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Abstract—This paper presents a technical speaker adaptation 

method called WMLLR, which is based on maximum likelihood linear 
regression (MLLR). In MLLR, a linear regression-based transform 
which adapted the HMM mean vectors was calculated to maximize the 
likelihood of adaptation data. In this paper, the prior knowledge of the 
initial model is adequately incorporated into the adaptation. A series of 
speaker adaptation experiments are carried out at a 30 famous city 
names database to investigate the efficiency of the proposed method. 
Experimental results show that the WMLLR method outperforms the 
conventional MLLR method, especially when only few utterances 
from a new speaker are available for adaptation. 
 

Keywords—hidden Markov model, maximum likelihood linear 
regression, speech recognition, speaker adaptation.  

I. INTRODUCTION 

PEAKER adaptation techniques have been applied to 
speech recognition technology to get a good recognition 

performance over the last decade. A speaker-independent (SI) 
system is typically constructed using speech samples collected 
an as large as possible population of speakers. Nevertheless, in 
the speaker-dependent (SD) case, the large amount of required 
training data for each test speaker reduces the utility and 
portability of such system. For a given speech recognition task, 
a speaker-dependent system usually outperforms a speaker 
independent system by a factor of two to three as long as a 
sufficient amount of training data is available to acquire the 
speaker- dependent model. But when the amount of 
speaker-dependent data is limited, such a performance 
improvement may not be realized. Hence a speaker adaptive 
(SA) system is constructed to have desirable SD-like properties 
but require only a small fraction of the speaker-specific training 
data needed to build a full SD system. Speaker adaptation 
techniques that transform the SI acoustic models to obtain near 
speaker-dependent performance are sometimes named model 
adaptation techniques.  

Model adaptation techniques mainly include three 
categories: Bayesian-based, transformation-based and 
eigenvoice-based. Bayesian-based model adaptation attempts 
to directly re-estimate the model parameters, for example, using 
maximum a posteriori (MAP) adaptation [1][2]. MAP 
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adaptation only re-estimates model parameters of the 
corresponding units appearing in the adaptation data. Usually, 
MAP adaptation needs a large amount of data for adaptation 
and the performance improves as the amount of adaptation data 
increases. When the amount of data is sufficiently large, the 
MAP estimation yields recognition performances as good as 
that obtained using maximum-likelihood estimation [3]. As for 
transformation-based model adaptation, such the adaptation 
technique consists in applying some transformations estimated 
from a set of adaptation utterances to various clusters of hidden 
Markov models (HMM) parameters. Two kinds of 
transformation-based adaptations, the bias transformation and 
the affine transformation, are popular in the recent years. The 
bias transformation is usually applied by adding a cepstral bias 
to adapting the HMM parameters [4]. Sometimes, by adding a 
bias may not be sufficient for modeling the variations of test 
environments or test speakers. Thus, the affine transformation 
is suggested. Accordingly, the HMM parameters are linearly 
scaled by a proper transformation matrix and shifted by a bias. 
In [5], a maximum likelihood linear regression (MLLR) 
method was proposed for adapting the continuous-density 
hidden Markov model (CDHMM) parameters. In this study, the 
maximum likelihood (ML) theory for calculating the linear 
regression transform was employed to adapt the HMM mean 
vectors.  

Besides, various methods for ensuring robust MLLR 
transformation estimation have been proposed. In [6][7], the 
maximum a posteriori (MAP) theory for estimating the 
transformation parameters was presented by maximizing the 
posterior density. In both [8] and [9], it is suggested that a prior 
distribution for the mean transformation matrix parameters be 
used (dubbing the technique MAPLR) and this improves 
performance when very small amounts of data are available. 
Alternatively a variant of the E-M algorithm that optimizes a 
discounted likelihood criterion was suggested in [10]. This 
technique also improved robustness for transformations being 
trained using small amounts of adaptation data. 

Kuhn, et al. proposed the eigenvoice adaptation where a 
priori knowledge concerning the variations among all training 
speakers were represented as the set of SD model parameters in 
the form of eigenvectors named eigenvoices; a new speaker 
model was then expressed as the linear combination of the set 
of eigenvoices [11]. Following that, various extensions of such 
the eigenvoice-based adaptation have been developed recently, 
such as the eigenvoice-versions of conventional MLLR and 
MAPLR adaptation [12][13]. 
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To tackle the issue of unreliable MLLR model 
transformation due to the scantiness of training data without the 
daunting cost of MAPLR-like adaptation, an alternative 
MLLR-based speaker adaptation algorithm is presented in this 
paper in order to keep a good recognition performance when 
only a very limited amount of adaptation data is available. An 
adequate weight will be calculated for the transformation 
matrices so that the updated mean parameters for the initial 
model will not vary drastically, especially when only extremely 
a few adaptation data from a new speaker are available. The 
prior knowledge of the initial model will be adequately 
incorporated into the adaptation. 

The rest of the paper is organized as follows. The theoretical 
formulation of the MLLR is briefly described in Section II. 
Besides, using the MAP theory for estimating the 
transformation parameters is then simply described after the 
MLLR. In Section III, the proposed method to adjust the 
parameters of the MLLR estimation is presented. Experiments 
on speaker adaptation by applying the proposed method to 30 
famous city names database are carried out in Section IV. 
Finally, the conclusion is made in Section V. 

II. REVIEW OF THE LINEAR REGRESSION ADAPTATION 
TECHNIQUE  

The maximum likelihood linear regression (MLLR) is a 
popular speaker adaptation scheme that uses model transforms 
to construct a more appropriate model [5]. Let Λ be a set of SI 
hidden Markov models. A transformation-based model 
adaptation consists of applying some transformations F to 
various clusters of HMM parameters. Given some adaptation 
data, Y, the objective of the adaptation is first to derive the 
parameters η  of the transformations, and then use the 
transformed models )(ΛηF  to recognize the incoming speech. 
The estimation of η  is traditionally carried out using classical 
statistics that assume that η are some fixed but unknown 
parameters. Because of its simplicity, the maximum likelihood 
(ML) criterion is usually chosen, which states that MLη̂  should 
maximize the likelihood of the adaptation data given the 
transformed model, ) ,|( ηΛYp : 

                       ) ,|(maxargˆ ηη
η

Λ= YpML .                     (1)          

In the MLLR technique, the ML criterion is used to estimate 
the transformation parameters. Meanwhile, a simple and linear 
transformation is utilized. The parameters η of the 
transformations are (A, b). The Gaussian mean parameters are 
updated according to  

bA +⋅= μμ̂ ,                               (2) 
where A  is an nn × matrix and b is an n  dimensional vector 
(and n  is dimensionality of the observations). This equation is 
sometimes written as 

sss W ξμ ⋅=ˆ ,                                (3) 
where sW  is the )1( +× nn  transformation matrix (for 
n dimensional data) and sξ  is the extended mean vector, 

which is defined as 
]',,,[

1 nsss μμωξ K= ,                         (4) 

where ω  is the offset term for the regression and usually set as 
1. 

The transformation matrix sW  is estimated such that the 
likelihood of the adaptation data is maximized. There is a 
closed form solution to the sW  estimation [5]. As usual, the 
Expectation-Maximization (E-M) algorithm is used to solve the 

sW  matrix estimation problem [14]. Accordingly, the sW  is 
derived by solving the following equation: 
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where P is the number of adaptation data, )( p
tο  is the 

observation vectors of adaptation data at time t , and )()( tp
sr

γ  is 

the total occupation probability for the r-th mixture of state s at 
time t  given that the observation sequence )( pο  is generated.  

Usually there are many Gaussians per matrix i.e., the 
transformation matrix is tied over a number of Gaussians. This 
transform sharing can allow all the Gaussians in a system to be 
updated. That is, all the Gaussian mean vectors can be adapted 
using Eq. (3) with the derived sW  from Eq. (5). 

In general, the main difference between speakers is assumed 
to be characterized by the mean vectors. Therefore, usually 
only Gaussian mean vectors are adapted and the other HMM 
parameters such as Gaussian variance parameters are not 
adapted. That the Gaussian variances can also be updated is 
proposed in [15]. In this study, the variance transforms can be 
found after the mean transforms have been estimated. 
However, the improvement of the recognition performance is 
extremely limited compared with mean-only adaptation 
MLLR. 

On the other hand, Chesta et al. suggests that the prior 
density can be taken into consideration in the estimation 
process of transformation parameters by using a maximum a 
posteriori criterion [8]: 

                     
).(),|(maxarg          

),|(maxargˆ

ηη

ηη

η

η

pYp

YpMAP

Λ∝

Λ=

                 (6) 

According to this estimation criterion, the adaptation 
scenario corresponds to the maximum a posterior linear 
regression, or MAPLR technique. The maximization of Eq. (6) 
can be carried out by means of the E-M algorithm [14]. After a 
series of derivations, the following system of )1( +× pp  linear 
equation is obtained [8], where ijw  is the (i, j)-th component of 

the matrix W, ijijij m σγ  ,  , and ijφ  are the (i, j)-th component of 

the matrices Σ , ,, MR mn  and Φ , and where iμ~  is the i-th 
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component of mn,μ : 

(7)                                                                  
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 where ijz  is defined as: 
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 (8) 
The matrix W  can be obtained by solving the system of 

)1( +× pp  linear equations described by Eq. (7) and Eq. (8). It 
is noted that the matrix W  is much more difficult to be solved 
from this system of equations than from that of the standard 
MLLR due to the additional terms { }ΦΣ  , ,M  related to the 
prior density. 

III. THE PROPOSED FAST MLLR-BASED APPROACH (WMLLR) 
As described in the above section, when using the MLLR 

formulation, the mean vector μ  is adapted using an affine 
transformation. However, when only a limited amount of 
adaptation data is available, the transformation matrix sW  
derived from Eq. (5) can be not robust. Thus, all adapted mean 
vectors using the poor transformation through Eq. (3) would 
not be effective. In the following, an MLLR-based approach to 
ensure robust MLLR estimation is proposed. The approach is 
different from previous MLLR-based methods (e.g., [8][9]). 

A. Model Combination 
It is expected that better performance will be achieved even 

when only a small training data available for adaptation with 
using a weighted sum of the initial mean vector and the MLLR 
adapted mean vector. This is reasonable because the 
appropriately chosen prior knowledge of the initial mean vector 
will adjust the ineffective MLLR adapted mean vector to the 
more reliable one. Accordingly, the combination approach of 
the initial model and the MLLR adapted model is proposed as 
follows: 

ssss W ξαμαμ ⋅⋅−+⋅= )1(~ ,                     (9) 
where sμ  is the initial mean vector, α  is a suggested weight 
obtained in a training procedure, and sμ~  is the modified 
adapted mean vector. It is worth noting that this equation is 
similar to the standard MLLR adaptation solution in Eq. (3) 
except for the additional term related to the prior knowledge of 
the initial model. 

Fig. 1 depicts the procedure of the proposed WMLLR 
adaptation method. We can get a set of transformation matrices 

sW  from observed adaptation data by using the standard 
MLLR method as described in the section 2. At the same time, 
according to the amount of data available for adaptation, we 
can choose the most proper α  from those estimated well in 

advance. As soon as the transformation matrix is calculated and 
the weight α  is appropriately chosen, the WMLLR adapted 
model can be obtained. The follows describes how those 
weights offered for model combination are trained in an offline 
supervised training procedure. 
 

MLLR adaptation for the
transformation matrix

Existing
HMM

parameters

Combination

Decide the proper weight for
combination

Adaptation
utterances

α

ssss W ξαμαμ ⋅⋅−+⋅= )1(~

sW

 
Fig. 1. Using α  for model combination. 

 

B. α  Training 
The training procedure of α  is shown in Fig. 2. Suppose 

that there are total K training speakers whose baseline 
recognition rates are )1(bR , )2(bR ,…, and )(KRb . Then 
consider Eq. (9) with α  replaced by ),( jkα . As for ),( jkα , 
ten intervals are equally partitioned between 0 and 1. Then for 
the k-th training speaker, the weight ,9,......,2,1 ),,( =jjkα is 
sequentially assigned as 0.1, 0.2,…, and 0.9, respectively. And 
then, the performance, i.e., the recognition rate, of the k-th 
adapted speaker model with ),( jkα  is ) ,( jkR . That is, for the 
k-th training speaker, the recognition set is composed of 

)1 ,(kR , )2 ,(kR ,…, and )9 ,(kR , which are in correspondence 
to the adapted model with )1,(kα , )2,(kα ,…, and )9,(kα , 
respectively. If the performance ) ,( jkR  outperforms that of 
the k-th speaker’s baseline model, i.e., )(kRb , we take this 
effective weight ),( jkα into consideration. Conversely, if the 
performance of the adapted speaker model is worse than or 
equal to the baseline model, we discard the weight ),( jkα , i.e., 
set ),( jkα = 0. The above process proceeds repeatedly until all 
K speakers are tested over.  

When there are multiple effective weights ),( jkα  available, 
it is of interest to determine to use what rule of combination to 
combine the useful information. A most common information 
combination approach suggested in [16] is a weighted linear 
combination. With this approach, the problem of information 
combination is to reduce multiple useful estimates to one 
optimal estimate. 
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Fig. 2. The training procedure of α . 
 
Then these various effective weights ),( jkα  can be finally 

combined to a single term by taking the weighted average based 
on the recognition performance as follows: 
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The weight ),( jkw  assigned to each effective ),( jkα  is 
proportional to the recognition performance ),( jkR . 

C. Measurements and Analysis of α  
For each specific amount of adaptation data, however, we 

can train a correspondent weight by the above training 
procedure. Fig. 3 depicts α  values on this training procedure 
with training speakers K being set 150 under various amounts 
of adaptation data, starting at the size of one adaptation 
utterance. It is observed from Fig. 3 that the values of α  
decreases slightly when the number of adaptation utterances 
increases gradually. The weight α  approaches to a saturated 
value when the adaptation utterances are over 4. 

Fig. 3. The curve of the training values of α . 
 
It is believed that the trained weight α  should vary with 

different amounts of adaptation data. That is, the combination 
mean vector, i.e., the WMLLR adapted model, moves between 
the initial mean vector and the MLLR estimate mean vector 
according to the given adaptation data size. Fig. 4 shows an 
example of the movement of the combination mean vector. If 
the amount of given adaptation data is little, the combination 
mean vector after utilizing the above combination approach 
remains close to the initial mean vector. Conversely, if the 
amount of given adaptation data is large, the combination mean 
vector becomes close to the adapted mean vector by using the 
MLLR estimation. 

 
 
 
 
 
 
 
 
 
 

Fig. 4. An example of the movement of the combination mean vector. 

D. Complexity Analysis of the Proposed Method  
Moreover, compared with the MAPLR, this proposed 

combination approach is fast and simple. Observed from Eq. 
(9), the updated mean vector can be represented exactly in 
terms of a linear combination of the initial mean vector and the 
MLLR estimated mean vector. This combination action takes 
just )1(O . Furthermore, the combination factor, i.e., the weight 
α , is trained in an offline procedure and used for online 
adaptation. Thus, the task of acquiring α  according to the 
adaptation data available takes also just )1(O . Concluded by 
the above statements, the proposed method has the same 
complexity as the standard MLLR formulation. Conversely, in 
the MAPLR, due to the additional terms related to the prior 
density, the required additional calculation to obtain the 
transformation matrix is rather expensive. This is a very 
adverse condition for online adaptation. Therefore, this 
proposed method is indeed superior to the MAPLR in the speed 
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of calculation, which however also ensures the robustness of 
the MLLR estimation. 

IV. EXPERIMENTS AND RESULTS  

A. System Description and Database 
The speech signal was sampled at 8 kHz. The analysis 

frames were 30-ms wide with a 20-ms overlap. For each frame, 
a 24-dimensional feature vector was extracted. The feature 
vector for each frame consisted of a 12-dimensional (12-D) 
mel-cepstral vector and a 12-D delta-mel-cepstral vector. The 
initial models which were used as the speaker independent 
models were trained based on the hidden Markov network 
using a database, MAT400 sub-database DB3 [17]. The 
training set consisted of 4800 utterances from native Mandarin 
talkers. In general, each Mandarin syllable is composed of an 
initial part and a final part. In our experiment, the number of 
states was set 3 in the initial part and 6 in the final part.  

In the recognition experiments, new adaptation and testing 
data from fifteen speakers were recorded by a close-talking 
microphone. The adaptation data consisted of 10 utterances 
from each speaker. For adaptation experiments, the number of 
utterances was 2, 4, 6, 8, and 10, respectively. The testing data 
consisted of 60 utterances from each speaker uttering twice for 
30 city names. Full transformation matrices were used for 
MLLR, MAPLR, and the proposed WMLLR. Moreover, for 
MAPLR, the prior density was derived directly from the initial 
speaker independent models. In WMLLR, 150 speakers (not 
include these fifteen speakers in the adaptation testing 
experiment) were used to train α  values. 

B. Experimental Results  
Table 1 and Fig. 5 show the performance and the performance 
curve of the proposed combination model adaptation method 
(WMLLR), the MAPLR method, and the conventional MLLR 
method in the unsupervised incremental adaptation testing 
experiment. 
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Fig. 5. The performance curves of the WMLLR method, the MAPLR 
method and the conventional MLLR method in the recognition testing 
experiments of the different amount of adaptation data. 

Observed from Fig. 5, the proposed WMLLR was 
continuously superior to the MAPLR and the conventional 
MLLR. The performance curve of the WMLLR method shows 
the recognition rates increased rapidly till about four adaptation 

utterances and saturated gradually. In contrast, for the 
conventional MLLR method without referencing to any 
knowledge of the initial model, the recognition performance 
was worst. The recognition rate was lower than baseline in only 
two adaptation utterances obtained, and increased gradually 
with adaptation data being increased, but these were still lower 
than those of the WMLLR method. Besides, the results from 
the MAPLR method were better than the MLLR method for all 
the testing condition, but they were still a little worse than the 
WMLLR method. It is observed that the WMLLR is more 
robust than the MAPLR and the conventional MLLR especially 
when the adaptation data size is small. 

 
TABLE  I THE PERFORMANCE OF THE WMLLR METHOD, THE MAPLR METHOD 

AND THE CONVENTIONAL MLLR METHOD IN THE RECOGNITION TESTING 
EXPERIMENTS OF THE DIFFERENT AMOUNT OF ADAPTATION DATA. 

Recognition Rate (%) 

Numbers of Adaptation Utterances 

 
Speaker 

 
Adaptation 

Method 
0 2 4 6 8 10 

WMLLR 90 91.67 93.33 93.33 93.33 93.33 
MAPLR  90 91.67 93.33 93.33 93.33 

A 
 

MLLR  86.67 90 91.67 91.67 93.33 
WMLLR 90 90 91.67 93.33 93.33 93.33 
MAPLR  90 91.67 93.33 93.33 93.33 

B 

MLLR  86.67 91.67 91.67 93.33 93.33 
WMLLR 91.67 91.67 93.33 93.33 93.33 93.33 
MAPLR  91.67 93.33 93.33 93.33 93.33 

C 

MLLR  88.33 93.33 93.33 93.33 93.33 
WMLLR 91.67 91.67 93.33 93.33 93.33 93.33 
MAPLR  91.67 93.33 93.33 93.33 93.33 

D 

MLLR  90 93.33 93.33 93.33 93.33 
WMLLR 90 90 93.33 93.33 93.33 93.33 
MAPLR  90 93.33 93.33 93.33 93.33 

E 

MLLR  85 91.67 91.67 91.67 91.67 
WMLLR 90 91.67 93.33 93.33 93.33 93.33 
MAPLR  90 91.67 91.67 91.67 93.33 

F 

MLLR  88.33 91.67 91.67 91.67 91.67 
WMLLR 91.67 91.67 95 95 95 95 
MAPLR  91.67 93.33 93.33 93.33 93.33 

G 

MLLR  86.67 91.67 91.67 91.67 93.33 
WMLLR 90 91.67 93.33 93.33 93.33 93.33 
MAPLR  90 91.67 91.67 93.33 93.33 

H 

MLLR  88.33 91.67 91.67 91.67 91.67 
WMLLR 91.67 91.67 93.33 93.33 93.33 93.33 
MAPLR  91.67 93.33 93.33 93.33 93.33 

I 

MLLR  88.33 91.67 91.67 91.67 93.33 
WMLLR 86.67 88 91.67 91.67 93.33 93.33 
MAPLR  86.67 90 91.67 91.67 93.33 

J 

MLLR  83.33 88.33 88.33 88.33 90 
WMLLR 83.33 86.67 91.67 91.67 91.67 91.67 
MAPLR  85 88.33 88.33 90 90 

K 

MLLR  81.67 85 85 86.67 86.67 
WMLLR 98.33 98.33 98.33 98.33 100 100 
MAPLR  98.33 98.33 98.33 100 100 

L 

MLLR  91.67 98.33 98.33 98.33 100 
WMLLR 91.67 91.67 93.33 93.33 93.33 93.33 
MAPLR  91.67 93.33 93.33 93.33 93.33 

M 

MLLR  85 90 91.67 91.67 93.33 
WMLLR 90 90 91.67 91.67 91.67 93.33 
MAPLR  90 91.67 91.67 91.67 93.33 

N 

MLLR  86.67 90 90 91.67 91.67 
WMLLR 90 91.67 93.33 93.33 93.33 93.33 
MAPLR  91.67 93.33 93.33 93.33 93.33 

O 

MLLR  83.33 91.67 91.67 91.67 91.67 
WMLLR 90.45 91.20 93.33 93.44 93.66 93.78 
MAPLR  90.67 92.55 92.89 93.22 93.55 

Average 

MLLR  86.67 91.33 91.56 91.89 92.56 
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V. CONCLUSIONS  
This paper has presented the concept of the MLLR 

adaptation method combined with the initial model using a 
direct combination factor. From the performance evaluation, 
the proposed WMLLR adaptation method was significantly 
superior to the conventional MLLR adaptation method without 
any knowledge of the initial model. Besides, unlike the 
MAPLR, the proposed method is relatively simple and fast. 
More advanced and efficient combination approaches have 
been studying for further improvements on speaker adaptation. 
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