
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

716

Abstract—In this paper, we consider the problem of logic

simplification for a special class of logic functions, namely
complementary Boolean functions (CBF), targeting low power
implementation using static CMOS logic style. The functions are
uniquely characterized by the presence of terms, where for a
canonical binary 2-tuple, D(mj) ∪ D(mk) = { } and therefore, we
have | D(mj) ∪ D(mk) | = 0 [19]. Similarly, D(Mj) ∪ D(Mk) = { } and
hence | D(Mj) ∪ D(Mk) | = 0. Here, ‘mk’ and ‘Mk’ represent a
minterm and maxterm respectively. We compare the circuits
minimized with our proposed method with those corresponding to
factored Reed-Muller (f-RM) form, factored Pseudo Kronecker
Reed-Muller (f-PKRM) form, and factored Generalized Reed-Muller
(f-GRM) form.

We have opted for algebraic factorization of the Reed-Muller
(RM) form and its different variants, using the factorization rules of
[1], as it is simple and requires much less CPU execution time
compared to Boolean factorization operations. This technique has
enabled us to greatly reduce the literal count as well as the gate count
needed for such RM realizations, which are generally prone to
consuming more cells and subsequently more power consumption.
However, this leads to a drawback in terms of the design-for-test
attribute associated with the various RM forms. Though we still
preserve the definition of those forms viz. realizing such
functionality with only select types of logic gates (AND gate and
XOR gate), the structural integrity of the logic levels is not
preserved. This would consequently alter the testability properties of
such circuits i.e. it may increase/decrease/maintain the same number
of test input vectors needed for their exhaustive testability,
subsequently affecting their generalized test vector computation.

We do not consider the issue of design-for-testability here, but,
instead focus on the power consumption of the final logic
implementation, after realization with a conventional CMOS process
technology (0.35 micron TSMC process). The quality of the resulting
circuits evaluated on the basis of an established cost metric viz.,
power consumption, demonstrate average savings by 26.79% for the
samples considered in this work, besides reduction in number of
gates and input literals by 39.66% and 12.98% respectively, in
comparison with other factored RM forms.

Keywords— Reed-Muller forms, Logic function, Hamming
distance, Algebraic factorization, Low power design.

I. INTRODUCTION
HE low power design challenge is one that requires
abstraction, modeling and optimizations at all levels of

Padmanabhan Balasubramanian is with the School of Computer Science,

The University of Manchester, Manchester, MAN M13 9PL UK (phone: +44-
161-275 6294; e-mail: spbalan04@gmail.com, padmanab@cs.man.ac.uk).

Cemal Ardil is with the National Academy of Aviation, Baku,
Azerbaijan (e-mail: cemalardil@gmail.com).

design hierarchy; including the system, algorithmic,
architectural, logic, circuit and process levels. Perhaps the
driving factor for designing low power circuits in the recent
times has been the remarkable success and growth of the
important class of portable and personal computing devices,
high-end wireless communication systems etc., which demand
complex functionality, high throughput, low weight and long
operation times before the battery is recharged. In these
applications, average power consumption is a critical design
constraint. Combining optimizations at all the levels results in
orders of magnitude of power reduction [2]. Such an
impressive reduction in circuit power will however be
possible only if optimization flows and techniques at each
level of design hierarchy are developed [24].

Logic synthesis has matured as a field to be universally
accepted and is used in every major IC design and production
house worldwide. A wealth of research results and a few
pioneering commercial tools for low power logic synthesis
have appeared in the last couple of years. Logic synthesis is an
important part of the design cycle for a digital integrated
circuit. This implies that in order to minimize power
effectively, power component should be considered during the
logic synthesis phase. In certain cases, gate level optimization
results in more than 50% power reduction without sacrificing
the circuit speed [2]. This approach promises to be very
successful and useful, since the investment to reduce power by
design is relatively small in comparison to other techniques
and also because it is relatively untapped in potential.

This paper presents a power optimization technique at the
logic level, which is ultimately expected to minimize power
consumption of the transistor level realization of the logic
implementation by a new methodology, and also by taking
advantage of existing techniques like logic restructuring for
minimizing area. Logic restructuring techniques include
common sub-function extraction and factorization. In this
paper, algebraic factorization is widely considered and power
optimization after logic extraction for a unique class of
functions, namely CBF is addressed as follows.

Problem statement: Given a Boolean function comprising a
complementary ON/OFF set of elements (exhibiting bit-wise
or position-wise negation), find a reduced and possibly
minimal cover for the network, such that the final size and
power cost of the network are reduced. Indeed, the power cost
of the network is theoretically modeled as the summation of
power cost at all the primary gate input, intermediate gate
output and primary gate output nodes.

Library Aware Power Conscious Realization of
Complementary Boolean Functions

Padmanabhan Balasubramanian, and Cemal Ardil

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

717

The aim of this work is to exploit the “regularity” inherent
in complementary Boolean functions (CBF), in order to
reduce the time needed for its logical synthesis to obtain a
power optimal solution. In light of the above, this work
addresses the issue of how to derive a minimized
decomposition of complementary logic functions by
predominant usage of XOR and/or XNOR gates, consistent
with a standard cell library specification and also the means to
develop an integrated framework for reducing such functions,
so as to reduce the literal count and/or gate area of the final
design. In this context, it should be noted that though power
optimization is achieved by an area-centric approach.

As an initial theoretical measure to forecast the possibility
of power savings that is likely to be attained; transition count
[3], as an integer measure, is used as a parameter to represent
the switching activity at all the gate output nodes of all the
logic levels. However, we observe that this integer metric
does not correspond to/reflect the actual power consumption
or savings that may be attained by one synthesis method over
another. But overall, this parameter serves only as a useful
indicator of possible power efficient implementations, which
is validated by the problem cases considered in this work.

The remainder of this paper is organized as follows. Section
2 classifies the complementary Boolean functions into two
types and also lists their associated conditionalities. Section 3
provides concise background information pertaining to ESOP
and also sheds light on different factored RM forms. Section 4
presents the details regarding the methodology followed to
group the terms and also explains the synthesis procedure. A
specific problem case is also considered to serve as an
illustration for the proposed synthesis technique. The
simulation mechanism and results obtained for the different
factored RM forms and that corresponding to the proposed
method for a considerable number of case studies, realized
using static CMOS logic style, is highlighted in section 5.
Also graphical plots for the cost metrics pertaining to different
realizations are included in this section. Lastly, we conclude
and cite scope for further work in section 6.

II. COMPLEMENTARY BOOLEAN FUNCTION
Let F be a Boolean function with support of F [4], defined

as, s[F] = {xn-1, xn-2,….,x0}. The support set basically lists all
the variables that influence a function output. We now classify
CBF into two types: CBF specified in terms of minterms
(m-CBF) and a CBF defined by its maxterms (M-CBF). The
details follow.

A. Proposition 1: m-CBF
A logic function is defined as a minterm-based CBF

(m-CBF), if and only if equation (2) is satisfied.

FON = {mi}; 0 ≤ i ≤ (n-1), such that 0 ≤ n ≤ 2 | s[F] | (1)

where, for every mj ∈ {mi}, there certainly exists a mk ∈ {mi},
such that the binary 2-tuple (mj, mk) is described as pair-wise
disjoint or bit-wise complementary. For this, the following
condition has to be satisfied, given by,

D(mj) ∪ D(mk) = { } and | D(mj) ∪ D(mk) | = 0 (2)

where, D(mj) and D(mk) represent the description set [19] of
minterms ‘mj’ and ‘mk’ respectively.

B. Proposition 2: M-CBF
A logic function is understood to be a maxterm-based CBF

(M-CBF), if and only if equation (4) holds well.

FOFF = {Mi}; 0 ≤ i ≤ (n-1), where 0 ≤ n ≤ 2 | s[F] | (3)

where, for each Mj ∈ {Mi}, there certainly exists a Mk ∈
{Mi}, in which case the binary 2-tuple (Mj, Mk) is identified to
be pair-wise disjoint or bit-wise complementary.
Alternatively, the following conditionality would hold good.

D(Mj) ∪ D(Mk) = { } and | D(Mj) ∪ D(Mk) | = 0 (4)

The conditionalities (2) and (4) are elucidated in section 4.

III. ESOP AND FACTORED REED-MULLER FORMS
Traditional logic design is usually based on two-level SoP

(Sum of Product terms) and PoS (Product of Sum terms)
forms. Infact, two-level SoPs have been widely used to
represent and manipulate Boolean functions. Exact and
heuristic SoP minimization has traditionally attracted attention
of researchers over several years, because in many
applications, it is important to have as compact a SoP
representation as possible. [5] and [6] indicate the earliest
research and a recent research work undertaken in this
context. But two-level logic is of less significance in a VLSI
design environment and is clearly library unaware, due to fan-
in restrictions (generally limited to three inputs for generic
atomic operators) imposed on the gates in a standard cell
library. Hence, multi-level logic seems to the practical design
alternative and this is beneficial for enhanced performance
even though there is a trade-off with logic depth [7].
XOR based designs, on the other hand, have certain well-
known advantages over the above classical realization
methods. Firstly, they pave way for a more concise expression
for many basic arithmetic functions. Secondly, many practical
digital circuits used in the fields of coding theory, linear
system, telecommunication and arithmetic coding contain
basic functionality which are inherently mod-2 sum. Finally,
circuits containing XOR gate types have excellent design-for-
testability properties.

 Exclusive Sum-of-Products (ESOP) have been introduced
by I. I. Zhegalkin in 1927 [8] [9] and later independently
rediscovered by S.M. Reed [10] and D.E. Muller [11]. A
systematic classification of various families of Reed-Muller
(Zhegalkin) expressions has been given in [12]. In simple
terminology, an ESOP is an Exclusive-OR of zero or more
cubes, where a cube is a product term composed of literals
using Boolean AND operation and a literal is a Boolean
variable appearing in positive or negative polarity. An ESOP

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

718

is reduced if it does not contain identical cubes. An ESOP is
minimal if all cube pairs have distance 2 or more. An ESOP is
exact minimum if it contains the minimum number of cubes
among all ESOPs representing the given function. The
following propositions are proved using the basic property of
an XOR operation.

A. Lemma 1
Two identical cubes (Hamming distance – 0 cubes) can be

added to any ESOP without changing the functionality
represented by them.

B. Lemma 2
The XOR of two cubes that exhibit unity Hamming distance

can be represented by a single cube.
Inspite of their inherent advantages, XOR gate and

Exclusive Sum-of-Products (ESOP) minimization, have been
underestimated for the following reasons: the XOR gate, as
implemented in the widely used standard cell libraries, is
almost two times larger and slower compared to equivalent
fan-in NAND and NOR gates. Relatively few algorithms use
ESOPs for internal representation of Boolean functions.
Finally, the exact minimization of ESOPs is practical only for
arbitrary functions of five input variables and special classes
of functions up to ten variables [13], while heuristic
minimization is based on search algorithms [25] and is
computationally more expansive than SoP minimization.
Although, for long, it has been conjectured that ESOPs require
fewer products than sum-of-products expressions (SoPs) by
experiments using randomly generated functions; for e.g. an
ESOP requires only ‘t’ products to represent a parity function
of ‘n’ variables, while the SoP requires 2(t-1); this is not always
the case. In case of Achilles’ heel functions with input file
specification (2k, 2) for k = 0,1,…,2r; the number of products
to represent this function would be ‘r’ for SoPs and (2r-1) for
ESOPs. Despite these individual comparison cases, ESOPs
are found to be result in concise expressions than SoPs for
arithmetic functions. For e.g. the sufficient number of
products to represent an n-bit adder would be [2(n+1) - 1] for
ESOPs, [2(n+1) + n - 2] for other classes of AND-XOR
expressions and [6.2n – 4n – 5] for SoPs [17].

However, the XOR gate and ESOPs continue to play an
important role in logic synthesis, design-for-test and other
areas of computer technology due to these important reasons:
for many Boolean functions, the number of cubes in minimal
ESOPs is less than the number of cubes in minimal SOPs.
Since the XOR gate has excellent testability properties, as
mentioned above, it subsequently leads to efficient methods
for automatic test pattern generation [14]. Also, it is clear
from the previous discussion, that for many types of practical
circuits, even the selective use of XOR gates in logic synthesis
yields better implementations in terms of both area and delay
[15] [16]; although, in the paper, we study the effectiveness of
XOR based designs mainly from a power perspective.

Various classes exist in ESOP expansions involving only
AND and XOR gate types. This is because any arbitrary logic

function can be purely realized using only AND and XOR
logic gates. For example, the RM, GRM and PKRM
expressions form only a subset of the ESOP form. Slight
modifications of the Shannon expansion in GF (2) are made to
obtain Davio-1 (5), Davio-2 (6) (positive Davio expansion)
and Davio-3 (7) (negative Davio expansion) axioms, which
correspond to AND-XOR logic [17] [18].

F = [(x · Fx) ⊕ (x’ · Fx’)] (5)

F = [Fx’ ⊕ {x · (Fx ⊕ Fx’)}] (6)

F = [Fx ⊕ {x’ · (Fx ⊕ Fx’)}] (7)

In (5), (6) and (7), the symbols ‘·’ and ‘⊕’ stand for AND
and XOR operators respectively, while ‘+’ and ‘ ’ would
henceforth correspond to logical OR and XNOR operations.
‘x’ is the decision variable, ‘Fx’ is the positive residue
(positive cofactor) of the function F and ‘Fx’’ is the negative
residue (negative cofactor) of the function F.

Recursive application of the above tree expansions results
in various RM trees [18]. If only the positive Davio expansion
(2) is used repeatedly for variable expansion with some fixed
order of expansion of variables, a compact RM tree is
generated. A GRM tree is created when a choice exists
between positive Davio expansion and negative Davio
expansion (3) for each variable. If equations (1), (2) and (3)
are used along with the choice of equations (2) and (3) in each
sub-tree, the PKRM structure is generated. Importantly, in all
these structures only two kinds of gates (AND and XOR) are
used for circuit realizations, apart from NOTs as necessary.

Since obtaining minimal expressions for RM, GRM and
PKRM forms is by itself a separate extensive procedure and
even then it would contain many XOR operators; owing to the
necessity for a reasonable comparison with that of our
proposed realization, we have resorted to factoring those
forms with useful minimization rules stated in [1]. We also
make it clear that we consider only RM, PKRM and GRM
forms with fixed polarity in this work. Though in PKRM and
GRM expressions, both true and complemented literals can
appear for the same variable, in case of standard cell based IC
design (CBIC), this assumption would not hold good.

The objective of factorization is to represent a Boolean
function in a logically equivalent factored form but with a
minimum number of literals. We have opted for algebraic
factorization as it is simple and requires much less CPU
execution time compared to Boolean factorization. This
operation has enabled us to greatly reduce the literal count as
well as the gate count needed for such realizations, while still
preserving the definition of those structures. This technique is
also justified in the sense that we are primarily concerned with
reduced and irredundant AND-XOR logic formats. Hence, the
corresponding factorized expressions are identified as f-RM,
f-GRM and f-PKRM expansions respectively.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

719

IV. GROUPING METHODOLOGY AND SYNTHESIS PROCEDURE
In [19], we introduced a new terminology, namely the

description set of a Boolean term and the reader is referred to
the same for details. In short, the description set of a canonical
product is the set of all primary input literals that a minterm is
dependent upon, in their respective polarities, for its
evaluation to a logical HIGH state. Similarly, the description
set of a canonical sum is the set of all primary input literals
that a particular maxterm is dependent upon, in their
respective polarities, for its evaluation to a logical LOW state.
We now first discuss how the terms (minterms or maxterms)
are grouped based on their description set and set union
operation [19]; then proceed with the explanation of the
proposed synthesis procedure.

 Let ‘m1’ and ‘m2’ be two minterms, specified by their
respective description sets as, D(m1) = {yn-1, yn-2, …, y0} and
D(m2) = {yn-1, yn-2, …, y0}, where ‘yk’ assumes either of the
logical states of ‘0’ or ‘1’, and k = (n-1), (n-2),….,0. If
[yk ε D(m1)] ≠ [yk ε D(m2)], for all ‘k’, then we have,

D(m1) ∪ D(m2) = { } and | D(m1) ∪ D(m2) | = 0 (8)

Now we arrive at the conclusion that ‘m1’ and ‘m2’ are

suitable candidates for grouping. The above illustration is
suitable for maxterms as well. This grouping mechanism is
suitable for all CBF. Care must be taken to perform only as
many distinct and minimum number of grouping operations,
as deemed necessary, and no terms are to be left un-checked
and also that each grouping operation would be performed on
only two distinct standard sum (product) terms.

Now we proceed with a two-bit comparison at a time,
starting with the most significant input literal and its next
significant variable, until comparison between the least
significant variable and its predecessor. In such a case, if ‘yn-1’

and ‘yn-2’ of D(m1) [likewise D(m2)] have the same Boolean
values, then they could be combined by a logical inclusive
operation as (yn-1 yn-2). On the other hand, if they are
different, they could be combined by a logical exclusive
operation as (yn-1 ⊕ yn-2). It should be remembered in this
context that the above logical operations correspond only to
the two minterms ‘m1’ and ‘m2’ considered. We then logically
AND all such combined variables. We could also have an
alternative solution in terms of logical OR-ing of all such
combined variables. For this, the logical inclusive and logical
exclusive operators have to be swapped and the resulting
expression is to be complemented. In a similar manner, we
could proceed with other sets-of-two minterms, which satisfy
(8). Hence, it becomes clear that two expressions could be
obtained; one corresponding to a logical conjunctive form and
another corresponding to a logical disjunctive form. However,
in general, we prefer the former solution rather than the latter,
as NAND gates tend to be faster than NOR gates, when
realized in static CMOS logic style [20].

For a Boolean function, F, which is not strictly CBF, its
ON-set could be described by, FON = {mi}, where {mi}

represents the set of all distinct minterms constituting the ON-
set of the function F. Then, for every mj ∈ {mi}, there exists
an element, mk ∈ {mi}, where D(mj) ∪ D(mk) = { }, and (8) is
satisfied. In addition, there also exists atleast one more
element, mp ∈ {mi}, where the inequality, 1 < | D(mj) ∪ D(mk)
| ≤ O(n-1) is satisfied. In this case, ‘mp’ could be combined
with any of {mi}, such that | D(mp) ∪ any of D[{mi}] | is a
minimum. This means that one or more variables would be
common between the description sets of ‘mp’ and {mi}. So the
above steps detailed in the previous paragraph may be
followed for the remaining variables and the shared variables
could be AND-ed with the resulting expressions.

Once all the minterms have been checked, we then resort to
algebraic factorization operations at this stage, by applying
lemmas 1 and 2 as stated in the previous section and other
elementary algebraic factorizations on the various logical
disjunctions/conjunctions obtained, which results in a minimal
and irredundant solution (where the minimality criterion is
measured in terms of literal count and gate count). This
synthesis procedure is significant, in the sense that XOR and
XNOR gates with a fan-in of only 2 are used for realization.
In case of other Boolean gates (viz. AND or OR), we can go
for a cascade network, in order to adhere to the technology
cell library specifications. Hence the synthesis mechanism is
clearly library aware as evident from the above discussion.

However, for the problem comprising maxterms, we adopt
a similar but slightly different methodology. The initial set-of-
two maxterms comparison should be extended to
accommodate an extra comparison between the most
significant input variable and the least significant input
variable. This would give rise to an extra term in the resulting
expression. In order to avoid this, the maxterms-defined
problem may be considered as a minterm-defined problem by
applying the concept of output phase optimization. This is
considered to be a wise and pragmatic approach for these
types of problems. Secondly, though the logical inclusive and
exclusive operations used for combining input variables
would be the same; the expression obtained by logical
disjunction would be negated instead of inverting that
obtained by logical conjunction, as in the previous case.

For a logic function, specified in terms of its maxterms,
which is strictly not CBF, a similar grouping mechanism has
to be followed as detailed for that of a minterm specified
problem. The only difference being that the variables which
are common are to be OR-ed with the resulting expressions.

A. Example
Let the ON-set of a 5-variable logic function be described

by,

FON (a,b,c,d,e) = m8 + m11 + m20 + m23 (9)

For this problem, m8 and m23; similarly m11 and m20 satisfy

(8). The gate-level implementations of the final solutions
corresponding to the various forms viz. f-RM, f-GRM,
f-PKRM and proposed forms are shown in figures 1, 2, and 3

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

720

respectively. Their corresponding Boolean relations are given
by (9), (10), (11) and (12).

Ff-RM = (d⊕e’) · [(bc’) ⊕ {a(b⊕c)}] (10)

Ff-GRM = (d⊕e’) · [(b’c) ⊕ {a’(b⊕c)}] (11)

Ff-PKRM = (d⊕e’) · [(b’c) ⊕ {a’(b⊕c)}] (12)

FProposed = (a⊕b) · (b⊕c) · (d e) (13)

Fig. 1 Factored RM form realization

Fig. 2 Factored GRM and PKRM forms implementation

Fig. 3 Synthesized function based on proposed method

A comparison between the various realization schemes in
terms of technology-independent and technology-dependent
parameters is shown in Table I. From the following table, we
make some important inferences. Firstly, transition count [3],
as an integer measure of switching activity at all the gate
output nodes for a uniform input distribution, forecasts that

the proposed form is likely to garner savings in power
consumption over the other forms. The percentage savings
obtained for the proposed form over the other forms is
indicated within brackets in the corresponding columns (in all
the Tables). This has been done for the other parameters as
well. Also, transition count as well as power consumption of
both the f-GRM and f-PKRM forms turns out to be the same.

TABLE I

COMPARISON BETWEEN VARIOUS REALIZATIONS
Realization Transition

count
NG NL Power

(nW)
f-RM
form

3040
(42.11%)

8
(50%)

7
(14.28%)

16.001
(38.64%)

f-GRM
form

3552
(50.45%)

9
(55.56%)

7
(14.28%)

18.573
(47.13%)

f-PKRM
form

3552
(50.45%)

9
(55.56%)

7
(14.28%)

18.573
(47.13%)

Proposed 1760 4 6 9.819
NG – Number of gates; NL – Number of input literals

However, it should be noted that computation of transition
count would be a cumbersome task for non-uniformly
distributed input patterns (i.e. that which may exhibit spatial,
temporal or spatio-temporal correlations). Also, it may not
indicate the actual savings in power consumption that is likely
to be achieved since it is independent of technology
parameters and depends only on statistics of the primary input
signals. This is also evident from the above table.

V. SIMULATION MECHANISM AND RESULTS
For a given Boolean function, minimized expressions and

equivalent gate level realizations were obtained based on the
different synthesis schemes viz., f-RM, f-GRM, f-PKRM and
proposed. The gate level netlists were then realized using
static CMOS logic style, by library matching with the cells
normally available in a standard cell library. The gate level
primitives have been described in terms of a MOS transistor
schematic, using Mentor Graphics tools (DA - Design
Architect) [21]. In this full-custom approach, the length
dimension of all the transistors is dictated by a technology
specification viz., 0.35 micron TSMC CMOS process, with a
gain factor (βp/βn) of 2.5. The SPICE netlist for the transistor
level description corresponding to an industry-standard
BSIM3 device model was obtained at the back-end and
executed using ELDO circuit simulator. The simulation
waveforms have been observed using XELGA waveform
viewer tool. The above simulation procedure has been
followed for all the gate-level netlists, corresponding to the
respective synthesis schemes.

A number of multiple-input, single-output non-regenerative
logic functions (most of them CBF and few not-strict CBF)
have been taken for analysis purpose and they are listed in
Table 6 (made available as an appendix).

Table 2 gives the transition count computed for a uniform
input distribution for the minimized gate-level solutions
obtained according to the different synthesis methods. Tables
3 and 4 summarize the gate count and literal count, for the
case studies considered as per the different realizations. Power

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

721

dissipation values obtained for the various samples
considered, corresponding to different synthesis schemes have
been listed in Table 5. The estimation of average power
component of the circuits is through tagged probabilistic
simulation scheme [22]. The reason for choosing this method
is that the error component in this method is minimal, and to
improve its efficiency, only tagged waveforms at the circuit
inputs have been computed. The total power consumption
value obtained for a representative input pattern (assuming
uniformly distributed and uncorrelated input sequences) was
then summed up in each case to estimate the mean savings in
power dissipation for the proposed method over those
corresponding to other methods, on an overall basis. A
graphical comparison of the proposed scheme with those of
other methods is depicted by figures 4, 5, 6 and 7.

TABLE II

EVALUATION OF TRANSITION COUNT FOR VARIOUS REALIZATIONS

Function ID f-RM form f-GRM
form

f-PKRM

form
Proposed

form

F14 608 608 608 352

F24 480 736 480 352

F34 352 608 608 352

F44 568 824 824 352

F54 480 480 480 352

F64 512 512 512 384

F74 696 696 696 352

F84 440 440 440 344

F94 492 830 830 408

F104 12666 1024 1024 600

F115 3040 3552 3552 1760

F125 1920 1920 1920 1408

F135 2688 2688 2688 1408

F145 3296 3520 4228 2496

F155 2432 2432 2432 1408

F165 2360 3328 3712 1408

F175 2816 2360 3712 1408

F185 2816 2360 3712 1408

F195 1536 2560 2560 1536

F205 3376 3376 3376 2480

F215 2480 2480 2480 1968

F225 4368 4368 4368 2704

F235 1408 2432 1408 1408

F245 2048 2048 2048 1536

F255 2808 2808 2808 3320

F266 22336 22336 22336 8672

F276 9088 9088 9088 7040

F286 11648 13696 13696 7040

F296 11648 13696 13696 7040

F306 13696 15744 15744 7040

Total

(% increase)

125102

(45.38%)

12355

(44.69%)

126066

(45.79%)

68336

TABLE III

COMPARISON IN TERMS OF GATES AVAILABLE IN THE CELL LIBRARY

Function ID f-RM form f-GRM
form

f-PKRM

form
Proposed

form

F14 5 5 5 3

F24 4 6 4 3

F34 3 5 5 3

F44 5 7 7 3

F54 4 4 4 3

F64 4 4 4 3

F74 6 6 6 3

F84 5 6 5 3

F94 8 7 7 5

F104 12 10 10 5

F115 8 9 9 4

F125 4 4 4 3

F135 6 6 6 3

F145 8 8 11 5

F155 5 5 5 3

F165 5 7 9 3

F175 6 5 9 3

F185 6 5 9 3

F195 3 5 5 3

F205 8 8 8 6

F215 6 6 6 6

F225 10 10 10 7

F235 3 5 3 3

F245 4 4 4 3

F255 7 7 7 8

F266 12 14 14 5

F276 5 5 5 4

F286 7 8 8 4

F296 7 8 8 4

F306 8 9 9 4

Total

(% increase)

184

(35.87%)

198

(40.40%)

206

(42.72%)

118

TABLE IV

LITERAL COST COMPARISON FOR DIFFERENT SYNTHESIS SCHEMES

Function ID f-RM
form

f-GRM
form

f-PKRM

form
Proposed

form

F14 4 4 4 4

F24 4 4 4 4

F34 4 4 4 4

F44 5 5 5 4

F54 4 4 4 4

F64 4 4 4 4

F74 5 5 5 4

F84 5 4 5 4

F94 7 8 8 7

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

722

F104 12 10 10 6

F115 7 7 7 6

F125 4 4 4 4

F135 5 5 5 4

F145 8 7 11 6

F155 4 4 4 4

F165 4 6 7 4

F175 6 4 7 4

F185 6 4 7 4

F195 4 4 4 4

F205 9 8 8 8

F215 8 8 8 8

F225 10 10 10 10

F235 4 4 4 4

F245 4 4 4 4

F255 8 8 8 9

F266 12 12 12 8

F276 6 6 6 6

F286 7 7 7 6

F296 7 7 7 6

F306 7 7 7 6

Total

(% increase)

184

(13.04%)

178

(10.11%)

190

(15.79%)

160

TABLE V

POWER DISSIPATION FOR VARIOUS SCHEMES (IN NANOW)

Function ID f-RM
form

f-GRM
form

f-PKRM

form
Proposed

form

F14 13.459 13.460 13.460 9.669

F24 10.049 10.776 10.049 8.142

F34 5.701 6. 444 5.701 5.701

F44 10.399 12.159 9.646 8.145

F54 10.123 10.849 10.123 8.234

F64 11.384 14.947 11.384 11.253

F74 14.793 13.810 13.810 9.668

F84 8.635 7.801 8.635 5.992

F94 7.553 13.294 8.943 10.678

F104 14.621 18.210 18.210 15.171

F115 16.001 18.753 18.753 9.819

F125 10.123 10.123 10.123 8.234

F135 14.793 13.810 13.810 9.668

F145 16.154 17.229 23.390 12.274

F155 13.459 13.461 13.459 9.664

F165 14.497 20.574 23.604 8.145

F175 16.180 14.592 21.797 8.187

F185 16.810 14.592 21.797 8.187

F195 8.025 12.228 12.228 8.025

F205 13.816 14.136 14.136 10.556

F215 13.089 13.089 13.089 13.108

F225 16.565 16.565 16.565 13.054

F235 5.701 6.444 6.444 5.701

F245 11.384 14.496 14.496 9.481

F255 11.717 11.717 11.717 15.719

F266 22.341 25.953 25.953 16.342

F276 20.623 19.745 20.623 17.519

F286 11.729 14.316 14.316 8.254

F296 13.415 14.142 14.142 9.894

F306 17.877 23.805 23.805 12.223

Total

(% increase)

391.016

(21.56%)

425.076

(27.85%)

444.208

(30.95%)

306.707

0% 50% 100%

F1

F3

F5

F7

F9

F11

F13

F15

F17

F19

F21

F23

F25

F27

F29

Fu
nc

tio
n

ID

Relative power dissipation (nW)

f-RM form

f-GRM form

f-PKRM form

Proposed form

Fig. 4 Relative power consumption comparison of different methods

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

723

0%

20%

40%

60%

80%

100%

F1 F3 F5 F7 F9
F11

F13
F15

F17
F19

F21
F23

F25
F27

F29

Function ID

R
el

at
iv

e
tr

an
si

tio
n

co
un

t

P ropos ed form
f-P K R M form
f-GR M form
f-R M form

Fig. 5 Relative transition count pertaining to different methods

0

2

4

6

8

10

12

14

16

F1 F3 F5 F7 F9
F11 F13 F15 F17 F19 F21 F23 F25 F27 F29

Function ID

G
at

e
co

un
t Proposed form

f-PKRM form
f-GRM form
f-RM form

Fig. 6 Number of gates for different realizations

0

2

4

6

8

1 0

1 2

1 4

F1 F3 F5 F7 F9
F11

F13
F15

F17
F19

F21
F23

F25
F27

F29

F u n c tio n ID

Li
te

ra
l c

os
t f-R M fo rm

f-G R M fo rm
f-P K R M fo rm
P ro p o s e d fo rm

Fig. 7 Number of input literals required for the various implementations

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

724

VI. CONCLUSION AND SCOPE FOR FUTURE WORK
The computational complexity associated with logic

minimization has posed challenges since the beginning of the
field in the early 60’s; indeed solutions for some central
questions, which remained elusive, have been obtained only
within the last few years and others remain open [23]. This
work addresses an important issue of practical relevance. A
better technique of logic minimization and implementation,
especially for a unique class of Boolean functions viz., CBF is
discussed in this paper. We witnessed that the proposed
systematic formulation for the logic simplification problem
has also resulted in better solutions for some logic functions
which are not strictly CBF. The significance of our
contribution is substantiated by improvement achieved for a
crucial design metric, in comparison with other realizations.

On the basis of computation of transition count, as an
integer measure of switching activity, the proposed grouping
methodology and synthesis mechanism predicted mean
savings in power consumption over the other factored RM
forms by 45.3%; while the simulation results enabled
optimization in power consumption by 26.8%. We have also
been successful in achieving decrease in gate count by 39.7%
and reduction in the number of input literals required for
implementation by around 12.9%.

For a number of 4-variable functions requiring ‘t’ products
[17], the average number of products for fixed polarity RM
(FPRM) form, Kronecker RM form (KRM), SoP, PKRM form
and ESOP are found to be 5.50, 4.73, 4.13, 3.84 and 3.66
respectively; while for a number of 5-variable functions
requiring the same number of products [17], the average
number of the products with respect to KRM, PKRM and
ESOP is found to be 10.066, 6.976 and 6.162. Hence it
becomes clear that among the AND-XOR type logical
expressions, ESOP is the most general class, and requires the
fewest products to represent given functions. Hence it would
be worth pegging ESOPs as candidates for comparison with
that of our proposed forms in terms of the critical design
metric of power consumption. Also, we could consider
analyzing multiple input and multiple output logic
architectures to study the beneficial effects of sharing between
the terms. A strategy to estimate the advantages of this
proposed synthesis technique for other CMOS based
realization styles is also in the pipeline. Another important
step would be to develop a framework for the proposed
synthesis scheme on the lines of a decision diagram structure.

ACKNOWLEDGMENT
The authors wish to thank Mrs. Sirisha Yellapragada for her

help with the simulations and artwork.

REFERENCES
[1] U. Narayanan, and C.L. Liu, “Low power logic synthesis for XOR based

circuits”, Proc. of IEEE/ACM International Conf. on Computer Aided
Design, pp. 570-574, 1997.

[2] Sasan Iman, and Massoud Pedram, Logic Synthesis for Low Power VLSI
designs, Springer-Verlag Publishing, Berlin Heidelberg, 1998.

[3] P. Balasubramanian, R. Chinnadurai, and M.R. Lakshmi Narayana,
“Minimization of Dynamic Power Consumption in Digital CMOS
Circuits by Logic Level Optimization”, WSEAS Trans. on Circuits and
Systems, vol. 4(4), pp. 257-266, April 2005.

[4] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev, Logic synthesis of Asynchronous controllers and Interfaces,
Springer Series in Advanced Microelectronics, Springer-Verlag, Berlin
Heidelberg, 2002.

[5] K. Nguyen, M. Perkowski, and N. Goldstein, “Palmini-Fats Boolean
minimizer for Personal Computers”, Proc. of ACM/IEEE Design
Automation Conference, pp. 615-621, 1987.

[6] S. Kahramanli, and S. Tosun, “A novel essential prime implicant
identification method for exact direct cover logic minimization”, Proc.
of 2006 International Conference on Computer Design, pp. 10-16, 2006.

[7] Giovanni De Micheli, Synthesis and Optimization of Digital Circuits,
Mc-Graw Hill, New York, 1994.

[8] I.I. Zhegalkin, “O tekhnike vychisleniy predlozheniy v simvolicheskoy
logike” (About a Technique of Computation of Expressions in Symbolic
Logic), Mat. Sb., vol. 34, pp. 9-28, 1927.

[9] I.I. Zhegalkin, “Arifmetizatsiya simvolicheskoy logiki” (Arythmetization
of Symbolic Logic), Mat. Sb., vol. 35, pp. 311-377, 1928.

[10] S.M. Reed, “A class of multiple-error-correcting codes and their
decoding scheme”, IRE Trans. on Information Theory, vol. PGIT-4, pp.
38-49, 1954.

[11] D.E. Muller, “Application of Boolean algebra to switching circuit design
and to error detection”, IRE Trans. On Electron. And Comp., vol. EC-3,
pp. 6-12, 1954.

[12] D.H. Green, “Families of Reed-Muller Canonical forms”, International
Journal of Electronics, vol. 70(2), pp. 259-280, February 1991.

[13] T. Sasao, “An exact minimization of AND-EXOR expressions using
BDDs”, Proc. of IFIP WG 10.5 Workshop on Applications of the Reed-
Muller Expansion in Circuit Design, pp. 91-98, 1993.

[14] U. Kalay, M. Perkowski, and D. Hall, “A minimal universal test set for
self test of EXOR-Sum-of-Products circuits”, IEEE Trans. on
Computers, vol. 49(3), pp. 267-276, March 1999.

[15] C. Yang, M. Ciesielski, and V. Singhal, “BDS: A BDD-based logic
optimization system”, Proc. of 37th ACM/IEEE Design Automation
Conference, pp. 92-97, 2000.

[16] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for bi-
decomposition of logic functions”, Proc. of 38th ACM/IEEE Design
Automation Conference, pp. 103-108, 2001.

[17] T. Sasao, Logic Synthesis and Optimization, Kluwer Academic
Publishers, Massachusetts (USA), 1993.

[18] S. Chattopadhyay, S. Roy, and P.P. Chaudhuri, “KGPMIN: An Efficient
Multilevel Multioutput AND-OR-XOR Minimizer”, IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 16(3), pp. 257-265, March
1997.

[19] P. Balasubramanian, and C. Ardil, “Compact Binary Tree Representation
of Logic Function with Enhanced Throughput”, International Journal of
Computer, Information, and Systems Science, and Engineering,
vol. 1(2), pp. 90-96, 2007.

[20] B. Zeidman, “An Introduction to Application Specific Integrated
Circuits”, Tutorial: Proc. of Embedded Systems Conference, USA, 1999.

[21] Available: http://www.mentor.com
[22] C.-S. Ding, C.-Y. Tsui, and M. Pedram, “Gate-level Power Estimation

using Tagged Probabilistic Simulation”, IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 17(11), pp. 1099-1107, November
1998.

[23] Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni
Vincentelli, “Complexity of Two-Level Logic Minimization”, IEEE
Trans. On CAD of Integrated Circuits and Systems, vol. 25(7), pp. 1230-
1246, July 2006.

[24] A.P. Chandrakasan, and R.W. Broderson, “Minimizing power
consumption in digital CMOS circuits”, Proceedings of the IEEE,
vol. 83(4), pp. 498-523, April 1995.

[25] S. Stergiou, and P. Papakonstantinou, “Exact minimization of ESOP
expressions with less than eight product terms”, Journal of Circuits,
Systems and Computers, vol. 13(1), pp. 1-15, February 2004.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:5, 2008

725

APPENDIX

TABLE VI

FUNCTION IDENTITY AND SPECIFICATION
Function ID ON-set logic description

F14 {0,3,12,15}

F24 {4,7,8,11}

F34 {5,6,9,10}

F44 {6,7,8,9}

F54 {1,2,13,14}

F64 {0,3,5,6,9,10,12,15}

F74 {0,7,8,15}

F84 {5,6,7,9,10,11}

F94 {5,6,7,9,10}

F104 {0,3,7,8,12,15}

F115 {8,11,20,23}

F125 {1,2,5,6,25,26,29,30}

F135 {0,1,2,3,28,29,30,31}

F145 {1,2,9,10,13,14,17,18,20,21,29,30}

F155 {0,3,12,15,16,19,28,31}

F165 {0,1,2,3,5,6,9,10,12,13,14,15,16,17,18,19,21,22,25,26,28,29,30,31}

F175 {0,1,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,27,28,31}

F185 {0,3,4,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,27,28,31}

F195 {2,3,4,5,8,9,14,15,16,17,22,23,26,27,28,29}

F205 {4,5,10,11,20,21,26,27}

F215 {1,2,5,6,19,23,25,26,29,30}

F225 {5,10,21,26,28,29}

F235 {9,11,12,14,17,19,20,22}

F245 {0,1,6,7,10,11,12,13,18,19,20,21,24,25,30,31}

F255 {8,9,10,11,21,22}

F266 {7,8,55,56}

F276 {17,18,29,30,52,55,56,59}

F286 {17,18,21,22,41,42,45,46}

F296 {13,14,17,18,45,46,49,50}

F306 {3,4,11,12,51,52,59,60}

FXn; F – Boolean Function, X – Identity, n – Number of primary inputs

