} 

F24 {4,7,8,11} 

F34 {5,6,9,10} 

F44 {6,7,8,9} 

F54 {1,2,13,14} 

F64 {0,3,5,6,9,10,12,15} 

F74 {0,7,8,15} 

F84 {5,6,7,9,10,11} 

F94 {5,6,7,9,10} 

F104 {0,3,7,8,12,15} 

F115 {8,11,20,23} 

F125 {1,2,5,6,25,26,29,30} 

F135 {0,1,2,3,28,29,30,31} 

F145 {1,2,9,10,13,14,17,18,20,21,29,30} 

F155 {0,3,12,15,16,19,28,31} 

F165 {0,1,2,3,5,6,9,10,12,13,14,15,16,17,18,19,21,22,25,26,28,29,30,31} 

F175 {0,1,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,27,28,31} 

F185 {0,3,4,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,27,28,31} 

F195 {2,3,4,5,8,9,14,15,16,17,22,23,26,27,28,29} 

F205 {4,5,10,11,20,21,26,27} 

F215 {1,2,5,6,19,23,25,26,29,30} 

F225 {5,10,21,26,28,29} 

F235 {9,11,12,14,17,19,20,22} 

F245 {0,1,6,7,10,11,12,13,18,19,20,21,24,25,30,31} 

F255 {8,9,10,11,21,22} 

F266 {7,8,55,56} 

F276 {17,18,29,30,52,55,56,59} 

F286 {17,18,21,22,41,42,45,46} 

F296 {13,14,17,18,45,46,49,50} 

F306 {3,4,11,12,51,52,59,60} 
 

FXn; F – Boolean Function, X – Identity, n – Number of primary inputs 


