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Abstract—Planning the transition period for the adoption of
dternative fuel-technology powertrains is a challenging task that
requires sophisticated analysis tools. In this study, a system dynamic
approach was applied to analyze the bi-directiona interaction
between the devel opment of the refueling station network and vehicle
sdes. Besides, the developed model was used to estimate the
transition cost to reach a predefined target (share of aternative fuel
vehicles) in different scenarios. Several scenarios have been analyzed
to investigate the effectiveness and cost of incentives on the initia
price of vehicles, and on the evolution of fuel and refueling stations.
Obtained results show that a combined set of incentives will be more
effective than just asingle specific type of incentives.

Keywords—adoption of Alternative Fuel Vehicles,System
Dynamic Analysis, Plug-in Hybrid Vehicles

|. INTRODUCTION

HE transitioning process of fuels for persona
transportation vehicles is a daunting challenge in any
region of the world. Fleets of light duty vehicles have been
firmly rooted in the petroleum-based, interna-combustion
technology, including not only the vehicle systems and
refueling infrastructure but aso the vehicle maintenance and
parts and fuel production and distribution. Because of this, a
movement away from a petroleum-based system to one of
alternative fuel-technology drivetrains requires many changes
or decisions to occur in parallel. For instance, not only would
vehicle manufacturers need to offer Alternative Fuel Vehicles
(AFVs) for sale, but the fuel would need to be produced and
distributed to a network of refueling stations sufficiently dense
to supply the vehicles. In addition, the successful development
of such dternatives may require changes to the current
legislative and taxation frameworks. The greatest challenge of
this transition process is to get al the criticd eements
spatially and temporally aligned [1]. Therefore the
complexities of the transport sector are probably a major cause
for the current difficulties in changing the situation. The
transport sector is a very dynamic system and like other
complex systems exhibits path dependencies and lock-in
effects. Furthermore policies and plans involve costs and
benefits that can occur over long periods of time. Risk,
uncertainty, path dependency, lock-in effects and
irreversibility are also associated with technologica change.
In recent years, significant attention has been given to the
adoption of alternative fuel technology vehicles.
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Unfortunately, previous efforts to encourage widespread
adoption of aternative fuel vehicles have been largely
unsuccessful. Examples include the failed attempt to
significantly increase the percentage of (local) zero emission
vehiclesin California as well as the recognition that petroleum
displacement has falen far short of the Energy Policy Act [2],
goa of 10% by the year 2000 and also of 30% displacement
by the year 2010 [3].

A strong tendency in such failed attempts has been to justify
failure by individual causes, such as higher vehicle purchase
cost or operating costs, poor vehicle performance, low
refueling (or recharging) station coverage, or inadequate
government incentives. However, such simplistic justifications
fail to consider the entire system and do not fully consider the
complexity of overcoming a highly entrenched technology
such as the gasoline ICE (interna combustion engine).
Additionally, solutions that encourage the adoption of
alternative-fueled-vehicle often only consider the end states,
such as target number of vehicles or the fuel production costs,
at high volume or large-scale “optimized” solutions to fuel
distribution, with little consideration given to the transitional
dynamics that would lead to realizing these end states.
Recognizing the importance of transitiond issues, and in order
to obtain a better understanding of the challenges for
displacing petroleum-derived fuels, a systems approach is
required.

I11.BACKGROUND

To maximize the likelihood of a successful transition for an
alternative fuel technology vehicle, it is vital to have a better
understanding of the complex forces that have contributed to
previously unsuccessful transition attempts, as these forces
will inevitably still be active in any attempt to displace
gasoline and diesel based vehicles.

The barriers more often referred in the literature are [1]:

e high costs of purchasing AFVs (compared with
conventional vehicles);

» |ack of economic incentives;

» poor perceived or actua performance of AFVs (safety,
power, attributes, range, reliability, etc.);

* lack of customer awareness and market acceptance;

 availability of alternative fud refueling infrastructures and
fuels;

* high costs of constructing refueling infrastructures,

e lack of AFV service and maintenance training and
technicians;

Some of the methodologies that address the important
elements of a dynamic transition of aternative fuel vehicles
will be briefly reviewed and discussed next.

HyTRANS (short for Hydrogen Transition) is a mode
being developed by Oak Ridge National Laboratory (ORNL)
that addresses various el ements of the hydrogen transition [4].
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It evolved from the TAFV (Transitional Alternativieuels
and Vehicles) model [5]. The TAFV model simulathe use
and cost of alternative fuels and vehicles overtitine period
of 1996 to 2010. It was designed to examine thastti@nal
period for the use of alternative fuels and velsictmnsidering
possible barriers related to infrastructural needsd
production scale. It accounts for dynamic linkagpetween
investments and vehicle and fuel production capatiacks
vehicle stock evolution, and represents the effeofs
increasing scale and expanding retail fuel avditgbon the
effective costs to consumers. The choices and fmefuels
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Another interesting approach is system dynamics, a
technique that has been the focus of some reagdlieston the
adoption of AFVs.

A dynamic, behavioral, spatial framework using 8yst
Dynamics was developed by Struben at MIT [10]. Ttoisl
has been developed to explore the co-evolutiongnamics
between infrastructure supply and vehicle demamd.his
paper, he explores in-depth the dynamics resuftimg local
demand-supply interactions with strategically laugtfuel-
station entrants. The dynamics of vehicle and fuel
infrastructures was examined under heterogeneow-so

and vehicles are endogenous. As a dynamic tranaltio economic/demographic conditions. The research fevbe

model, it can help to assess what may be necessachieve
mature, large scale, alternative fuel and vehickrkets, and
how much this transition may cost. Various poliages were
considered including fleet vehicle purchase margjateel
subsidies, and tax incentives for low greenhouseegaitting
fuels [6]. The use of these models showed thatsitianal
impediments are very important to the transponasector
and may overwhelm scenarios based on
attainable production costs and market penetratibimsited
retail fuel availability and vehicle production &&&conomies
are critical factors. The Complex Adaptive Syste@AE)
model analyzes the evolution of a hydrogen infredtire in
its initial stages of implementation, and was depel by
RCF Consulting in collaboration with the ArgonnetiNaal
Laboratory (ANL) and various industry and acadepacners
[7]. This model uses agent-based modeling techsigioe
improve understanding of how the transition to arbgen
infrastructure might occur. This dynamic model addes
transitional issues, and intends to link the hyeérog
infrastructure with vehicle demand [8]. In anotlstudy, a
prototype of a spatially explicit and socially erdded agent
based model was introduced to study the adoptidheoplug-
in hybrid vehicle (PHEV) technology under a variety
scenarios [9]. Heterogeneous agents decide whetheot to
buy a PHEV by weighing environmental benefits aindricial
considerations (based on their personal drivingitbalheir
projections of future gas prices, and how accuatbey
estimate fuel costs), subject to various sociduérfces such
as social diffusion of an innovation. Proof-of-cept results
are presented to illustrate the types of questibascould be
addressed by such a model, and how they may helppport
decisions of policy-makers and/or vehicle manufesrt For
example, their results indicate that simple welebdasols for
helping consumers to more accurately estimateiveldtiel
costs could dramatically increase PHEV adoption.

The results of the study illustrated the types oésiions
that could be addressed by an agent based modelssitsy
how much consumers are willing to pay for a PHEN,
exchange for forecasted savings in fuel costs andiceived
environmental benefits. Such simulations could Iseduto
help policy-makers and/or vehicle manufacturers
understanding what types of policies or featureg have the
most effect on the adoption of the PHEV technology.

formation of urban adoption clusters as an impadrtan
mechanism for early market formation. However, whil
locally speeding diffusion, these micro-mechanisicen
hinder the emergence of a large, self-sustainingketaOther
feedbacks that significantly influence the systepmanics,
such as an endogenous topping-off behavior, areusted.
This model was applied to develop targeted entratregegies

theoreticafigr alternative fuels in transportation. Besiddse toles of

other powerful positive feedbacks arising from ecand
scope economies, R&D, learning by doing, driveregzignce,
and word of mouth were discussed.

After this research, several studies have beentiadpthis
general methodology. For example, Ramjerdi anch&el-
Freij [11], tried to analyze the Swedish marketngsithe
system dynamics approach. They suggest that thergment
should set policies that are directly related tieotives, rather
than directly selecting the technology. The supfmrbiofuels
through different subsidies and regulative meastees also
been scrutinized and is not favored by many
environmentalists.

I1l. SysTEM DYNAMICS MODEL

In this study, the methodology developed by Str{tb@hn
was adopted with some modifications. These modifioa
enable the model to calculate the average fleétefifieiency.
Besides, in order to estimate the total incentigquired to
reach a target, an optimization module was added.

Considering the dynamic characteristics of the @i@h of
light duty vehicle fleet, some important feedbaok®d to be
identified. Basically, there are two types of feacks:
reinforcing and balancing. In a reinforcing (or pies)
feedback loop, the increase in a particular paramiet the
loop tends to lead to a further increase in thatupater
through something akin to a “snowball” effect. Remcing
loops tend to accelerate change and result in exyh
growth in the absence of other counteracting forBatancing
(or negative) feedback loops, on the other handd te®
I'counteract change. Balancing loops arise when dtialin
increase in one parameter in the loop tends to leac
subsequent decrease in that same parameter, allbelag
'Bqual. In the absence of other dynamics, a balgrioimp will
tend to result in an exponential decline of theapzeters in the
loop. The interaction of multiple reinforcing analéncing
loops govern the behavior of any complex system.
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A.Main positive feedbacks

Fig.1 illustrates the two key reinforcing (posififeedbacks
of the model.

Word of Mouth

Scrappage rate of
vehicle

Fuel Consumption

Station pmﬁtabd.\tv:/
Fig. 1 Main positive feedbacks

Reinforcing feedback 1: “Fuel Station Evolution”

The first reinforcing feedback is the heart of thenamic
interdependence between refueling station coveragd
vehicle demand. Considering an increase in the eanab
alternative fuel vehicles (such as the ethanol &d%cle), the
relative fuel consumption and the profitability folel stations
will increase, this leading to a higher investmemt fuel
stations. An increase in the total number of Fugl8tations
will improve the coverage of the fuel stations. Tineerall
impact is the increase in the vehicle utility, éolled by
Vehicle Sales and Total Vehicles.

This reinforcing dynamics has the potential to léadan
exponentially increasing number of alternative fuehicles
and fueling stations. The balance will be reactedugh the
parameter Station Profitability: the Ilower the Btat
Profitability, the lower is the likelihood that a@h station
owners will enter the market, this resulting in@ additional
Fueling Stations.

Reinforcing feedback 2: “Familiarity”

The second key reinforcing feedback illustratedFig.1
addresses social
technology (alternative fuel-technology vehicle). haw
introducing a new technology, there is a limitednilzarity
with it, and this can significantly affect the usechoice. But
factors such as marketing and communication wighawners
of those new vehicles (Word of Mouth) could be thain
instruments of increasing the familiarity of peopléth the

behavior of customers facing a new

Balancing feedback 1: “Fleet Saturation”

There exists a saturated level of vehicle ownersht is
basically the maximum number of vehicles per pajprtaor
household. This level is mainly conditioned by emwic
factors such as GDP and the household income.

Saturated Vehicle
OWIIEIS}I[}]

DlSCaIdS

Scrappage rate of
Vehicle

Fleel
Saturation

k Ovmers}up
opulatlonj

Fig. 2 Balancing feedback “Fleet Saturation”

This concept will potentially affect the annual esalof
vehicles, in a way that there would be lower salben there
is a lower gap between the real vehicle ownershig e
saturated level of vehicle ownership. This “Gap’nche
estimated as follows:

Gap=Populationx(Saturated
Ownership)

Vehicle Ownership-

)
Balancing feedback 2: “Station Saturation”
Another balancing feedback arises from the fact tha
profitability of investment on fuel/charging stai® will
decrease as the number of stations in the markeéedses

(fig.3).
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Fig. 3 Balancing feedback "Station Saturation”

new vehicles. This positive impact will result in ecrease of \While an increase in the number of Fueling Statibekps to

the perceived utility of alternative fuel-technojogehicles,
followed by an increase in vehicle sales. The mbF&/s in
the market, the more customers will get familiathwthem.

B.Main negative feedbacks

In addition to the reinforcing feedbacks discussedhe
previous section, there are two main balancing aekis in
the model.

increase the utility of the alternative fuel vebicit also has a
counter-balancing effect that is seen through ther@tion of
Stations in this loop. The saturation of fuel stas will
happen when there are too many stations which imdéed
lower the profitability of investments on fuel/charg
stations. This will lead to a reduction of the nianbf Fueling
Stations, thus resulting in a balancing feedback.

After identifying the key feedback loops that dritiee
whole system, it is now important to present thg keodel
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inputs. Although a detailed listing and formulatiof the
variables included in the system dynamics modddeigond
the scope of this article, some of the more sigaift model
inputs are listed in fig.4.

Behavioral Factors

Fuel Station Sensitivity
Initial cost Sensitivity
Fuel cost Sensitivity
Range Sensitivity
Performance Sensitivity
Annual Average Trip

Techno-Economic
characteristics of vehicles

Refueling Stations

Vehicle Initial Price
Fuel Price
Efficiency

Range
Performance
Lifetime

Historical Data

(for Calibration)

Capital Cost
0&M Cost Gasoline Fleet
Reference Profitability
Station Life Diesel Fleet
Time to Select Location
Time to Construct Hybrid Fleet

Fig. 4 Major model inputs

Being consistent with the cross-disciplinary naturé
System  Dynamics, this model includes
technological, and behavioral inputs for both thppdy side
(i.e., refueling stations) and the demand side, (uehicle and
fuel purchases).

As the purpose of this study is to analyze a seftefnative
fuel-technology options, it is crucial to collectd for current
and projected values for the following technologies

» Hybrid Vehicle (HEV);

» Ethanol based engine (E85);

* Plug-in Hybrid Vehicle (PHEV).

As this research investigates the impact of statimverage
on the annual sales of alternative fuel vehiclésséems
necessary to consider the geographical distributiotme fuel
stations. This will also reduce the error of assigm similar
station coverage in the whole are of the case sitidys
avoiding the “flaw of averages”). For our case gtudie
decided to include 5 main sub-regions. We have atsomed
that the fuel station coverage in each region imilpact the
annual sale of AFV in that region alone and ndahmothers.

Regarding the users’ preferences on different telciyies,
a “logit” model has been adopted in order to estimide
nominal utility of each powertrain as follows:

Ui,r = Zn Bn X Ujrn (2

Where Hs the familiarity of the customer with each
technology i.r is an index for the region and i resgents
different powertrain options.

The following step was to use historical data tiibcate the

model and identify the values for the choice model
coefficients.
C. Calibration

Calibration of a model can be partially done by paning
the model behavior with time series data colleatethe "real
world". When a model is structurally complete aidigates
properly, calibration of the model can be doneoum case,
involves finding the values of the mbde
parameters that make the model generate behawieescthat
best fit the real data.

In order to calibrate the model, real data is dasslerfFor
this purpose we have chosen Portugal as the cadg, stnd
the historical data for the evolution of gasolimesel and
hybrid vehicles for the Portuguese fleet has bessd 12].
Data regarding the fuel price was obtained frontisties
provided by DGEG organization [13].

calibration

economic, In Vensim [14], an optimization module is availalteat

can be used to calibrate and estimate the paranéteorder
to use it, one needs to define the “payoff’ concé&pe payoff
is the measure, reported at the end of the sinoulati
numerically stating how good the simulation was. the
calibration phase, the payoff is the accumulatetemince
between model estimate and real data.

Using the optimization module in the Vensim mode&
tried to calibrate the model with the real data &mddentify
the values for the coefficient of the choice model.

TABLE |
CALIBRATED FACTORSBASED ON HISTORICAL DATA FORPORTUGAL
Variable Calibrated Value

Initial Cost coefficient -4.41

Fuel Cost coefficient -1.05

Range coefficient 1.24
Performance coefficient 0.44

Refugl_statlon 0.40

coefficient

whergf,, is the coefficient representing the sensitivity of Considering the calibrated values for the sensjtivf
the customer for n choice factors,n is the characteristic of customers to the choice factors, it seems thatritiel Cost,

each alternative fuel-technology option i, in regip and for

the Fuel Cost as well as the Range are the mairerdri

variant choice factor n. ild represents the nominal utility of Interestingly, it is obviously notable that the femance and

each technology. Considering that one of the detigctors
is the availability of fuel stations in each regiohe nominal
utility will depend on the region r as well as ohet
characteristics of each technology i.

It was assumed that the customers will make thieiice
according to the perceived utility of associatedht®logy,
this being modeled as follows:
FixUj,

Share of Purchases;, = ———
f BT R XUy

®3)

the Density of Fuel Stations are not very importt@autors -
although this observation might be somehow miskegdi
considering that the calibration was made esséntiaing the
period of introduction of diesel and hybrids, anktege
technologies do not need new refueling stationd that is the
case of PHEVs or Hydrogen fuel cells.

In figures 5 to 7, the result of the calibrationdathe
differences between the real data and the simulddésl using
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the system dynamics model are shown. It is cleat the
simulated data from model shows a considerablenielsmce
to real data.

3500000 -+
3000000 - —_
2500000 - /
2000000 - /
1500000 + / Gasoline Fleet - Real Data
1000000 - Gasoline Fleet - Model
500000 -
0 T T T T T ]
1985 1990 1995 2000 2005 2010 2015
Fig. 5 Gasoline fleet evolution- model vs real data
1600000 -+
1400000 - Diesel Fleet - Real Data
1200000 - _ /
1000000 - Diesel Fleet - Model /
800000 - /
600000 - /
400000 -+ )
200000 -
0 . l./ ; . ; .
1980 1985 1990 1995 2000 2005 2010 2015

Fig. 6 Diesel fleet evolution- model vs real data

7000 -
6000 1 __HEVFleet - Real
Data

5000 -
4000 -+
3000 -+
2000
1000 -

0 1 T T T T T ]

2003 2004 2005 2006 2007 2008 2009 2010

Fig. 7 Hybrid fleet evolution- model vs real data

D.Scenario Analysis

After calibrating the model, we can project the lation
until 2030 following the scenario inputs. The maitenario
inputs are presented in tables Il to IV. All coatsl prices are
estimated at present value ([15]-[20]).

TABLE Il
INITIAL VEHICLE PRICES
Vehicle's initial Price current 2030
Hybrid Vehicle (€) 28000 24000
Ethanol Vehicle (€) 25000 22000
Plug-in Hybrid Vehicle (€) 31500 26000

TABLE 1l
FUEL PRICES
Fuel Price current 2030
Gasoline (€]liter) 1.46 1.6
Diesel (€/liter) 1.26 1.3
Ethanol (€/liter) 1.2 1.2
Electricity (€/KWh) 0.178 0.178
TABLE IV
REFUELING STATIONS - CAPITAL COSTAND NON-FUEL O&M CosT
Fixed Capital Non-fuel O&M
Cost (€) Cost (€)
Ethanol Station 50000 5000
Battere Charging Station| 6000 500

Using the assumptions regarding the initial pricé o
vehicles, the fuel price and the fuel station apbsts as an
input to the system dynamics model, it is possike
investigate the scenario in which there is no itigerplans or
external interference. This scenario will be calldzhse
scenario”. In fig.8, the light duty vehicle fleedbraposition in
the base scenario is shown. In 2000, almost 20%hefleet
used diesel, and currently this percentage is 8086. In the
base scenario, the results suggest that the ndwdkgies
(including the hybrids, ethanol based and Plug-ybria
vehicles) will only be able to reach 3% of the flbg 2030.

7
2
§ 6
;- -~
4 -
3
: l
1 4
o M | |
1986 2000 2010 2030
M Eth Fleet M PHEV Fleet M Hybrid Fleet
DI Fleet M ICE Fleet

Fig. 8 Evolution of the Light-Duty Vehicle feet base scenario:
historical until 2010 and model projections for 203

After analyzing the base scenario with no incenan,
the next step is to analyze the transition costHeradoption
of alternative fuel vehicles. The goal is to tryitentify a
package of incentives that allows reaching a praddftarget,
or getting as close as possible to it. For thaippse it is
essential to clarify the definition of transitionst.

E.Transition costs

The transition cost is defined as the sum of ak th
discounted incentives required for the transitioriake place.
These incentives can be either for the initial coftthe
vehicle, the fuel cost or the refueling stationkeiefore we
have:

Transition Cost =

Z(lncentives onVehicle's initial Price),
t

+ Z(Incentives for Fuel Price),
f
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+ Z (Incentives on Refueling Stations)y
f

3)
where t and f are the technologies and alternatiwads,
respectively.

IV. CASE STUDY

As it was mentioned before, in this study we detide
investigate the transition cost for a predefinerhea This
target is defined in terms of the shares of eacécifip
alternative fuel vehicle in the total fleet intedder 2030.

TABLE V
TARGET FOR SHARE OF TECHNOLOGY IN THE TOTAL FLEET A2030,
CONSIDERED FOR DETERMINING THE NECESSARY INCENTIVES

. : Share in LDV Fleet
Fuel/technology Drivetrain at 2030
Hybrid Vehicle (HEV) 20%
Ethanol based engine (E85 10%
Plug-in Hybrid Vehicle 0
(PHEV) 10%

An optimization module has been added to the mastel,
that the lowest transition cost can be estimatée. dbjective
function to be minimized, is defined as follows:

Objective Function =
Total Transition Cost + M x Gap to Target

Here M is the trade-off factor that can be charggzbrding
to the decision maker's preferences. In fact, ahdéigM
(bigger than a billion) will result in an optimabiat with a
lower gap towards the target, but a higher tramsitiost. On
the other hand, if M has lower value (lower thath@usand),
the state of the optimal point will be more diffece with the
target but with low transition cost.

The constraints of the optimization function aree th

following:
a) Incentive factor for Initial Price of Vehicte 95%
b) Incentive factor for fuek 95%
¢) Incentive for Refuelinge Maximum Incentives
d)Duration of Incentive for Initial Price of Vehiclg 15
(years)
e) Duration of Incentive for fuels 15 (years)
f) Duration of Incentive for Refueling Statiogsl5 (years)
g) Marketing< Max AnnuaMarketingMarketing = 0.1

The first three expressions (a, b and c) represkat
maximum limit of incentives for the initial pricef eehicle,
the fuel and the refueling stations respectivelye Tirst two
values are the share of initial price or fuel prick each
alternative fuel vehicle that can be received leydhstomer as
incentive. In practical terms, a value of 0.25 he tfirst
condition means that 1/4 of the initial price ofehicle will be
compensated by the incentive; while this valuetfer second
condition means that each liter of a fuel will &2 cheaper
than the real price.

(4) 4

In fact, f indicates different fuel options. Thexhdhree
constraints (d, e and f) represent the maximumtiduraf the
incentive policy for the initial price of the velec fuel and
refueling stations respectively. The last condit{gh defines
the maximum level of annual marketing effort thall wause
the familiarity of the society with the new techogy to grow
(fig.1).

We have decided to analyze the several scenarios of
incentives, organized in the following way:

Scenario A: Incentives on the initial price of w&bs
(constraints a, d and @)

Scenario B: Incentives on fuels (constraints me: @)

Scenario C: Incentives on refueling stations (a@msts c, f
and g)

Scenario D: Incentives on fuel and refueling staio
(constraints b, c, e, fand g)

Scenario E: Incentives on the initial price of \aés, fuel
and refueling stations (all the constraints)

The results of the optimization for each scenar@shown
in fig.9, providing a snapshot of the possible fflee
compositions, by the year 2030 in Portugal.

Millions
[e)}

Scenario Scenario Scenario Scenario Scenario
A B C D E

DI Fleet m Hybrid Fleet ®PHEV Fleet m Eth Fleet

Base

M ICE Fleet

Fig. 9 LDV fleet composition at 2030 for each sgema

Fig.9 shows that scenarios A and E were able tohrélae
targets for the share of AFVs in the market (defime table
V), while there is a significant gap with the shafehybrid
vehicles in the other scenarios (B, C and D). Thainm
message of these results is that a high penetrafidrybrid
vehicles requires significant incentives for théiah price of
the vehicles. Total transition costs related foenscios are
presented in table VI.

TABLE VI
TOTAL TRANSITION COSTSFOR THE DIFFERENTSCENARIOS(IN €)
in€ A B C D E
Vehicle 4.94 5.17
Incentive  Billion Billion
Fuel 690 695 2.94
Incentive Million Million  Million
Station 40.8 2.85
Incentives Million 3.6 Million Million
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The first insight from table VI, is that there ahaige, [y
significant differences in the amount of optimizedentives
identified for each scenario. The main reason iat,th [g}
considering the number of vehicles and the amouint B
incentives on the vehicles, the maximum for totehicle
incentive is much higher than incentives for fuelstations. 4!
Therefore, focusing just on the comparison of itieernvalues
might be misleading and some other impacts suchhas [5]
effectiveness of these incentive plans need to Jaduated.
One method is to plot the trade-offs comparing ghe with
the target and the amount of incentives for eadnato

(Fig.10). 7]
40% [8]
¥ Base
35% [9]
30%
gza% b [10]
"'; 20% B
s +
& 15 o [11]
10%
5%
o A [12]
o 1 2 3 4 5 3
Total Incentives Billions [13]

Fig. 10 Trade-offs for scenarios (14

[15

From fig.10, it is obvious that Scenario A with 4 Billion
euros is the most expensive one, while Scenariwith, 40.8
million euros, seems to be relatively inexpensive.

An important observation is that starting from basént, it
is possible to lower the gap by 50% with only 69@libh
euros (scenario B), but in order to reach the tarfm
example in scenario A or E, the required incentivié# be
extremely higher (around 5.2 Billion Euros). [18]

Besides, it is also obvious that the combined itigcerplan
(Scenario E) was able to reach the target at theraost |19
(4.8% lower than scenario A).

[16

[17]

[20]
V. CONCLUSION

Planning the transition period for the adoptioratbérnative
fuel-technology powertrains is a challenging ta$k. this
study, a system dynamics approach was appliedalyznthe
interaction between the development of refuelirdiehs and
vehicle sales. This model was calibrated for Patugith
historical sales of light duty vehicles between3.8&d 2009.
The calibrated model was then used to estimateramsition
costs to reach a predefined target of AFV peneinatat
different scenarios of incentives. Several scesahiave been
analyzed to identify the effectiveness of incergiven the
initial price of vehicles, on the fuel price or tme refueling
stations. The results show that reaching the tasgatmost 7
times more expensive than reaching half of it. hy aase, a
combined set of incentives will be the most efitigolicy
measure rather than using just one type of incentiv
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