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Abstract—Proposal for a secure stream cipher based on Linear 

Feedback Shift Registers (LFSR) is presented here. In this method, 

shift register structure used for polynomial modular division is 

combined with LFSR keystream generator to yield a new keystream 

generator with much higher periodicity. Security is brought into this 

structure by using the Boolean function to combine state bits of the 

LFSR keystream generator and taking the output through the 

Boolean function. This introduces non-linearity and security into the 

structure in a way similar to the Non-linear filter generator. The 

security and throughput of the suggested stream cipher is found to be 

much greater than the known LFSR based structures for the same key 

length.

Keywords—Linear Feedback Shift Register, Stream Cipher, 

Filter generator, Keystream generator, Modular division circuit

I. INTRODUCTION

TREAM ciphers are preferred over block ciphers for 

encryption in many communication applications owing to 

their suitability for real time operation. Time critical 

applications such as multimedia communications provide such 

an application area wherein stream ciphers will be more 

advantageous compared to block ciphers.  Among various 

possible stream ciphers, LFSR based structures have gained 

more popularity thanks to their simple structures and low 

hardware implementation costs. Hand-held communication 

devices pose a potential application, where hardware ciphers 

are highly needful.

The main disadvantage of LFSR based structure is its 

vulnerability to attack due to inherent linearity in the structure. 

LFSR based stream ciphers mainly employ two different 

methods to spoil this linearity. In the first method, non-

linearity is introduced by using a suitable cryptographic 

Boolean function. Combination generators and filter 

generators are the structures built using Boolean function. In 

the second method, the LFSR is irregularly clocked to effect 

non-linearity. The fundamental structures based on this 

method are step1-step2 generators, alternating step generators, 

shrinking and self-shrinking generators. Fast correlation 

attack[1] is one of the most popular attack methods for LFSR 

based stream ciphers using Boolean  

function. Shift register based circuit for division modulo an 

irreducible polynomial over GF(2) is a suggested method for 
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generating hash. Message authentication using shift register 

based hash is available in the literature [7]. This structure is 

preferred in many communication applications for message 

authentication due to the easiness in their hardware 

implementation. In the proposed stream cipher, the circuit for 

modulo division is combined with LFSR based keystream 

generator to develop a stream cipher with much longer 

periodicity. An LFSR of length L produces a keystream of 

maximum period 2
L
 – 1, when the feedback polynomial is 

primitive. All stream ciphers based on this structure are also 

limited to this periodicity. As per the concept of one-time pad, 

ideal stream ciphers have infinite periodicity and practically 

all of them need to have very high period. Only possible 

method to increase the periodicity of generated keystream in 

conventional LFSR based stream ciphers is to increase the key 

size L. In the proposed stream cipher, re-seeding of the 

conventional LFSR keystream generator with shift register 

circuit for modular division is used to increase the periodicity. 

The proposed stream cipher is made cryptographically secure 

by introducing non-linearity in a way similar to that of filter 

generator. . 

The paper is organized as follows. Section II focuses on the 

fundamental shift register based structures, while Section III 

discusses the most popular attack method for LFSR based 

stream ciphers, the fast correlation attack. Section IV 

discusses the proposal for new keystream generator in detail 

with the experimental results while Section V gives the 

hardware structure, properties and analysis of the proposed 

stream cipher together with experimental results. 

II. LFSR BASED STRUCTURES FOR CRYPTOGRAPHY

Linear Feedback Shift Registers are used as keystream 

generators in many practical communication systems due to 

their simple hardware structure. They can produce sequences 

of large period and good statistical properties. An LFSR of 

length L consists of L elements capable of storing one bit 

each. The output of each stage is shifted as input to the next 

stage. In the LFSR based keystream generator, the input to the 

final stage is a linear combination of the outputs of all stages 

wherein, weight of various outputs in the linear combination is 

specified by the feedback polynomial of the LFSR. An LFSR 

keystream generator of length L produces maximal length 

sequence of periodicity 2L-1 if the feedback polynomial is 

primitive. The output sequences of these keystream generators 

are easily predictable due to their linearity and hence are not 

cryptographically strong.  
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Cryptographically strong pseudo-random sequences are 

produced by using one or more LFSR structures and 

introducing non-linearity by some methods. Two major 

schemes to destroy the inherent linearity in LFSRs are taking 

output through non-linear Boolean function and irregularly 

clocking LFSRs. Boolean function can be used to combine the 

outputs of several LFSRs or outputs of different memory 

elements of a single LFSR giving rise to nonlinear 

combination generator and filter generator structures 

respectively. Step1-step2 generators, alternating step 

generators, shrinking and self-shrinking generators belong to 

the category of the clock controlled generators where the 

LFSR generating the keystream is irregularly clocked.  

A shift register based hardware circuit can be used to 

perform division modulo an irreducible polynomial over 

GF(2).  It is the implementation of well-known Cyclic 

Redundancy Codes (CRC) which are commonly used as 

standard error detection mechanism in digital communication 

systems. The feedback polynomial (g(x)) of the circuit divides 

the polynomial representing the sequential input data stream 

(M(x)) and the resultant residue r(x) such that M(x) = g(x) 

Q(x) + r(x) is left back in the circuit. This circuit could be 

used to generate hash, which could be used for message 

authentication. The basic property of a hash generation 

operation is its one-wayness. When the length of modular 

division circuit is much less than that of the input it becomes 

impossible to get the message polynomial  M(x) back from the 

residue r(x). 

Combination of an LFSR based keystream generator and 

the modular division circuit could be used to generate 

keystreams of large periodicity and increased security. 

A. . Nonlinear Filter Generator 

Fig 1 Nonlinear Filter Generator 

In a filter generator, the Boolean function combines outputs 

of different memory elements of a single LFSR, as shown in 

Fig 1. A detailed analysis of working of the filter generator is 

given in [3][4][15][16].The period of generated keystream is 

2
L
-1 or a divisor of  2

L
-1 where L is the length of LFSR.  The 

maximum linear complexity is, 

m

i

m
i

L
L

1

where ‘m’ is 

the algebraic order of the Boolean function defining the 

sequence. When the feedback function for LFSR is primitive 

and Boolean function ‘f’ is balanced, then period of output is 

exactly 2
L
-1.

Two main attack methods for the filter generator are fast 

correlation attack and generalized inversion attack. 

Correlation between the Boolean function and a linear 

function on the same variables as used by the Boolean 

function is exploited in the fast correlation attack.  The fast 

correlation attack works as an iterative error correction to 

modify the observed keystream sequence into the 

corresponding correlated linear transform of the underlying 

LFSR sequence. Different versions of fast correlation attack 

use different decoding methods of linear codes [13][5][6]. 

Another popular attack method is generalized inversion 

attack[5]. This method gives 100% recovery of  keystream 

and is a very powerful attack for filter generator. But the time 

complexity of this attack could be increased to great extent by 

choosing the Boolean function properly to span the full length 

of the LFSR. 

B. Shift Register Based Division Circuit 

The hardware circuit used to perform division modulo a 

polynomial over GF(2) can be implemented efficiently using 

LFSR. Here CRC operation, which is division modulo an 

irreducible polynomial over GF(2) is used to generate the 

cryptographic hash code (CRC code). In a normal CRC 

calculation, the CRC code is calculated as:        

CRC code = M(x) mod g(x)  

If g(x) is a polynomial of degree ‘n’ over GF(2), then ‘n’ is

the hash value size in bits. M is the message to be hashed and 

M(x) is the message polynomial with degree ‘m-1’, where ‘m’

is the message size, and m >> n [7].  

The operation of division modulo a polynomial over GF(2) 

is implemented through a simple LFSR with taps or 

connections determined by the division polynomial. The state 

analysis of a mod g(x) circuit can be discussed as below: 

Fig. 2 General block diagram of a mod g(x) circuit 

Let the initial contents of the flipflop be 
110 m-,..., s, ss

The corresponding state polynomial is 

1

110

m-
m-  x s ... x s sS(x)              (1) 

The division polynomial is given by 

m
m

m-
m- xg x g ... x g gg(x) 1

110
         (2) 

At the 1
st
 clock, the input is 

0
a . Then the state polynomial 

after the 1
st
 clock is 

2

211110010
) xg s(s) xg s(s)gs (aS'(x) m-m-m-

1

112

3

312
..............

m
mm-mm- ) xg s(s)xgs (s   (3) 

By adding  
m

m-  xs
1

 twice, S'(x)  can be written as 

f

Sn-1 Sn-2 S0S1

keystream 
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s1
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01
 a x S(x)  g(x)   sS'(x) m-
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i.e., g(x) x S(x)] [aS'(x) mod
0

  (4) 

Similarly, if the input bit at the 2
nd

 clock is 
1

a , the state 

polynomial after the 2
nd

 clock can be written as, 

g(x) x S(x)]x) a  [(aS"(x) mod
01

         (5) 

If there are k input bits, then the state polynomial after the kth

clock can be represented as 

........
21

 .. x a  [(a(x)S k-k-
k

)mod...
1

0
g(xx S(x)])x a. k-

     (6) 

If the initial state of all the flipflops is zero, then 

0S(x) and the corresponding state polynomial after the k
th

clock instant can be represented as

g(x))]x  a ...  x  a  [(a(x)S k-
k-k-

k
mod

1

021
   (7) 

Let m(x)  be the message polynomial and m(x)  is represented 

as,

1

110

k-
k-  x m ... x m mM(x)              (8) 

The 1
st
 input bit is the LSB (coefficient of highest degree) of 

the message, so 

10 k-ma

21 k- ma

:

12
 mak-

01
 mak-                       (9) 

The state polynomial after k message bits are given as input 

can be represented as 

g(x))x  m ...  x  m  (m(x)S k-
k-

k
mod

1

110

            = )(mod)( xgxM                (10) 

Depending up on whether the input M(x) is fed from left 

side or right side, the circuit does either M(x)  mod g(x) or 

M(x). x
n
  mod g(x).  

Fig 3. shows the hardware circuit for a CRC division 

modulo polynomial   g(x) = x
4
+ x

3
+ 1 over GF(2).

Fig. 3 A Division Modulo Circuit for polynomial g(x) = x
4
+ x

3
+ 1 

A cryptographic variant of this circuit is one in which 

division polynomial is a part of the secret key and needs to be 

programmable. Such a circuit can be used for hash generation 

in communication systems that demand low power 

consumption and less hardware complexity

III. CRYPTANALYSIS OF NONLINEAR FILTER GENERATOR 

Fast Correlation Attack

The idea of a fast correlation attack on nonlinear filter 

generator was proposed by E. Dawson , L. Simpson[11]. The 

method is based on the statistical dependence between the 

keystream generated through the nonlinear filter function, f

and the sequence through the best linear approximation of 

nonlinear filter function, fl. In the attack, the observed 

segment of the keystream (ZN
) sequence is considered as a 

noisy version of a segment of linear transform of the unknown 

underlying LFSR sequence. Then the problem is viewed as 

decoding of a Linear Block Code over Binary Symmetric 

Channel as explained in the references [5][6].  

Let f be the nonlinear Boolean function, fl be the best affine 

(linear) approximation of f, zN
}))({( 1

N
t

N tZZ be the observed 

keystream sequence and dN
}))({(

1

N
t

N tdd be the 

underlying LFSR sequence, then the keystream can be 

considered as a noisy version of the unknown underlying 

LFSR sequence as )())(()( tetXftZ l , where 

n

j
jjl txctXf

1

)())((  with cj {0,1} and e(t) is the noise 

introduced from BSC. 

The following factors are known to the attacker. 

N bits of  keystream 

Feedback polynomial of underlying LFSR 

The nonlinear Boolean function  f, with Pc > 0.5 

Since the nonlinear filter function f is known, the attacker 

finds the best linear (affine) approximation fl using the Walsh 

Transform Technique mentioned in [5][6]. For a Boolean 

function, 2221 :)...,()( FFxxxfxf nn , the Walsh transform 

is defined to be the real valued function F(w),

12

0

.
)(

)1()(

n

x

wxxfwF                        (11) 

where f(x) is the function value for the n –tuple X,

X = (x1, x2,…xn), X = x1+x2.2+…xn.2
n-1 and  w = (w1, w2,…wn), 

w = w1 +w2.2 +….wn.2
n-1. The nonlinearity of f(x) can be 

obtained from the Walsh transform as,   

|)(|max
2

1
2

1 wFN n
f .                          (12) 

The probability of correlation between the nonlinear Boolean 

function and linear approximations is: 

n

f
n

l

N
ffobPc

2

2
)(Pr                                 (13) 

Now,  the structure in Fig.1. can be reduced into a linear 

system (target system) by replacing f with fl, such that the 

actual key stream, Z(t) is a noisy version of the output of the 

target system, V(t), ie. Z(t) = V(t) + e(t).

Let m be the length of the LFSR, U0 - initial state and N - 

length of the observed keystream. Then the target system 

(Fig.4.) can be modeled as a linear block code, C1 of message 

length m and code length N , ie, C1: [N,m]. V = U0 G ; G is 

the generator matrix for C1 and G = ( g1 g2 · · · gN ); gi – ith

column of  G.

To get the first ‘t’ bits of the initial state of LFSR, find all 

triplets of columns gi1 , gi2 , gi3 of G such that 

                     (14) 

where means an arbitrary value (not all zero). 

If there are ‘L’ such triplets with kth
triple = (gi1(k),

gi2(k),g i3(k)) ; 1  k  L, then vi1(k) + vi2(k) + vi3(k)  is the 

linear combination of first ‘t’ states of the initial state U0,

a1 a3a0 a2

input

(gi1 + gi2 + gi3)
T = ( ,   , . . , , 0, 0, . . . ,0);   

t<m

m-tt
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where vi1(k)=U0*gi1(k), vi2(k) =U0*gi2(k), vi3(k) = U0*gi3(k)

and that defines a new [L, t] linear block code C2. The code 

word in C2 is,

vi1(1) + vi2(1) + vi3(1), vi1(2) + vi2(2) + vi3(2), . …….. ….,

vi1(L) + vi2(L) + vi3(L)).

This completes the pre-computation phase of the attack 

Fig. 4 Target system 

Now, with  the observed keystream Z, compute a new 

stream z1, z2,…zL such that, 

   LkkZkZkZz iiik 1);()()(
321

.  (15) 

This (z1, z2,…..zL) is the modified keystream according to 

the linear approximation of nonlinear Boolean function and is 

considered as the received word for the code C2 in binary 

symmetric channel.

Apply the ML decoding over C2, to return the codeword 

in C2 which is closest to (z1, z2, … zL). The identified 

codeword gives the first ‘t’ states in U0. Perform similar 

parallel iterations to get the other bits in U0.

Steps for the fast correlation attack can be summarized as 

follows:  

1. Obtain the best linear (affine) approximation of the filter 

     function having maximum Pc.

2. Transform the nonlinear structure of the NLFG into the  

     linear target system. 

3.  Model the target system as linear block code. 

4. To make the attack faster, select some value to t such

     that t < m.

5. Get all possible triplets of columns of G matrix, such that, 

     sum of those three columns is a column vector with 

     elements other than the first ‘t’ successive elements are 

     zeros. 

6. Perform step 5 repeatedly 
t

m
 times, shifting (m-t) zero 

     elements cyclically down by ‘t’ bits in each iteration 

     using   the equation (14). 

7. Using triplets, form LBC, C2 with code words having bits  

    as  the linear combination of specified ‘t’ bits of U0.

Attack phase 

Based on the code words in C2 modify the observed 

keystream sequence and apply the ML decoding on C2 by 

considering the modified keystream(z1, z2,…..zL)as the 

received code word in BSC. 

8. Combine the bits obtained from the different iterations to  

    get the possible candidates for the initial state of the  

    target system and choose the one, which give minimum 

    Hamming distance between the actual keystream and the 

    computed keystream. 

IV. PROPOSED MODEL FOR KEYSTREAM GENERATOR

A. The Model 

In this proposed structure, the division modulo circuit is 

combined with basic LFSR keystream generator to generate a 

stream of increased periodicity. In this structure, the output 

stream of fundamental LFSR is passed through the division 

modulo circuit to generate residue of the output polynomial of 

the LFSR with respect to g(x), the feedback polynomial of the 

division modulo circuit. The generated residue is used to 

reseed the LFSR at the end of its fundamental period, ie., once 

in every 2
m
 –1 clock cycles, where m is the length of LFSR. 

The structure is shown in Fig 5. 

Fig. 5 Proposed model for key stream cipher 

Working of the circuit can be explained as follows:  

Consider an LFSR  keystream generator of length ‘m’ as 

shown in Figure 6. The feedback polynomial q(x) is given as 

q(x) = q0 + q1x + q2x
2
 +…… qmx

m
. Let the initial  state of the 

LFSR be given as 
0121

,...,........., aaaa mm . Then the 

feedback input bit [3] 

ma = mmm qaqaqa
02211

.......... .      (16) 

 The output sequence of this LFSR is 

.........,...,.........,
110 mm aaaa . Using polynomial 

notation, the corresponding output polynomial is given by 

.............)(
2

210

n

n xaxaxaaxa .

Fig. 6 General LFSR structure 

This output polynomial is related to feedback polynomial q(x) 

as

)(

)(
)(

xq

xf
xa  where the polynomial f(x) is obtained from 

LFSR(L stages) 

fl

U(t)

x1 x2 xn

V(t)

e(t)

Z(t)

LFSR (Length ‘m’)    

(Polynomial = q(x))

Division modulo circuit 

(Polynomial = g(x)  q(x) ) 

keystream 

Control 

signal (once 

in   2
m
– 1)
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initial state 
0121

,...,........., aaaa mm  and coefficients of 

feedback  polynomial mm qqqq ,...,.........,
110

 as, 

n
m

n

n

i

ini xaqxf
1

0 0

)( .                (17) 

For example with q(x) = x
3
+x+1, initial state 

012
,, aaa

and
2

21100
)( xaaxaaaxf  , output polynomial 

is

4

210

3

20

2

210
)( xaaaxaaxaxaaxa

.......
8

1

7

0

6

21

5

10
xaxaxaaxaa    (18) 

It could be seen that the sequence is periodic with period 2
m
-1

as known.

The output stream of LFSR keystream generator is fed in as 

input to mod g(x) circuit. At the end of 2
m
 – 1 cycles, the 

residue obtained by mod g(x) circuit is fed into the LFSR as 

the new seed. The input to the mod g(x) circuit is given in 

such a way that the output bit 
0

a of LFSR key stream 

generator enters first into the modular division circuit, then 

1
a etc. So at the end of  2

m
 – 1 cycles, the polynomial input to 

mod g(x) circuit is 
1

2

1

1

0
...........)(ˆ

L
LL axaxaxa

where L is the period of output sequence L = 2
m
 – 1. This is 

the reciprocal polynomial of output polynomial )(xa of LFSR 

keystream generator for length L = 2
m
 – 1. It can be easily 

seen that this polynomial )(ˆ xa is a multiple of feedback 

polynomial q(x). For the example discussed above,  

3

20

4

2

5

1

6

0
)(ˆ xaaxaxaxaxa

2110

2

210
)( aaxaaxaaa       (19) 

which could be written as, 

20210

2

10

3

0

23
)1( aaxaaaxaaxaxx

Therefore, if the feedback polynomial g(x) of the mod g(x) 

circuit is same as q(x), output of the mod g(x) circuit will be 

zero, which should be avoided. Hence g(x) is to be chosen as 

different from q(x). 

It is observed that if the q(x), g(x) pair is properly chosen, 

the residue returned by the mod g(x) circuit pass through all 

distinct 2
m
 –1 combinations without collision, making the 

periodicity of keystream generator equal to (2
m
 –1)(2

m
 –1).  

Thus, the throughput, which is the ratio of number of output 

random bits to number of input random bits is (2
m
 –1)/(m-1) 

for LFSR keystream generator, while it is (2
m
 –1)

2
/(m-1) for 

the proposed model. For the same q(x), g(x) pair different 

initial states (keys) can provide different periodicity due to the 

difference in the properties of generated keystream. It is 

observed from experiments that many of the reciprocal 

polynomial pairs are able to provide the maximum period of 

(2
m
 –1)

2
for all the keys. This means a possible good choice 

for g(x) is the reciprocal polynomial )(ˆ xq of q(x). In general, 

the period of the output sequence (L) for a given q(x), g(x) 

pair and for a given initial state (i.e., key) is given by        (2
m
-

1)
2

 L > (2
m
-1). This clearly shows that the proposed model 

provides a large increase in throughput compared to LFSR 

keystream generator. 

A proper pair of polynomials to provide maximum 

periodicity could be identified by considering the following 

equation. 

)()()()(ˆ xrxxgxa          (20) 

Here, )(ˆ xa is the reciprocal polynomial of output polynomial 

for LFSR with feedback polynomial q(x) and g(x) is the 

division polynomial used in modular division circuit. If the 

residue r(x) doesn’t go back to initial state  

0121
,...,........., aaaa mm  before reaching the period     

2
m
 –1, for a chosen g(x), then the chosen g(x) can provide 

maximum period with that particular q(x). 

B. Experimental Results  

Based on the study of polynomials, the pairs of polynomials 

identified to give periodicity of (2
m
-1)

2
, without any re-

programmability are shown in Table I. The periodicity of 

proposed structure in comparison to that of simple LFSR 

keystream generator for the same number of input random bits 

(same key size) is also given in the table. 

TABLE I PAIRS OF Q(X), G(X) POLYNOMIALS

FOR MAXIMUM PERIODICITY

q(x) 

(keystream 

gen. poly.) 

g(x) (division 

poly.) 

Periodicity 

obtained:

(2
m
-1)

2

Periodicity of simple 

LFSR: (2
m
-1) 

x
3
 + x + 1 x

3
 + x

2
 + 1 49 7 

x
4
 + x + 1 x

4
 + x

3
 + 1 225 15 

x
5
 + x

3
 + 1 x

5
 + x

4
 + 1 961 31 

x
6
 + x + 1 x

6
 + x

5
 + 1 3969 63 

x
7
 + x

4
 + 1 x

7
 + x

2
 + 1 16129 127 

x
7
 + x + 1 x

7
 + x

5
 + 1 16129 127 

x
7
 + x

3
 + 1 x

7
 + x

6
 + x

4
 + 

x
3
+ x

2
 + x + 1 

16129 127 

x
7
 + x

6
 + 1 x

7
 + x

4
 + x

3
 + 

x + 1 
16129 127 

x
9
 + x

4
 + 1 x

9
 + x

2
 + 1 261121 511 

Results of simulation of 4 bit LFSR with q(x) = x
4
 +  x + 1 

and g(x) = x
4
 +  x

3
 + 1 are shown in Table II. The entries 

below each initial key in Table II shows the re-seed keys 

generated by mod g(x) circuit at the end of every 15 cycles. 

The fundamental LFSR with feedback polynomial              

q(x) = x
4
+x+1and initial key  ),,,(

0123
aaaa  = (1 0 0 1) 

gives output polynomial, 

1)(ˆ
245671114 xxxxxxxxa .

This polynomial when divided by g(x) = x
4
 +  x

3
 + 1, in mod 

g(x) circuit returns the residue r(x) = x + x
2
 + x

3
, given as    (0 

1 1 1) in the first row below column corresponding to key (1 0 

0 1). This residue (0 1 1 1) is loaded into LFSR as key for 

next iteration giving output polynomial, 

256810111213
)(ˆ xxxxxxxxxa .
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TABLE II RESIDUES FED AS KEYS AT DIFFERENT STAGES

FOR 4 BIT LFSR

Key = 1 0 0 1 Key = 1 0 0 0 

0     1     1     1 1     0     1     1 

0     0     1     1 1     1     0     1 

0     1     1     0 0     0     1     0 

1     1     1     1 1     0     1     0 

1     0     0     0 0     0     0     1 

1     0     1     1 1     1     0     0 

1     1     0     1 1     1     1     0 

0     0     1     0 0     1     0     0 

1     0     1     0 0     1     0     1 

0     0     0     1 1     0     0     1 

1     1     0     0 0     1     1     1 

1     1     1     0 0     0     1     1 

0     1     0     0 0     1     1     0 

0     1     0     1 1     1     1     1 

1     0     0     1 1     0     0     0 

TABLE III RESIDUES FED AS KEYS AT DIFFERENT

STAGES FOR 7 BIT LFSR

5 54 119 11 98 73 112 47 77 46 

10 51 108 14 109 76 19 42 66 43 

15 80 105 1 104 87 22 37 71 24 

20 85 102 4 91 82 25 32 92 29 

17 90 99 31 94 93 28 96 89 18 

30 95 35 26 81 88 7 101 86 23 

27 68 38 21 84 107 2 106 83 12 

40 65 41 16 79 110 13 111 48 9 

45 78 44 115 74 97 8 116 53 6 

34 75 55 118 69 100 59 113 58 3 

39 120 50 121 64 127 62 126 63  

60 125 61 124 67 122 49 123 36  

57 114 56 103 70 117 52 72 33  

The residue returned by mod g(x) circuit for this input 

polynomial is   r(x) = x
2
 + x

3
 given as (0 0 1 1) in the second 

row below key  (1 0 0 1).    

Similarly 127 distinct residues which are used as reseed 

keys for a single key simulation with 7 bit shift register is 

shown in Table III. 

V. PROPOSED MODEL FOR STREAM CIPHER

Heart of a stream cipher is a secure keystream generator. So 

in order to design a stream cipher based on keystream 

generator proposed in section IV, security should be 

incorporated into this structure. The security is incorporated in 

the same way as that of nonlinear filter generator. Here the 

output is taken through a Boolean function which combines 

the state bits of the keystream generator in a non-linear way, 

thus introducing non-linearity and security into the structure.

A. Proposed Stream Cipher Model  

In this model, security is introduced into the keystream 

generator in section IV, by using Boolean function to 

introduce non-linearity.  

Fig. 7 Structural diagram of proposed stream cipher 

The Boolean function combines the state bits of LFSR 

keystream generator in the same way as that of the filter 

generator.  The structure of this stream cipher is shown in 

Figure 7.  

The periodicity of this stream cipher is same as that of the 

keystream generator i.e., for an LFSR length of ‘m’ the period 

is (2
m
 –1)

2
 =2

2m 
- 2

m+1 
+ 1. For  a practical key length of order 

of m= 128 bits, this is comparable with period of an LFSR 

based keystream generator of LFSR length ‘2m’ given as 2
2m

–1. Thus compared to a filter generator for the same key size, 

the proposed stream cipher has a throughput (2
m
 –1) times. 

This means for a given periodicity in key stream output of 

stream cipher, the number of random key bits required is 

approximately half, for the proposed structure. It can also be 

seen that the security of this model is greater than that of the 

filter generator. 

B. Security Analysis for the Proposed Model  

Since the output is taken from a filter generator, the attack 

methods for the proposed model are those of non-linear filter 

generator. For an attack on the proposed model with 

fundamental LFSR length ‘m’, the number of keystream bits 

required to be known for a successful attack is  2N, where N 

is the number of bits required for a successful attack on non-

linear filter generator. N is calculated as N= m/C(pe), where 

C(pe) is the channel capacity of Binary Symmetric Channel 

with error probability pe. The error probability pe =1-Pc where 

LFSR (Length L)    

(Polynomial = q(x))

Nonlinear filter (n inputs) 

y(t) = f(x(t- 1),……….x(t- n))

Division modulo circuit 

(Polynomial = g(x)  q(x) ) 

Control 

signal (once 

in   2
m
– 1)

output
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‘Pc’ is the correlation probability between the keystream and 

some linear version of underlying LFSR sequence. For 

example, consider an LFSR of length m = 10. The number of 

keystream bits required to be known, for an attack on ordinary 

filter generator with a practical value of correlation probability 

Pc = 0.75, is 55bits, while that will increase to 110 bits in the 

proposed stream cipher.  

The reason for increase in number of bits required for a 

successful attack could be explained as below: The two 

popular attacks on filter generator are generalized inversion 

attack [3] and fast correlation attack. In generalized inversion 

attack, a successful attack requires that the guessed state bits 

are related to other state bits through LFSR linear recursion. 

With that assumption, unknown state bits are calculated from 

the guessed state bits. In the fast correlation attack, an 

approximate linear code structure between state bits and 

keystream bits are exploited to mount an attack. In the 

proposed structure, there is a re-seeding through mod g(x) 

circuit which disturbs this assumed linear recursion. The 

linear recursion relation between state bits or erroneous linear 

code structure between state bits and keystream bits will not 

exist if all the known ‘N’ keystream bits do not correspond to 

the same state bits. Assume, for the worst case that keystream 

bits, which the attacker procured, are tail ‘N-k’ bits from the 

stream corresponding to a key and  k bits from the stream 

corresponds to the re-seed of the key. In that case the attack 

fails due to lack of approximate linear relation between state 

bits and keystream bits. If the number of known keystream 

bits are 2N, or more, then there will be anyway, a group of  

‘N’ keystream output bits within this set, such that the 

required linear recursion for mounting the attack is present 

between state bits corresponding to these output bits. Take this 

group of  ‘N’ bits, and mount the attack. The retrieved state 

could be key itself, or a reseed (residue output of mod g(x) 

circuit).  If the retrieved key is a re-seed, the actual key has to 

be found by solving equation (20), the required number of 

times.  But this time is comparatively much lesser than the 

attack time. Hence the advantages of this proposed stream 

cipher compared to simple nonlinear filter generator can be 

briefed as below. 

(i)  Throughput of the system increases by a factor of       

(2
m
 –1) times  

(ii) Security of the circuit increases in terms of number of 

bits required for attack, which is double that of filter 

generator. 

The security of the circuit could be increased much, by 

making the mod g(x) coefficients programmable or by 

keeping the mod g(x) coefficients random as a part of the key. 

In both cases, there will be a slight increase in the number of 

input random bits. But since the periodicity of the circuit is 

very high, the throughput is still very high compared to LFSR 

keystream generator. Since the g(x) polynomial need not be 

primitive, for a given length of LFSR, say ‘m’, there are 

approximately 2
m
 options for g(x) polynomial. One way is to 

use the coefficients as a part of the key. Another method is to 

make g(x) coefficients programmable. Here, a few extra 

random bits will decide the order in which the g(x) 

coefficients are to be changed from among a set of possible 

g(x) coefficients. The coefficients of required polynomials can 

be stored in a buffer, which outputs the coefficients of the 

selected polynomial at a pre-determined time. Which set of 

coefficients are given out at an instant is determined by 

random bits used as a part of the key. The number of 

additional random bits required here is not very high. . If the 

number of polynomials for residue operation is ‘N’ the 

number of random bits required to select them randomly is 

only log2N. Now, the attack time for this cipher will be 

increased much. In fast correlation attack of the filter 

generator, for each possible solution of the reseed, to get back 

to the initial state, the randomness in the structure demands 

the generation of multiple keystreams for comparing with the 

known keystream, or a brute force trial on the set of possible 

g(x) coefficients at every instant they are programmed or 

modified. How many key streams are to be generated for each 

possible solution, is determined by product of the number of 

polynomials used for residue operation and number of times 

the coefficients are programmed per period. This itself shows 

that a slight increase in the consumed number of random bits 

increase the security by a large amount. Thus, in the design of 

a practical structure of proposed stream cipher with re-

configurability, the main problem is to decide the extent of  

re-programmability to be used. The three factors to be 

considered for taking a decision are (i) Increase in security in 

terms of increased time for attack. (ii) The throughput in terms 

of ratio of the number of random bits output to the number of 

random bits input. (iii) Hardware Complexity. 

Another possibility to increase the security of the 

proposed cipher is to make a variation in the mod g(x) circuit. 

Instead of using a single g(x) polynomial of length ‘m’ we can 

choose a g1(x) polynomial of degree ‘n’ less than ‘m’ and 

another g2(x) polynomial degree ‘m-n’. Then, as explained 

before, an attack is mount on non-linear filter generator when 

2N bits of key stream known. Thus, either the key or the 

reseed of the key is retrieved. If the retrieved data is a re-seed 

in lth
 re-seed cycle, equation (20) should be solved to get the 

re-seed in (l-1)
th

 cycle. Here, the residue r(x) is the relevant 

bits of  the retrieved re-seed. Using ‘n’ residue bits  of g1(x)

and ‘m-n’ residue bits of g2(x), we have to solve for ‘m’ 

reseed bits of  (l-1)
th

 cycle, by applying equation (20) twice. 

Here, if g2(x) is a factor of g1(x), the ‘m-n’  reseed bits 

corresponding to residue of g2(x) doesn’t provide any 

additional information about the key (re-seed) of previous 

cycle than that provided by the ‘n’  reseed bits corresponding 

to residue of g1(x). Hence, in order to get ‘m’ re-seed bits of   

(l-1)
th

 cycle, it is required to solve (20) with ‘n’ residue bits 

leaving 2
m-n

 options on an average as solution. To get the re-

seed key in  (l-2)
th

 cycle, group of relevant ‘n’ bits from each 

of this 2
m-n

 possible solution should be taken and solve 

equation (20). This means equation (20) should be solved 2
m-n

times, each time leaving 2
m-n

 more possible solutions. Thus, to 

get re-seed key in (l-3)
th

 cycle equation (20) should be solved 

2
m-n 

x 2
m-n

  times and so on. So, the number of options for the 

initial state increases to brute force possibility of 2
m
-1 very 

fast. This way the security of stream cipher increases 

enormously by this change in design. 
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C. Experimental Results 

The increased periodicity and security of the proposed 

structure is clearly visible from experimental results given in 

Table IV.

TABLE IV COMPARISON OF PROPOSED STREAM CIPHER 

WITH FILTER GENERATOR 

Filter generator Proposed stream cipher Length

of

LFSR  

Periodicity 

(bits)

Attack 

time 

Periodicity 

(bits)

Attack 

time 

7 127 0.69 sec 25400 12.93 sec 

8 255 0.91 sec 102000 434.12 sec 

9 511 1.1 sec 613200 9765.56 

sec 

clk

loa
din2[0..8
]

c[0..8
]

clk

init[8
]init[7
]init[6
]init[5
]init[4
]init[3
]init[2
]init[1
]init[0
]loa
d

qout[8..
0]

clk

in1

loa
d

div1[0..5
]

clk

in2

loa
d

div2[0..1
]

en
1s5

s6

in0[0..8
]

in1[0..8
]

q[0..8
]

sr:sr1

modgx1:modgxdiv1

modgx2:modgxdiv2

mux1:R8

9' h001 --

1' h1 --

s1

s2

f1

f2~0

f2

f3

f4

out1~5

clk

reset

init1[8]

init1[7]

init1[6]

init1[5]

init1[4]

init1[3]

init1[2]

init1[1]

init1[0]

out1

syncounter:z3

9' h000 --

Fig. 8 Schematic diagram of proposed stream cipher 

from RTL viewer 

For the results shown in Table IV, the proposed cipher with 

re-programmability is implemented. 2 extra random bits are 

used to program the coefficients of g(x). At predetermined 

time interval, the coefficients of g(x) is modified. The 2 

random bits decide the order in which the coefficients are to 

be selected from a buffer, which holds 4 sets of g(x) 

coefficients. The time at which the coefficients are modified 

are chosen as a suitable multiple of fundamental period of the 

LFSR. For an LFSR with length m= 7, the coefficients are re-

programmed at the end of every 50 periods. Since there are 4 

different sets of coefficients, total period is 200 times the 

fundamental period of the LFSR keystream generator. For  m= 

8, the coefficients are programmed at the end of 100 

fundamental periods etc. The periodicity and security can be 

increased much with even slight increase in the number of 

input random bits and circuit hardware complexity.  

The proposed cipher is tested for its properties through 

FPGA implementation also. The architectural layout obtained 

through RTL viewer for proposed model of non-linear filter 

generator with no re-configurability is shown in Fig. 8. Here, 

the LFSR polynomial is taken as q(x) = x
9
 +x

4
 +1 and the 

division polynomials are taken as g1(x) = x
6

+ x
5

+ x
4
+ x

3
+ 1 

and g2(x) = x
2
+ x + 1. 

VI. CONCLUSION

A hardware stream cipher based on LFSR and polynomial 

modular division circuit is proposed in this paper. LFSR 

keystream generator and modular division circuit are 

combined in such a way that the randomness properties of the 

LFSR sequences in terms of runs and auto-correlation 

measures are not disturbed. In the proposed stream ciphers 

there is a significant improvement in throughput, which is the 

ratio of number of random bits produced to the number of 

random bits consumed, compared with the existing standard 

counterpart. Also, there is a great increase in security in terms 

of the time for successful attack and the number of keystream 

bits required to be known for mounting the attack. The 

structure can be easily extended to higher number of bits than 

that for which the experiments are carried out. The theoretical 

analysis of security (time for successful attack) and time 

period employed in this work are most general. Hence it can 

be guaranteed that the improvement in these properties of the 

stream cipher will be clearly available for any length of LFSR 

chosen. A proper design exercise on higher length of LFSR 

can give rise to very attractive stream ciphers for use in 

handheld communication devices and in other communication 

applications, which demand low hardware complexity and real 

time operation. 
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