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Bootstrap and MLS methods-based individual

bioequivalence assessment
Kongsheng Zhang and Li Ge,

Abstract— It is a one-sided hypothesis testing process for assessing

bioequivalence. Bootstrap and modified large-sample(MLS) methods

are considered to study individual bioequivalence(IBE), type I error

and power of hypothesis tests are simulated and compared with

FDA(2001). The results show that modified large-sample method is

equivalent to the method of FDA(2001) .
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I. INTRODUCTION

T
HE aim of bioequivalence(BE) studies is to assess the

equivalence of two pharmaceutical drug of the same

active drug substance(Wijnand [1]). BE generally have three

types including average bioequivalence (ABE), population

bioequivalence (PBE) and individual bioequivalence(IBE).

ABE focuses only on the difference of average measure be-

tween test drug(T) and reference drug(R), the interest measure

may be area under curve and peak concentration. But ABE

ignores the variability of the measure for T and R. PBE

emphasizes total variability of the measure in population. IBE

takes into account the within-subject variability and subject-

by-formulation interaction for T and R. The mixed-effects

model usually be used to evaluate BE.

The original bootstrap method is used to study BE

(FDA [2]). FDA [3] proposed a parametric method to evalu-

ate BE. Shao et al. [4] improved the assessing procedure of

FDA [1]. Pigeot [5] continued to investigate IBE by bootstrap

percentile method. Wan et al. [6] investigated IBE by bootstrap

and Bayesian bootstrap methods, but they did not consider

the type I error for hypothesis testing. In this paper we

shall give the type I error and compare the modified large-

sample method with bootstrap methods. Efron [7] proposed a

new method named bootstrap which can simulate confidence

interval for interest parameter such as mean and variance.

Now there are many different styles about the bootstrap. The

asymptotic theory of bootstrap can be seen in the literatures

(e.g., Singh [8]; Bickel and Freedman [9]).

The hybrid bootstrap percentile method is to approximate

the distribution of θ̂ − θ by θ̂∗ − θ̂. On the basis of bootstrap

percentile method, the approximated upper confidence bound

is 2θ̂ − θ̂∗(Bα). Hall [10] pointed out the coverage error was

also O(n− 1
2 ). Rubin [11] proposed the Bayesian bootstrap

method to construct confidence interval.
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Ting et al. [12] extended the idea of modified large-

sample(MLS) method to obtain an upper confidence bound

for η = c1σ
2
1 + · · · + cpσ

2
p in which ci(i = 1, 2, . . . , p) has

different sign. The 1-α upper confidence bound is
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where
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{
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, ci > 0,

χ2
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, ci < 0,
(2)

ni denotes the number of samples in each sequence and

σ̂2
1 , σ̂

2
2 , · · · , σ̂2

p are independent. Lee et al. [13] considered the

case that σ̂2
1 , σ̂2

2 , · · · , σ̂2
p are dependent and used the new

method to evaluate PBE.

The rest of this article is organized as follows. In Section 2,

we provide a description of the statistical model and criteria

for evaluating IBE in Appendix G of FDA’s Guidance [3]. In

Section 3, the power of different bootstrap methods and MLS

method for test procedures is simulated, and the type I error

of several tests is investigated. We present some conclusions

in Section 4.

II. STATISTICAL MODEL AND CRITERIA

To assess IBE s-sequence and four-period experiment usu-

ally be considered. FDA [3] recommended the mixed-effect

model

Yijkl = µk + γikl + δijk + εijkl (3)

where i = 1, 2, . . . , s indicates sequence, j = 1, 2, . . . , ni

indicates subject within sequence i, k=R,T denotes treatment,

l=1,2 denotes replicate on treatment k for subjects within

sequence i. Yijkl is the response of replicate l on treatment k
for subject j in sequence i, γikl represents the fixed effect of

replicate l on treatment k in sequence i, δijk is the random

subject effect for subject j in sequence i on treatment k, and

εijkl is the random error for subject j within sequence i on

replicate l of treatment k.

The linearized criteria are as follows in FDA [3]

(a) reference-scaled(σ2
WR ≥ σ2

W0):

η1 = (µT − µR)2 + σ2
D + σ2

WT − σ2
WR − θI · σ2

WR, (4)

(b) constant-scaled(σ2
WR < σ2

W0):

η2 = (µT − µR)2 + σ2
D + σ2

WT − σ2
WR − θI · σ2

W0, (5)

where µT and µR indicate population average responses of the

log-transformed measure for the T and R formulation, respec-

tively. σ2
D = σ2

BT + σ2
BR − 2ρσBT σBR indicates subject-by-

formulation interaction variance component, σ2
WT and σ2

WR
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represent the within-subject variance of the T formulation and

R formulation, respectively. σ2
W0 represents specified constant

within-subject variance and θI BE limit. Consider the testing

hypothesis

H0 : η ≥ 0 versus H1 : η < 0 (6)

where η = η1 if σ2
WR ≥ σ2

W0 and η = η2 if σ2
WR < σ2

W0.

Some statistics are defined as follows:

Iij = YijT · − YijR·, Tij = YijT1 − YijT2,

Rij = YijR1 − YijR2, i=1,2,...,s, j=1,2,...,ni,

YijT · = 1
2 (YijT1 + YijT2), YijR· = 1

2 (YijR1 + YijR2),

µ̂k = 1
s

∑s
i=1 Yi·k·, k=R,T.

Yi·k· = 1
ni

∑ni

j=1
1
2

∑2
l=1 Yijkl , ∆̂ = µ̂T − µ̂R,

MI = σ̂2
I = 1

nI

∑s
i=1

∑ni

j=1(Iij − Ii·)
2,

MT = σ̂2
WT = 1

2nT

∑s
i=1

∑ni

j=1(Tij − Ti·)
2,

MR = σ̂2
WR = 1

2nR

∑s
i=1

∑ni

j=1(Rij − Ri·)
2,

nI = nT = nR =
∑s

i=1 ni − s.

Ii· = 1
ni

∑ni

j=1 Iij , Ti· = 1
ni

∑ni

j=1 Tij ,

Ri· = 1
ni

∑ni

j=1 Rij .

Then the above linearized criteria are estimated by

(c) reference-scaled(MR ≥ σ2
W0):

η̃1 = ∆̂2 + MI + 0.5MT − (1.5 + θI)MR, (7)

(d) constant-scaled(MR < σ2
W0):

η̃2 = ∆̂2 + MI + 0.5MT − 1.5MR − θIσ
2
W0. (8)

Compute the 95% upper bound of the parameter η . If the

upper bound is negative or zero, we can draw a conclusion

that the IBE is equivalent for T and R. To calculate the upper

bound there are parametric methods such as FDA [3] and

nonparametric method(e.g., FDA [2]; Shao et al. [4]). On the

basis of the mixed-model(FDA[3]), we study IBE by using

bootstrap and Bayesian bootstrap methods.

Note that
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since cov(T1, T2) = σ2
BT , cov(R1, R2) = σ2

BR,
cov(T1, R1) = cov(T1, R2) = cov(T2, R1) = cov(T2, R2) =
ρσBT σBR. Hence MI , MT , MR are independent.

III. SIMULATION RESULTS

Given s=2 and n1 = n2 = n, let

y1j = (Y1jT1, Y1jT2, Y1jR1, Y1jR2),

y2j = (Y2jT1, Y2jT2, Y2jR1, Y2jR2),

(j = 1, 2, . . . , n), the bootstrap sample (y∗
11, y

∗
12, . . . , y

∗
1n)

and (y∗
21, y

∗
22, . . . , y

∗
2n) are drawn from (y11, y12, . . . , y1n) and

(y21, y22, . . . , y2n) with replacement, respectively.

We choose appropriate criterion to calculate η̂∗
1 or η̂∗

2 , either

η̂∗
1 or η̂∗

2 denoted by η̂∗1.

The following methods (M1-M4) can be found in [6].

(M1) bootstrap percentile method(BP): For each bootstrap

sample, we calculate the bootstrap estimator M∗
R of σ2

WR to

compare with σ2
W0 = 0.04 so as to choose the approximate

the criterion. Repeat the above step B times (choose B=500),

we can calculate the bootstrap estimator η̂∗b(b = 1, 2, . . . , B)
of η, let η̂∗(i) represent the i-th largest number of η̂∗b(b =
1, 2, . . . , B). The approximate 100(1 − α) confidence upper

bound is η̂∗(B − Bα) for η . IBE is equivalent to T and R if

η̂∗(B − Bα) ≤ 0 .

(M2) hybrid bootstrap percentile method(HBP): We analo-

gously compute the approximate 100(1−α) confidence upper

bound for η is 2η̂ − η̂∗(Bα). IBE is equivalent to T and R if

2η̂ − η̂∗(Bα) ≤ 0 .

(M3) Bayesian bootstrap percentile method(BBP): To es-

timate the interest parameters ∆, σ2
I , σ2

WT and σ2
WR, we

generate s random vectors Vi=D(ni; 1, 1, ..., 1) (i=1,2,...,s).

Then the Bayesian bootstrap estimator of ∆ is

∆̂∗ =
1

s

s∑

i=1

ni∑

j=1

VijIij . (9)

The Bayesian bootstrap estimators of σ2
I , σ2

WT and σ2
WR are

M∗
I =

1

nI

s∑

i=1

ni

ni∑

j=1

Vij(Iij −
ni∑

j=1

VijIij)
2, (10)

M∗
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1

2nT

s∑
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ni

ni∑

j=1

Vij(Tij −
ni∑

j=1

VijTij)
2, (11)

and

M∗
R =

1

2nR

s∑

i=1

ni

ni∑

j=1

Vij(Rij −
ni∑

j=1

VijRij)
2, (12)

respectively. Denoted Bayesian bootstrap estimator of η by

η̂∗b

BB
(b = 1, 2, . . . , B). IBE is equivalent to T and R if

η̂∗

BB
(B − Bα) ≤ 0 .

(M4) hybrid Bayesian bootstrap percentile method (HBBP):

The process for assessing IBE is similar to Bayesian bootstrap

percentile method. IBE can be claimed for T and R if 2η̂ −
η̂∗

BB
(Bα) ≤ 0 .

(M5) by the work of Section 2 we use formulas (1) and (2)

to calculate the upper confidence bound for the parameter η.
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The following parameter setting to enable H0 hold is

considered (ps represents parameter setting).

ps µT − µR σ2
WT σ2

WR σ2
BT σ2

BR ρ η
1 0.30 0.06 0.01 0.03 0.01 0.9 0.0490

2 0.30 0.03 0.01 0.06 0.03 0.9 0.0238

3 0.40 0.10 0.03 0.09 0.01 0.9 0.1762

4 0.10 0.02 0.01 0.03 0.02 0.9 0.0262

The above six methods are used to evaluate IBE for the

dataset in [1]. Let α = 0.05, the 1 − α upper confidence

bound are -0.0305, -0.0425, -0.0506, -0.0505, -0.0471 and -

0.0316, respectively, the smallest number is -0.0505 which is

associated with Bayesian bootstrap percentile method.

TABLE I

TYPE I ERROR SIMULATION

ps method β (n=12) β (n=24) β (n=36) β (n=48)
1 FDA’s 0 0 0 0

BP 0.05 0.01 0 0
HBP 0.01 0 0 0
BBP 0 0 0 0

HBBP 0 0 0 0
MLS 0 0 0 0

2 FDA’s 0.01 0.03 0.04 0.04
BP 0.10 0.20 0.16 0.18

HBP 0.15 0.13 0.13 0.15
BBP 0.09 0.08 0.07 0.09

HBBP 0.12 0.09 0.09 0.07
MLS 0.01 0.03 0.04 0.04

3 FDA’s 0 0 0 0
BP 0 0 0 0

HBP 0 0 0 0
BBP 0 0 0 0

HBBP 0 0 0 0
MLS 0 0 0 0

4 FDA’s 0 0.01 0 0
BP 0.04 0.04 0.03 0.02

HBP 0.07 0.05 0 0.03
BBP 0.05 0.02 0.01 0

HBBP 0.07 0.01 0.01 0
MLS 0 0.01 0 0

The following parameter setting is considered:

ps µT − µR σ2
WT σ2

WR σ2
BT σ2

BR ρ η
1 0.10 0.06 0.05 0.03 0.02 0.9 -0.0988

2 0.10 0.03 0.01 0.03 0.02 0.9 -0.0639

3 0.20 0.03 0.03 0.03 0.02 0.9 -0.0539

4 0.20 0.02 0.01 0.03 0.02 0.9 -0.0439

All these above 4 parameters setting satisfy η < 0. For

each parameter setting we generate 100 groups random nubers

under the model in FDA [3] and B=500 bootstrap samples for

each group. Denote β the number that the upper confidence

bound of η is less than or equal to 0, then β/100 means the

power simulated for the test procedure. We evaluate IBE by

parametric method (FDA [3]), BP mehtod, HBP method, BBP

method, HBBP method and MLS mtehod (see, Ting et al. [12];

Lee et al. [13]) at significance level α = 0.05.

IV. CONCLUSION

As shown in the above tables, we see that modified large-

sample method achieves the same type I error and power of

FDA [3].

TABLE II

POWER SIMULATION

ps method β (n=12) β (n=24) β (n=36) β (n=48)
1 FDA’s 0.75 0.92 1 1

BP 0.73 0.92 0.98 1
HBP 0.59 0.83 0.90 0.98
BBP 0.96 1 1 1

HBBP 0.81 0.90 0.99 0.99
MLS 0.81 0.90 0.99 0.99

2 FDA’s 0.95 1 1 1
BP 0.97 1 1 1

HBP 0.85 0.94 0.98 1
BBP 1 1 1 1

HBBP 0.98 1 1 1
MLS 0.81 0.90 0.99 0.99

3 FDA’s 0.67 0.90 0.97 0.99
BP 0.81 0.88 0.99 1

HBP 0.65 0.78 0.75 0.86
BBP 1 1 1 1

HBBP 0.53 0.58 0.68 0.76
MLS 0.81 0.90 0.99 0.99

4 FDA’s 0.87 0.99 1 1
BP 0.91 0.97 1 1

HBP 0.71 0.88 0.95 0.98
BBP 1 1 1 1

HBBP 0.50 0.51 0.79 0.81
MLS 0.81 0.90 0.99 0.99
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