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Abstract—Structural behavior of ring stiffened thick walled 
cylinders made of functionally graded materials (FGMs) is
investigated in this paper. Functionally graded materials are 
inhomogeneous composites which are usually made from a mixture 
of metal and ceramic. The gradient compositional variation of the 
constituents from one surface to the other provides an elegant 
solution to the problem of high transverse shear stresses that are 
induced when two dissimilar materials with large differences in 
material properties are bonded. FGM formation of the cylinder is 
modeled by power-law exponent and the variation of characteristics 
is supposed to be in radial direction.

A finite element formulation is derived for the analysis. According 
to the property variation of the constituent materials in the radial 
direction of the wall, it is not convenient to use conventional 
elements to model and analyze the structure of the stiffened FGM 
cylinders. In this paper a new cylindrical super-element is used to 
model the finite element formulation and analyze the static and 
modal behavior of stiffened FGM thick walled cylinders. By using 
this super-element the number of elements, which are needed for 
modeling, will reduce significantly and the process time is less in 
comparison with conventional finite element formulations.

Results for static and modal analysis are evaluated and verified by 
comparison to finite element formulation with conventional 
elements. Comparison indicates a good conformity between results.

I. INTRODUCTION

UNCTIONALLY graded materials are inhomogeneous 
composites which are usually made from a mixture of 

metal and ceramic. The gradient compositional variation of 
the constituents from one surface to the other provides an 
elegant solution to the problem of high transverse shear 
stresses that are induced when two dissimilar materials with 
large differences in material properties are bonded. This type 
of materials introduced at first by a group of Japanese 
researchers to resist in aggressive environment of thermal 
shock [1],[2]. These materials are anisotropic, inhomogeneous 
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and have variable mechanical properties in one direction
which makes them difficult to analyze.

Cylindrical structures stiffened by rings are common parts 
in industry and they have numerous applications in different 
fields of engineering such as aerospace, marine vessels, silos, 
core barrels and pressurized water reactors. Cylindrical 
structures are of interests of many scientist and numerous 
papers are dedicated to the analysis of them. Loy et al. [3]
obtained the natural frequencies of simply supported FGM 
cylindrical shells by applying Love’s shell theory and 
Rayleigh-Ritz method. Pradhan et al. [4] analyzed FGM shells 
under different boundary conditions by Love’s theory. Love’s 
theory confines the calculations to the thin walled cylinders 
under various boundary conditions. Chen et al. [5] evaluated 
natural frequencies of FGM cylinders by employing a 
combination of state-space and matrix transfer method. 
However, this solution is just for simply supported boundary 
conditions, it makes three dimensional analysis of FG 
cylinders possible.

Modeling of stiffeners is very important in evaluation of 
structural behavior of stiffened cylindrical shells and scientists 
presented many models to achieve better solution prediction 
of these structures since 1950s. Hoppmann [6] worked on free
vibration of these structures by analytical and experimental 
methods and presented an analytical method for shells 
stiffened by equal strength rings which are placed closely and 
equally spaced. Simply supported boundary condition was 
supposed to be exerted on the ends of the shell. He used an 
equivalent model of unstiffened shell to investigate stiffened 
shell analytically. Stiffeners were smeared out through the 
cylinder surface and displacements were evaluated. Mikulas 
and McElman [7] investigated the free vibration of 
eccentrically stiffened simply supported cylindrical shells, 
they used averaging method and smeared the effects of 
stiffeners on the surface of the shell and found out that 
eccentricity has a remarkable effect on the free vibration of 
stiffened shells and natural frequencies. This method is unable 
to predict vibration behavior of stiffened shells properly when 
the space between stiffeners becomes large or the wavelength 
of vibration becomes smaller than stiffeners’ spacing. Thus, 
other scientists proposed that stiffeners should be treated
discretely. Egle and Sewall [8] studied free vibration of an 
orthogonally stiffened cylindrical shell; they have treated 
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stiffeners as discrete elements in their analysis. This study was 
promoted by consideration of eccentricity in plane and rotary 
inertia of the stiffeners in Parthan and Johns research [9].

Many scientists used energy methods to predict vibration 
behavior and natural frequencies of stiffened shells, these 
methods are capable of being used for structures made of new 
materials with special properties, such as functionally graded 
materials. Mustafa and Ali [10] presented an energy method 
for free vibration analysis of stiffened cylindrical shells. The 
analysis took into account the flexure and extension of the 
shell and the flexure, extension and torsion of the stiffeners. 
Wang et al. [11] used Ritz method to investigate free vibration 
of stiffened cylindrical shells. In their study stiffeners are 
made from different materials and dimensions, inplane and 
rotary inertia of stiffeners were considered. Polynomial 
functions were employed to expand displacements, whereas it 
is important to be noted that these functions should satisfy the 
boundary conditions. Moeini et al. [12] used sander’s theory 
and Ritz method to evaluate natural frequencies of FG 
cylindrical shells stiffened by uniformly and non-uniformly 
ring stiffeners.

Analytical methods have their own limitations to predict the 
solution of FGM stiffened cylinders. Therefore, numerical 
methods are more suitable for these kinds of problems.

Finite element method has many advantages in solving 
engineering problems in comparison to the other numerical 
methods. The FEM provides a mathematically simplified 
procedure to model and evaluate complex structures. 
However, this method can be so time consuming when the 
number of elements, meshing the entire structure increases. 
By meshing the structures with super-elements the number of 
elements reduces extensively compared to employing 
conventional elements and the time consumption decreases. 
Development and application of super-elements in structural 
analysis of various mechanical systems have been widely 
extended in the last decade. F. Ju and Y.S. Choo [13]
developed a super-element for modeling a cable passing 
through multiple pulleys. J. Jiang and M.D. Olson [14]
incorporated a super-element to the nonlinear static and 
dynamic analysis of orthogonally stiffened cylindrical shells.

Application of geometrical super-elements in large 
deformation of elasto-plastic shells is presented by S.A. 
Lukasiewicz [15]. Many scientists have used super-elements 
in static and dynamic analyses of stiffened shells and plates.
Ahmadian and Bonakdar [16] introduced a new cylindrical 
super-element for structural analysis of laminated hollow 
cylinders and performed static and modal analysis using this 
super-element.

In this paper the cylindrical super-element is used to 
evaluate the static and modal behavior of functionally graded 
thick walled cylinders under different boundary conditions. 
Deflections and natural frequencies are obtained and 
compared to conventional finite element models.

II. FORMULATION AND MODELING

A. Element Definition
First of all, we should introduce the concept of cylindrical 

element formulation. The element’s shape and the required 
notations are illustrated in Fig. 1 [16].

L, r1, r2 are one half of element length, inner radius and 
outer radius, respectively

Fig.  1 super-element configuration and coordinate system

Cylindrical coordinate system (r ) is considered to 
specify the position vector in the super-element. Where 
are radial, tangential and axial coordinates. Dimensionless 
coordinates are defined as:

2 1

2 1

2 ( )
, ,  = 1

r r rz
L r r

(1)

Shape functions of this super-element are represented in 
appendix.
The displacement vector for an internal point of the element is 

u=[   ]T
r zu u u (2)

which is obtained using the shape functions and the nodal 
displacement vector, q, according to 

u=Nq (3)
where 

1 1 1 16 16 16q=[    ...   ]T
r z r zu u u u u u (4)

and 

2 16

1 2 16

1 2 16

1 0 0 0 0 ... 0 0

N= 0 0 0 0 ...  0 0

0 0 0 0 ... 0 0

N N N

N N N

N N N

(5)

in which Ni is the shape functions defined in appendix.
In cylindrical coordinate system the strain vector is defined 

as;
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=[    ...   ]T
r z r zr z

(6)

stresses respectively.
The strain-displacement relations in cylindrical coordinate

are;[17]

1,  ,  

1 1 ,

1

r r z
r z

r r z
r zr

z
zr

u u uu
r r zr

uu u uu
r r z rr
u u
z r

(7)

which can be stated in matrix form as;

Lu (8)

where L is the operator matrix;

1
0 0

1
L= 0 0 0

0 0 0

r r r z

r r z

z r r z

(9)

and u is the displacement vector defined by “(3)”.
Using “(3)” and “(8)” the strain vector may be written as;

Bq (10)

where B is the strain-nodal displacement matrix obtained 
from;

6 48 6 3 3 48B =L N (11)

where the subscripts indicate the size of the matrices.

B. FGM Cylindrical Element-Mass and Stiffness Matrices
Various properties of the functionally graded materials 

change smoothly with location. In the FG cylinders which are 
considered in this work, the characteristics are only a function 
of radial coordinate and don’t change in circumferential and 
longitudinal directions. Many relations are available to 
characterize the varying properties of functionally graded 
materials [18]. In this work the following relation is 
considered [3]:

0 11 1

2 1 2 1

1
k k

r r r r
r r r r

(12)

0 and 1 are specific characteristics for the inner and 

y of the FGM in 
the defined radius. The parameter k is known as the gradient 
index. It is obvious that the FGM becomes a homogenous 
material when k=0.
The stress vector in cylindrical coordinate system is defined 
as;

r[      ]r z zr z
(13)

which is related to the strain vector according to the following 
equation; [19]

D (14)

where D is the elasticity matrix of the FGM calculated by 
substituting the elasticity of each material into “(12)”

0 11 1

2 1 2 1

D D 1 D
k k

r r r r
r r r r

(15)

where Di is the symmetric material property matrix for each of 
constituents. The stiffness matrix is calculated from: [19]

TK B DB
e

e

V

dv (16)

The above integral is carried over the cylindrical element 
volume. To calculate the integral it is useful to express it in 
terms of local coordinates.

1 1 1

1 1 1

TK B DBe dv
(17)

The mass matrix of the element is: [19]

0 11 1

2 1 2 1

1

M N N

= N N

e

e

e T

V

k k
T

V

r r r r
r r r r

dv

dv

(18)

in which the FGM density is substituted by the aid of “(12)”.

III. STATIC ANALYSIS

Consider an FGM hollow cylinder with length Lcy=4.8, 
inner radius rcy=0.2, wall thickness hcy=0.2 stiffened with four 
ring stiffeners with length Lstf=0.2, inner radius rstf=0.4, 
thickness hstf=0.05. Stiffeners are placed equally spaced from 
each other and the ends of the cylinder. Material specifications 
for the cylinder and the rings are expressed in Table I. It is 
considered to use k=3 as FGM power law exponent. Fig. 2 
represents the modulus of elasticity of FGM material property 
“E”, versus the cylinder radius ” r”. 
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TABLE I
MATERIAL PROPERTIES

E(Gpa) (Kg/m3)
Inner material (Cu) 110 8960 0.34
Outer material (W) 400 19300 0.28

Stiffener material (St) 200 7800 0.3

As follows, the cylinder is subjected to various static loads 
and the results are compared to results from conventional 
finite element models.

The conventional finite element result is gained with 
sufficient number of brick elements to assure a mesh-
independent result. To use brick element for modeling of FG 
cylinder, a procedure is invoked here that assumes several 
constant property coaxial layers in which the material 
properties are changed gradually from the inner to the outer 
layer according to the specific curve in Fig. 2.

In the first loading condition one end of the cylinder is 
fixed and the free end is subjected to an axial load of 
magnitude F=377(N) such that the applied load is distributed 
equally among the nodes on the free end. Table II represents 
the maximum elongation of the cylinder for various numbers 
of super-elements used, compared with brick elements result.

TABLE II
STIFFENED CYLINDER UNDER AXIAL LOADING

Super-element Brick 
Element

Number of Elements 24 48 30000
Maximum Elongation 2.423e-7 2.452 e-7 2.49e-7
Difference With Brick 
Element Method (%) 2.69 1.61

The second loading is concerned with a transverse load of 
magnitude F=-10(KN) applied to the free end of the cylinder 
with the other end being fixed. The maximum deflection of 
the cylinder in this loading condition is given in Tab. III.

TABLE III
STIFFENED CYLINDER UNDER TRANSVERSE LOADING

Super-element Brick 
Element

Number of Elements 24 48 120 30000
Maximum Elongation 8.2965e-5 8.4815e-5 8.65e-5 8.73e-5
Difference With Brick 
Element Method (%) 4.9 2.8 0.9

It should be noted that according to the nonlinear shape of 
the bended cylinder, more number of super-elements are 
required to analyze, which is attributed to the linear 
characteristic of the shape functions in the axial direction of 
the super-element.

The last loading condition deals with torsion of the 
cylinder. As shown in Fig. 3 eight -direction 
constitute the torque applied to the end of the cylinder. Each 
force is of magnitude of F=1000(N), the total axial torque 
becomes T=1200(N.m). The maximum angles of rotation 
obtained by super-element and brick elements are given in 
Tab. 4.

TABLE IV
STIFFENED CYLINDER UNDER AXIAL TORQUE

Super-element Brick Element
Number of Elements 24 120 30000
Maximum Elongation 1.338e-6 1.339e-6 1.376e-7
Difference With Brick 
Element Method (%) 2.7 2.6

As it is shown a huge number of brick elements are 
required to establish a mesh independent result for the FG 
cylinders. This amount is reduced greatly using the new super-
element.

Fig.  3 torsion loading: clamped-free boundary conditions

IV. MODAL ANALYSIS

The equation of motion for a multi degree of freedom 
udamped system is expressed as

••
0M Q KQ

( 19)

Radius(r)

k

k

k

k

k

k

Fig.  2 Modulus of elasticity of FGM cylinder in radial direction
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Where Q is the degree of freedom vector and M and K are 
respectively, the system mass and stiffness matrices. When 
vibration in one of the mode shapes, i , all the points in the 
system undergo simple harmonic motion with the 

i, which can be stated as;

sin( )i iQ A t ( 20)

in which Ai is the amplitude vector with each component 
corresponding to the specific degree of freedom. Substituting 
(20) into (19) yields;

2(- ) 0i iM K A ( 21)

To avoid a nontrivial solution for the above equation, it 
follows that the determinant of the coefficient matrix, -

2+K, should vanish.

2- 0iM K ( 22)

By pre-multiplying the above equation with M-1 we obtain;

- 0iD I ( 23)

where D=M-1 K is the dynamic matrix i= i2.
Solving “(23)” i, i=1… S, of 
the dynamic matrix, where S is the size of the mass or 
stiffness matrices which equals the number of degrees of 
freedom of the entire system. In fact the eigenvalue problem 
in “(23)” leads the square of natural frequencies and the mode 
shapes as the eigenvalues and eigenvectors of D, respectively.
Cylinders are categorized into two main groups according to 
their wall thickness. The ratio of the wall thickness to radius is 
the main criterion. According to the Love theory those 
cylinders with h/r are referred as shells and are analyzed 
based on shell theorems or numerical methods while for thick 
walled cylinders mostly the numerical methods such as finite 
element is implemented. In this section thick walled FG 
cylinders are analyzed and natural frequencies are evaluated 
for different values of h/r. The finite element method using 
conventional methods (brick element) is used to verify the 
super-element capability in modeling of FG cylinders.
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Fig.  4 First bending mode frequency: clamped-free boundary 
conditions

Fig.  5 First torsion mode frequency: clamped-free boundary 
conditions

Fig.  6 Second bending mode frequency: clamped-free boundary 
conditions
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APPENDIX
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Fig.  7 First longitudinal mode frequency: clamped-free 
boundary conditions


