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Abstract—It’s known that incorporating prior knowledge into sup-
port vector regression (SVR) can help to improve the approximation
performance. Most of researches are concerned with the incorporation
of knowledge in the form of numerical relationships. Little work,
however, has been done to incorporate the prior knowledge on the
structural relationships among the variables (referred as to Structural
Prior Knowledge, SPK). This paper explores the incorporation of SPK
in SVR by constructing appropriate admissible support vector kernel
(SV kernel) based on the properties of reproducing kernel (R.K).
Three-levels specifications of SPK are studied with the corresponding
sub-levels of prior knowledge that can be considered for the method.
These include Hierarchical SPK (HSPK), Interactional SPK (ISPK)
consisting of independence, global and local interaction, Functional
SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A
convenient tool for describing the SPK, namely Description Matrix
of SPK is introduced. Subsequently, a new SVR, namely Motivated
Support Vector Regression (MSVR) whose structure is motivated
in part by SPK, is proposed. Synthetic examples show that it is
possible to incorporate a wide variety of SPK and helpful to improve
the approximation performance in complex cases. The benefits of
MSVR are finally shown on a real-life military application, Air-to-
ground battle simulation, which shows great potential for MSVR to
the complex military applications.

Keywords—admissible support vector kernel, reproducing kernel,
structural prior knowledge, motivated support vector regression

I. INTRODUCTION

IN non-linear regression, Support Vector Regression(SVR)
[1] has been proven to possess many advantages, e.g. no

local optima, good ability of generalization, intrinsic regular-
ization and the sparseness of support vectors, etc. [2], and
consequently be utilized in various applications [2]–[6].

More recently, the research on the incorporation of prior
knowledge in SVR is well concerned. It’s shown that prior
knowledge can be incorporated by replacing the bias term
of the kernel expansion with a combination of a set of
independent basis functions [7]. The prior knowledge in the
form of multiple polyhedral sets can also be incorporated
into a reformulation of SVMs for improving the kernel ap-
proximation [8], [9]. A prior knowledge on the derivatives
can be incorporated into the quadratic (QP) [9] and linear
programming(LP) [10] formulation of the SVR. A tutorial can

Wei Zhang is with the College of Information Systems and Management,
National University of Defense Technology (NUDT), Changsha, Hunan,
410073, China (e-mail: the ant@163.com).

Yao-Yu Li is with the College of Information Systems and Management,
NUDT, Changsha, Hunan, China. (e-mail: Garett 1984@hotmail.com).

Yi-Fan Zhu is with the College of Information Systems and Management,
NUDT, Changsha,Hunan, China (e-mail: nudtzyf@hotmail.com).

Qun Li is with the College of Information Systems and Management,
NUDT, Changsha,Hunan, China.

Wei-Ping Wang is with the Graduate School, NUDT, Changsha, Hunan,
China, (e-mail: wangwp@nudt.edu.cn).

be seen in [10]. All the related methods, however, which allow
the use of prior knowledge for SVR, focus on the knowledge in
form of numerical correlations (referred as to Numerical Prior
Knowledge, NPK), such as equality, inequality and simple IF-
THEN rules on numerical values [8], [11], etc. The strength of
the incorporation of NPK lies on its simplicity and generality
as it amounts to the addition of some equality or inequality
constraints to the QP or LP of SVR. It can handle problems
where conventional data may be few or not available and
improve the approximation performance.

It’s known that SVR is to learn an unknown function based
only on a training set of N input-output pairs {xi, yi}, i =
1, ..., N in a black box modeling approach [10](as shown in
Fig. 1(a)). Sometimes, however, modelers and analysts may
prefer polynomials to SVR due to its inconvincibility on
explaining how the results have been obtained. For example,
high-level decision-makers, especially in military fields, avoid
making decisions based on models that they do not fully un-
derstand, especially when they partially know the phenomena,
such as the dimensions or given cause-effect correlation among
some factors. The weakness of SVR, i.e. lack of comprehensi-
bility and interpretability in the structure of regression model,
hinders its applicability in complex problems.

Fig. 1. An illustration of SPK in modeling

Little work, however, has been done to incorporate the
prior knowledge on the structural relationships among the
variables (which is called as Structural Prior Knowledge, SPK,
in this paper) into SVR. Actually, in real world applications,
such as system identification and military simulations, some
information is usually known beforehand. For example, the
model has one output Y , and modelers may handpick sev-
eral inputs of most interest from dozens of even hundreds
of factors, of which there are 9(the x’s). Sometimes, some
important information, such as the hierarchy, interaction, and
some knowledge on the analytical forms, can be obtained from
problem analysis or phenomenological knowledge (as shown
in Fig1(b), which will be discussed in more detail later).

Compared with NPK, the SPK can only be incorporated
into SVR by configuring the kernel function, which includes
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the modification of structure of inputs and the configuration
of an appropriate kernel function. Some researchers with the
same concerns would argue for improving the sophistication
of conventional SV algorithm, and much is probably possible
by doing so. For example, Schölkopf et al. [12] showed that
the knowledge on invariance and image locality can be used to
design kernel functions in image classification tasks. However
the prior knowledge still belongs to NPK and is hard to extend
to the regression tasks. Furthermore, conventional admissible
support vector kernels (SV kernels) [13] perform an equal
treatment for all the input dimensions. That is regarded as
advantageous in many respects, especially when the prior
knowledge is of lack or inconsistency, because it corresponds
to “allowing the data to speak”, rather than biasing results
with one or another theory [14]. Such disregard for the SPK in
training SVR, however, may generate redundant computation
and uninterpretability of results, and consequently mislead the
high-level analysis.

Reproducing kernel, which is proven to be a SV kernel [15],
has many important properties, e.g. unique existence, positive
definiteness, convergence, projection etc. in reproducing kernel
Hilbert space (RKHS) [16]. Complex R.Ks can be composed
by some simpler ones through the direct sum and tensor
product, which is usually employed in convolution kernel [17]
to handle the sets whose elements are discrete structures, such
as strings, trees and graphs. The composition approach is more
general that it encompasses the methods for compositing SV
kernels through nonnegative linear combination or product
[18], [19]. It’s possible, with the properties of direct sum
and tensor product, to group the inputs and make differential
treatment of each group with a specific R.K based on SPK.

This paper describes the hierarchy of SPK specifications
and proposes a way for the incorporation of SPK into SVR
(referred as to Motivated Support Vector Regression, MSVR)
by composting appreciate SV kernels based on R.K. Finally,
a systematic comparison between the new R.Ks designed
by the proposed method and the conventional SV kernels,
i.e. polynomial kernel (PK) and Gaussian kernel (RBF) are
presented under three synthetic problems and an Air-to-ground
battle simulation. The experimental results illustrate that the
MSVR outperform conventional SVR with any single SV
kernel in terms of accuracy and efficiency.

II. PRELIMINARY

A. Formulation of Standard Support Vector Regression

Given an training set D = {(xi, yi), i = 1, ..., l} ⊂ Ω× R,
where Ω denotes the space of the input data (e.g. Ω = R

d,
where d denotes dimension of input). SVR aims at training a
model of the form y =< w, φ(x) > +b, which minimizes a
general risk function as follows:

1

2
‖ w ‖2 +C

l∑
i=1

L(yi, f(xi)) (1)

where w controls the flatness of the model, φ(x) is a mapping
function, b is the bias, < ·, · > denotes the dot product,
constant C>0 determines the trade-off between error mini-
mization and the maximization of the function flatness. In this

paper, the ε-insensitive loss functionLε [1] is used, i.e.,

Lε(y, f(x)) = |y − f(x)|ε = max {0, |f(x)− y| − ε} (2)

where ε ≥ 0 is a constant controlling the noise tolerances.
It’s well-known that SVR can be formulated as the fol-

lowing quadratic programming (QP) problem [13] which can
be solved efficiently by many well-documented optimization
algorithms:

min
α,α∗

1
2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )K(xi, xj)

+
l∑

i=1

(αi + α∗
i )ε−

l∑
i,j=1

(αi − α∗
i )yi

s.t.
l∑

i=1

(αi − α∗
i ) = 0, αi, α

∗
i ∈ [0, C], i = 1, ..., l

(3)

Consequently, the regression model takes a form as follows:

f(x) =
∑

i∈SV
(ᾱi − ᾱ∗

i )K(xi, x) + b (4)

where i ∈ SV denotes the indices of support vectors (SVs),
i.e. xi with nonzero Lagrange multiplier ᾱi or ᾱ∗

i , K(·, ·)is the
kernel function, which can be cast in terms of dot products
of a mapping function, i.e. K(s, t) =< Φ(s),Φ(t) >, where
Φ(·) is a mapping function.

Obviously, the complexity of (4) depends only on the
amount of SVs (ASV) and SV kernel rather than the di-
mensionality of the input space Ω. In practice, the SVs,
which depend on the selection of kernel and coefficients of
SV algorithm [20], can be automatically extracted by SV
algorithm. In other words, the major task of the SV algorithm
lies in the selection of its kernel [19].

B. Definition of Reproducing Kernel

The theory of reproducing kernel Hilbert space (RKHS) has
been developed for years [16] before the SVM was introduced
[1]. it is a rigorous and effective framework for smooth
multivariate interpolation of arbitrarily scattered data [21] and
accurate approximation of general multidimensional functions
[22]. RKHS owes the name to the so-called reproducing kernel
(R.K). In this section, some basic concepts are introduced
briefly. For more details on RKHS see e.g. [16], [23], [24].

Defintion 1: Let Ω ⊆ R
d be an arbitrary nonempty set, H

is a Hilbert space of function f : Ω → R(short for f ∈ R
Ω).

We call that H is a reproducing kernel Hilbert space (RKHS)
if there exists K : Ω× Ω → R, satisfies the following:

(i) ∀x, Kx(y) = K(y, x) as a function of y belongs to H.
(ii) The reproducing property: ∀x ∈ Ω, and ∀f ∈ H,

f(x) =< f,Kx > (5)

(iii) H is spanned by K, that is, H = span{Kx(·)|x ∈ Ω}
Here, H is called the native space [25] of K (short for

HK(Ω)).
Defintion 2: K : Ω × Ω → R is called a R.K of H, if it

satisfies the conditions (i) and (ii) in 1.
Note that applying (5) to function Kx at y, we get

K(x, y) = Kx(y) =< Kx,Ky >,∀x, y ∈ Ω (6)
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which implies that the nonlinear map function takes the form
of R.K with any fixed x or y. Whereas the conventional
SV kernels are incapable of presenting the map functions
explicitly. As a result, the features of images of data can be
analyzed further.

Aronszajn [16] proved that simper R.Ks can be contributed
to compose more complex R.Ks by sum and product operators,
that is, let Ki(i = 1, 2) is the R.K of the RKHS Hi in same
set Ω with the norms ‖ · ‖i, then

Property 1: K = K1 + K2 is the R.K of a RKHS H of
all functions f = f1 + f2 with fi ∈ Hi, i = 1, 2, and with
the norm defined by ‖ f ‖2= min{‖ f1 ‖21, ‖ f2 ‖21}, i.e. the
minimum taken for all the decompositions f = f1 + f2 with
fi ∈ Hi, i = 1, 2.

Note that the property can be extended to the case where
K =

∑n
i=1Ki. In addition, the difference of R.Ks is also a

R.K; more details see [16] for reference as well.
Property 2: The direct product of H1 and H2 possesses a

R.K K(x1, x2, y1, y2) = K1(x1, y1)K2(x2, y2).
Similarly to Property 1, the product property can be extended
to the case where K =

∏n
i=1Ki. More detail see [16] for

reference.

C. Relations between SV Kernel and Reproducing Kernel
It’s necessary to discuss the relations between various

kernels to validate that the R.K can be used as a SV kernel.
It is hoped that the discussion here would help to bridge the
conceptual gap between some familiar kernels, e.g. positive
(semi-)definite kernel (PDK), Mercer kernel and R.K, whereas
some of the observations are not new or profound.

Defintion 3: Let Ω be a subset of R
n, n ∈ N,K : Ω ×

Ω → R is symmetric and positive (semi-)definite (PD), if and
only if for arbitrary finite sets {x1, ..., xm} ⊆ Ω, the matrix
K = (K(xi, xj))1≤i,j≤m is symmetric and positive definite,
i.e. ∀m ∈ N, ∀ci ∈ R, for any x1, ...xm ∈ Ω, i = 1, ..m,K
satisfies the following inequation∑m

i,j=1
cicjK(xi, xj) ≥ 0 (7)

Theorem 1: K : Ω×Ω → R is a SV kernel iff K is a PDK.
The proof is obvious. Refer to e.g. [15], [16] .
Theorem 2: K : Ω× Ω → R is a Mercer kernel iff K is a

PDK.
Proof: if K is a Mercer kernel, i.e. there exists a map

function Φ such that K(t, s) =< Φ(s),Φ(t) >. Then,∑m

i,j=1
cicjK(xi, xj) =

∑m

i,j=1
cicj < Φ(xi),Φ(xj) >

= ‖
∑m

i=1
ciΦ(xi) ‖2≥ 0

thus, K is a PDK according to (7).
For the converse, if K is a PDK, K is a Mercer kernel

according to Theorem 1 and Mercer’s Theorem [26], which
completes the proof.

Theorem 3: K : Ω × Ω → R is a Mercer kernel iff there
exists a RKHS H with R.K K, i.e. HK(Ω).

Proof: According to Moore–Aronszajn Theorem [16], any
PDK K is associated with a space HK(Ω) and vice versa.
Note that the Theorem 2 holds if K is a PDK, that is, K is a
Mercer kernel, which completes the proof.

III. MOTIVATED SUPPORT VECTOR REGRESSION WITH
STRUCTURAL PRIOR KNOWLEDGE

A. Motivation

Decision-makers, especially working on high-level issues,
often seek a robust logic for their choices, which makes sense
to themselves and can be explained to others. They may prefer
a “roughly right” formula that displays issues transparently. In
other words, the regression models can “tell a story”, which
explains why the model behaves as it does [14], that is, the
model should be physically meaningful and interpretable. The
“story” can appear with many forms, such as history data,
logic, rules, phenomena, even expertise or highly subjective
and personal insights. Some of them, which can be expressed
in the form of data, are included in the NPK, while some are
tacit knowledge. The latter, sometimes, is highly personal and
hard to formalize, making it difficult to employ in regression
directly.

Since the conventional SVRs are mathematical constructs,
often with little if any intuitive value to decision-makers. In
this section, a new SVR, namely motivated support vector
regression (MSVR), whose structure is motivated in part
by phenomenological considerations, is presented. The SPK,
such as knowledge based on simplified physical reasoning
and dimensional analysis, are employed to aid to postulate
a structural form for the regression model. Therefore, it’s
necessary to present the specifications of SPK firstly.

B. Specifications of Structural Prior Knowledge and Descrip-
tion Matrix

As shown in Fig.2, derived from Fig.1(b), there are three
levels of SPK, that is,

x2

x4 x5x3

(a) Hierarchical

c1

x5 x6 x7

x8

c2

x2

(c) Functional 

x9

Y

x2x1

(b) Interactional 

YLocal 
interaction

Global 
interaction

Independency

c2

1 2 2/( )Y x x c=

Fig. 2. Typical types of SPK

1) Level 2: Hierarchical SPK (HSPK): HSPK, shown in
Fig.2(a), is the highest level of SPK. It roughly describes the
relations between inputs at different levels of resolution with-
out detailed interaction. The inputs may come from the same
object model, but differ in the abstraction level or perspective
with which they describe a problem, i.e. they usually appear
in a multi-resolution, multi-perspective model [27] used for
military or political-military decision aids, defense planning
and machine intelligence. For example, in an analysis of air-
to-ground attack, inputs may blend some higher resolution
variables (e.g. efficiency of read weapons in initial phase
(x3), efficiency of read weapons in final phase (x4), time
of suppression of enemy air defenses (SEAD) (x5)) with a
lower-level variable, e.g. average efficiency of weapon (x2),
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i.e. the amount of Blue target destroyed per Red attack unit
per time unit(day). Therefore, it’s necessary to distinguish the
inputs at different levels before training regression model in
order to avoid the inconsistency. In other words, the inputs
should contain x2 or x3, x4 and x5 exclusively depending on
the analysts’ needs.

2) Level 1: Interactional SPK (ISPK): ISPK is a kind
of SPK in the middle level who describes the dependency
among inputs and the ones between input and output. It can
bring us two types of information, i.e., 1) grouping information
of inputs; 2) independence information between input and
output. For instance, x6 to x8 should be divided into two
different groups related with output Y , while x9 is another
group which is independent to Y , as shown in Fig.2(b).
This type of SPK can be derived from dimension analysis,
sensitivity analysis, correlation analysis, or a single-subject
experiment. For example, if the output being calculated is
a distance, and inputs include various times and an average
speed, then it is reasonable to construct composite variables
(i.e. c1 and c2 shown in Fig.2(b), which can be regarded as
aggregation fragments as a HSPK) with the dimensions of
distance, e.g. times multiplied by an average speed, to be
candidate regression variables. Consequently, ISPK can be
divided into three sublevels, i.e.,

1) Independence (e.g. x9);
2) Global interaction: the interaction between the poten-

tial composite factors or that between composite factor and
independent variable (e.g. the interaction between composite
factor c1 and x8, or the interaction among x1, x2, c2);

3) Local interaction: the interaction between the indepen-
dent variables (e.g. the interaction among x6, x7 and x8, which
can be replaced by a composite factor c1);

ISPK can, in quantity sense, sort or reduce the input
variables, and group them to proceed to the further design
of appropriate SV kernel. Consequently, it can, in some cases,
indeed greatly improve ”the story” and avoid errors associated
with the nonlinearities within the black-box models [14]. It
also somewhat improves average accuracy of the model and
reduced the computation effect, but that was less important.

3) Level 0: Functional SPK (FSPK): FSPK is in the
lowest level which describes the relatively detailed correlations
between inputs and output. It can be expressed in form of some
specific mathematical function (e.g. polynomial), statistical
function (e.g. min, max), piecewise function (which can
identify important branches) or some information which can
be expressed by familiar functions (e.g. periodicity v.s. sin,
approximability v.s. exp, etc.).

FSPK can be divided into two sub-levels, i.e.
1) Exterior-FSPK: function relations among all groups to

the output;
2) Interior-FSPK: function relations between a single

group and the output;
The former contributes to obtain a global regression model

which can reflect the phenomena (e.g. as shown in Fig.2(c),
the output Y is of a form: Y = x1/(x2c2) ), and the latter
helps to construct a proper SV kernel for a local regression
model (e.g. a local model in form of c1 = flocal(x5, x6, x7))).

To assist in getting more clear understanding of the SPK

with a systematic and graphical overview of its essential types,
a description matrix of SPK is presented as shown in Table
I. The horizontal axis identifies the main levels of SPK and
corresponding detailed sub-levels.

All the columns should cover the specifications of SPK in
every level and sub-levels.

1) The first column should cover the detailed hierarchy of
all the inputs of interest and specify which hierarchy is the
following analysis on.

2) The next three columns cover the ISPK in the sequence
of independence, global interaction and local interaction,
whose independent variables in regression analysis should be
in the same hierarchy specified in the HSPK column. The
corresponding contents should cover the input names and the
information whether composite variables should be used. If
so, the matrix should describe why and how.

3) The last two columns indicate the FSPK for exterior
and interior information. They are the most important part
of MSVR for postulating structural form motivated in part
by phenomenological considerations. Therefore, they should
be described relatively in detail. The corresponding contents
should indicate the specifications of function form and condi-
tions, as well as the SV algorithm.

TABLE I
DESCRIPTION MATRIX OF SPK

Problem
No.

Level 2:
HSPK

Level 1: ISPK Level 0: FSPK
Indep. Global Local Exterior Interior

A(output)a

aFootnote: describe the symbols used in the matrix for facilitating
the sharing and communication.

Applying the matrix is a means to make a complete in-
ventory of the SPK are located in regression tasks and how
they can be typified in terms of SPK levels. one should be
aware that some information can manifest itself in various
forms simultaneously. For example, the global interaction
may describe the local interaction (e.g. interaction between
x5, x6 and x7), while it is higher level interaction among
the composite variables and between composite variable and
independent variable (e.g. interaction between c1 and x8 or
c2 and x2). In filling in the matrix, one should be also
aware that the content of SPK should facilitate the sharing
and communication (e.g. make use of a specific document or
footnote).

C. New method for composition SV kernel with SPK
As stated in previous section, the R.K can be used as a

SV kernel, and possesses some good properties for composing
complex R.Ks. However, there is usually no R.K as free lunch
for the regression problems to be dealt with. For example, the
R.K(6) can only be used in the SV algorithm with input space
Ω′, where Ω′ ⊆ Ω, and the dimension of Ω′ is equal to that
of Ω.

The question raises now is, whether a R.K can be employed
when the dimension of Ω′ is bigger than that of Ω. The direct
sum case of two R.Ks in the Property 1 is firstly considered:
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Theorem 4: K(x, y) � a1K1(x1, y1) ⊕ a2K2(x2, y2) is a
SV kernel, where x, y ∈ Ω, x = (x1, x2), y = (y1, y2),
xs, ys ∈ Ωs, Ω1⊕Ω2 = Ω, as ≥ 0, and Ks is a R.K, s = 1, 2.

Proof: Noted that Ks is a PDK since it is a R.K from
the Theorem 2, 3 and Definition 3. In other words, ∀m ∈
N, x

(1)
s , ..., x

(m)
s ∈ Ωs, ∀cj ∈ R, j = 1, ...,m, then∑m

i,j=1
cicjKs(x

(i)
s , x(j)s ) ≥ 0 (8)

Since Ω1 ⊕ Ω2 = Ω, then there is a unique x(k) =

(x
(k)
1 , x

(k)
2 ) ∈ Ω, thus∑m

i,j=1 cicjK(x(i), x(j)) = (
∑m

i,j=1 cicj
∑2

s=1 asKs(x
(i)
s , x

(j)
s ))

= (
∑n

s=1 as
∑m

i,j=1 cicjKs(x
(i)
s , x

(j)
s )) ≥ 0

(9)
Thus, K(x, y) is a PDK according to (8), which proves that

it is a SV kernel from Theorem 1.
It’s clear that the theorem can be extended to the following

case, which results from Theorem 4 immediately.
Corollary 1: K(x, y) � a1K1(x1, y1)⊕· · ·⊕anKn(xn, yn)

is a SV kernel, where x = (x1, ..., xn), y = (y1, ..., yn),
xi, yi ∈ Ωi, ai ≥ 0, Ki is a R.K, i = 1, ..., n.

Note that, the inputs are divided into n groups. Each group
is defined in different domain Ωi so as to be mapped into
different feature space by specific SV kernel Ki. Therefore, the
impact on output Y of the different groups can be computed
separately by appropriate SV kernel based on the SPK. For
example, suppose there are some SPKs show that the relations
between inputs xi, xj and output y are linear and exponential
respectively, then it’s believed that it’s better to choose linear
kernel and exponential kernel for the ith and jth groups.

In addition, ai ≥ 0is a weight, which can be considered
to be a parameter for controlling the impact of a certain
group of input on the total performance of SVR. It’s of
profound theoretical and practical significance that different
parts of input can be analyzed by setting different value
of artificially, while the conventional SV kernels (e.g. RBF)
perform an equal treatment for all the input dimensions.
Furthermore, the weights can also be computed evolutionally
in evolutionary algorithms, e.g. genetic algorithm, to determine
the contribution of the components to total results dynamically.

Similarly, the composition method of SV kernel can be
applied to tensor product case.

Theorem 5: The kernel K(x, y) � K1(x1, y1)⊗K2(x2, y2)
is a SV kernel, where x, y ∈ Ω, x = (x1, x2), y = (y1, y2),
xi, yi ∈ Ωi, Ω1 ⊕ Ω2 = Ω, and Kiis a R.K,i = 1, 2.

Proof: In fact thatKi, (i = 1, 2)is a Mercer kernel, sinceKiis
a R.K. From Mercer’s theorem, ∀m ∈ N, the kernel Gram
matrix Ki of Ki to x(1)i , ..., x

(m)
i ∈ Ωi is as follows:

Ki :=
(
Ki(x

(j)
i , x

(k)
i )

)m

j,k=1
(10)

is positive (semi-)definite.
Using a classical Schur product theorem [28], it is easy

to prove that the kernel Gram matrix K of K(x, y) is also
a positive (semi-)definite matrix. Then, K(x, y)is a Mercer
kernel, and K(x, y)is a SV kernel from Theorem 2 and 3,
which completes the proof.

Obviously, some weights can also be added into the SV
kernel in Theorem 5, only with the requirement that the
product of these weights must be positive, i.e. a1a2 > 0.
Furthermore, Theorem 5 also can be extended to the tensor
product of multi-kernels, that is,

Corollary 2: Suppose Ki : Ωi × Ωi → R, (i = 1, ..., n) is
a R.K, then

K(x, y) = a1K1(x1, y1)⊗ · · · ⊗ anKn(xn, yn) (11)

is a SV kernel, where x = (x1, ..., xn), y = (y1, ..., yn),
xi, yi ∈ Ωi,

∏n
i=1 ai > 0.

The proof can be done by the complete induction.

D. Methodology of Motivated Support Vector Regression
In Fig. 3, the methodology of MSVR is presented.

Determine 
hierarchy of inputs

SPK

HSPK

ISPK

FSPK

Group inputs in 
same hierarchy

Screen out
independent inputs

Design SV kernel 
for each group

Design function 
among all groups

Train SVR and 
complete the 

regression

Fig. 3. Flow chart of MSVR based on well-designed SV kernel

Step1: Determine the hierarchy of all inputs of interest
based on HSPK

As the complexity of problem, diversity of existing models
and documents and limitations of human cognition, the inputs
of interest may be hierarchical. It may, sometimes, produce
large error and misleading information for analysts to train a
SVR in black-box pattern without considering the hierarchy.
Therefore, it’s necessary to analyze the hierarchy of inputs
based on HSPK if at all possible.

Step 2: Group the dealt inputs and remove the indepen-
dent inputs based on ISPK

The step is the most important prerequisite of MSVR in this
paper. It’s usually that, in many applications, the analysts are
concerned with a certain part of problem or finding critical
components. However, the original models, which may be
large and complex, often contain a great many variables. Some
of them could be omitted as they turn out to be “no use” (or,
at least, average to a constant over quite a range of cases) to
the output of interest, and some of them are combined to act
on the output. Group the input in same hierarchy can help to
clarify the problem at work and consequently to contribute to
the comprehensibility and interpretability. Dimension analysis,
sensitive analysis and correlation analysis are useful tools in
this step.

Step 3: Design appropriate SV kernel for each group
based on interior-FSPK and postulate a structural form for
the integrated regression model based on exterior-FSPK.
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This step is the foundation part of MSVR. As stated
previously, R.K is regarded as a SV kernel, which can perform
a specialized treatment for different dimensions of inputs based
on the SPK. In addition, the exterior-FSPK can integrate the
groups of inputs more reasonable and meaningful. Because the
interest in this paper is largely in models that are understand-
able, rather than complex mathematics, it’s believed that it can
greatly improve the “story” of the integrated regression model
and accuracy and efficiency as additional product, given that
SPK is known partially about the real-world systems being
described.

Step 4: Train the SVR with the well-designed SV kernel
and complete the integrated model based on SV algorithm
and exterior-FSPK

The first part of this step is same as the conventional SVR.
The differences between them are 1) the SV kernel is designed
with SPK, and 2) the integrated structure may be totally
different from the kernel expansion in conventional SVR, e.g.
integral, statistical functions, and even piecewise functions.

Overall, it’s believed that MSVR may possess the following
advantage, which will be illustrated in next section:

(1) Improve the comprehensibility and interpretability for
cognition needs;

(2) identify the critical components and branches;
(3) improve the accuracy and efficiency;

IV. TEST PROBLEMS AND TEST SCHEMES

A. Synthetic Problems

In order to illustrate the performance of the MSVR, three
synthetic examples and a military simulation example with and
without prior knowledge are compared. The test functions are
as shown in Table II, which including one output and two or
three inputs.

TABLE II
LIST OF SYNTHETIC PROBLEMS

No. Approximating function forms

P1 y = f(x) = 0.3x1 + 0.5(sinx1)2 − exp(−0.3x2
2)

P2 y = f(x) = 0.3x1 + 0.5x1x2 + 0.5x2
1 − 0.2x2

2 − e−0.3x2
3

P3 y = f(x) = (0.3x1 + 0.5x1x2 + 0.5x2
1 − 0.2x2

2)× (e−0.3x2
3 )

Consider a training data set of N = 100 points in which
the input data point xi, i = 1, 2, 3is picked uniformly from the
interval [−2, 2], and the target y is generated by an additive
noise process y = f(x)+ε , where ε is white Gaussian noise.
Additionally, assumed some PRK about these problems are
known as filled in Table III.

B. Air-to-ground Battle Simulation

Simple, low-resolution models are needed in this test
scheme for high-level reasoning and rapidly adaptive calcu-
lations. It’s noted that the original large and complex object
models, which are regarded as reasonably valid, are time-
consuming and hopelessly opaque for strategic analysis. Fur-
thermore, the original object models are high resolution mod-
els consisting of a large number of variables and uncertainties.

TABLE III
DESCRIPTION MATRIX OF SYNTHETIC PROBLEMS

Problem
No.

Level 2:
HSPK

Level 1: ISPK Level 0: FSPK

Indep. Global Local Exterior Interior

P1 none none none none ⊕ a x1 : P

x2 : E b

P2 none none
c1 : x1, x2;

x3
x1, x2 ⊕ x1 : P

x2 : E

P3 none none
c1 : x1, x2;

x3
x1, x2 ⊗c x1 : P

x2 : E

a⊕ means direct sum for the SV kernels
bx1 : P indicates x1 is with polynomial relationship with output,and x2 : E

indicates x2 is with exponential relationship
c⊗ means tensor product for the SV kernels

It’s impractical to analysis all the variables with the high
resolution models, which is called “disaster of dimension”.

In addition, A large number of runs for all the scenario
are required to eliminate the errors caused by uncertainties.
Therefore, the training samples of Air-to-ground simulation
are relatively smaller. This character makes it’s an opportunity
for SVR to train a lower-level regression model, since SV
algorithm is a machine learning method which possesses
advantages for resolving small-sample, non-linear and high
dimension problems.

TABLE IV
VARIABLES IN AIR-TO-GROUND SIMULATION

Variable Description

Variable Inputs

N Amount of Blue targets to be destroyed
B0 Initial inventory of Red weapon before the battle
TSEAD Time required to suppress Red air defenses
L0 Red loss ratio in SEAD stage
L1 Red loss ratio after SEAD stage
Pavg Average efficiency of Red weapon during the battle
P0 Initial efficiency of Red weapon in beginning
P1 Final efficiency of Red weapon at last

Variable Outputs

T
Required time of an air attacking force (Red) to destroy a
specific amount of Blue targets

Here, an actual military simulation problem is presented.
Suppose there are a high resolution simulation, which de-
scribes the required time of an air attacking force (Red)
to destroy a specific amount of Blue targets, can generate
“data”(15 samples) from the overall input space and collected
the variables shown in Table IV through a number of runs
(1000). Suppose the initial amount of Blue targets is N , the
initial inventory of Red weapon is B0, which continues to loss
until all the N targets are destroyed. TSEAD denotes the time
required to suppress Red air defenses. Suppose the pre-loss
ratio is L0, the initial loss rate valid for time TSEAD, and a
subsequent post-loss ratio is L1 valid thereafter. The average
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efficiency of Red weapon is Pavg , which indicates the amount
of Blue target destroyed per Red attack unit per time unit
(day), and in fact changes over time. The initial efficiency is
P0 and final efficiency is P1.

C. Parameter Selection and Metrics for Performance Mea-
sures

Parameter selection is a notorious problem since SV algo-
rithm is very sensitive to the adequate choice of parameter
values [29], which makes it hard for non-experts. It is,
however, a combinatorial optimization problem, and also a
NP-hard problem, to select a segment from thousands of their
infinite combinations. Lots of papers have shown that genetic
algorithm (GA) [30], [31] is useful to solve the combinatorial
problem without prior knowledge. Because the strategy of
setting parameters is not our research focus, the GA based
on GAOT toolbox with its standard settings is used to obtain
the best parameters evolutionally [32].

Furthermore, similarly to previous work [15], two quali-
tative criteria and corresponding five quantitative metrics are
used to measure the performance of SVR. They are the fitting
precision and efficiency for qualitative measures as well as R
square (R2), relative average absolute error (RAAE), relative
maximum absolute error (RMAE), modeling time (MT ),
amount of SVs (ASV ) for quantitative measures. For more
detail see [15].

The R2, RAAE and RMAE are definited in (12)-(14)
respectively.

R2 = 1−
l∑

i=1

(yi − ŷi)
2

/
l∑

i=1

(yi − y)2 (12)

RAAE =
l∑

i=1

|yi − ŷi|
/

l∑
i=1

|yi − y| (13)

RMAE = n×max{|yi − ŷi|}li=1

/
n∑

i=1

|yi − y| (14)

where ŷi denotes the corresponding predicted value for ob-
served value yi; ȳ denotes the mean of the observed values.

For the convenience of defining the fitness function in GA,
a new measure, Integration Precision (IP), is introduced:

IP = α(βR2 + (1− β)/RAAE) + (1− α)/RMAE (15)

where α, β ∈ [0, 1] are weights. In this paper, α = 0.9, β =
0.5 to indicate that R2 and RAAE are more important than
RMAE. It is obvious that the larger the IP, the more precise
the SVR. Furthermore, the optimal results mentioned latter
imply the computation result with the “best” parameters when
IP is largest.

V. SIMULATION RESULTS AND ANALYSIS

A. Synthetic Problems

Figs. 4-6 show the quantitative comparison results for the
problems listed in Table II, where the three legends of figures
correspond to the MSVR proposed in this paper, conventional
SVR based on polynomial kernel (SVR-PK) and Gaussian

kernel (SVR-RBF) without any SPK respectively (for the
convenience of comparison, all the results in the Radar Charts
are lg-transformed values).

0.25 0.5 0.75 1

lg(IP)

−0.056
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−0.019

−0.0012

lg(R2)

−1.3

−1

−0.74

−0.49
lg(RAAE)

−0.72−0.45−0.180.083

lg(RMAE)

0.33

0.66

0.99

1.3

lg(Amount of SVs)

−0.065

−0.03

0.0037

0.038
lg(Train Time)

MSVR
SVR−PK
SVR−RBF

Fig. 4. Radar Chart of Comparison Results for Problem 1

It’s obviously that, MSVR is superior to the other two
SVR in the fitting precision for all the problems, which
indicates that incorporating SPK into SVR can extremely
improve the accuracy and robustness of regression tasks. Fur-
thermore, MSVR is close (strictly speaking slightly inferior) to
polynomial-based SVR in ASV , while superior to RBF, which
shows that MSVR possesses as good ability of generalization
as polynomial-based SVR. In other words, the SV kernel used
in MSVR is a global kernel as polynomial kernel rather than
a local kernel [18]. In addition, the modeling time, i.e. time
for training and validating SVR, used by MSVR is less than
RBF-based SVR, while relatively more than polynomial-based
SVR.

0.36 0.71 1.1 1.4

lg(IP)
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−0.0006

−0.0004

lg(R2)

−1.7

−1.6

−1.4

−1.3
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−0.73−0.69−0.65−0.61

lg(RMAE)

0.29

0.57

0.86

1.1

lg(Amount of SVs)

−0.044

−0.0078

0.028

0.064
lg(Train Time)

MSVR
SVR−PK
SVR−RBF

Fig. 5. Radar Chart of Comparison Results for Problem 2

Overall, it’s believed that the superiority of MSVR in fitting
precision and generalization ability can completely offset
against the inferiority in time as the much smaller magnitude
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of MT than that of precision and the desired for good ability
in replicative, predictive and structural validity [33].
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−0.022
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lg(Train Time)

MSVR
SVR−PK
SVR−RBF

Fig. 6. Radar Chart of Comparison Results for Problem 3

B. Air-to-ground Simulation

At beginning, a high-resolution computer model that runs at
limited scenarios for predicting the time T to accomplish the
task is used to generate “data”. Conventional SVR to emulate
the computer model as a black-box model might predict T
based on all the variable inputs, i.e. N , B0, TSEAD, L0, L1,
Pavg , P0, P1 equally. in this paper, the conventional SVR
based on Gaussian kernel is treated as the baseline against
which MSVR is compared.

Attack Duration Time (T)

Amount of 
targets (N)

Efficiency of 
Weapon (P(t))

inventory of 
weapons (W(t))

Initial 
Inventory 
(B0)

Post-
Loss ratio
(Lf)

Initial 
efficiency
(P0)

Final
efficiency
(P1)

SEAD 
time
(TSEAD)

Loss Ratio
(L(t))

Pre-
Loss ratio
(Li)

Fig. 7. Hierarchy of Variables for Air-to-ground Simulation

Through analysis, however, a hierarchy is shown in Fig.7
for visualization understanding. The SPK, which should be
filled in the description matrix, are listed as follows since the
space is limited:

1) HSPK: Pavg is in higher hierarchy than others in Table
IV, and the regression analysis lies on the lower hierarchy;

2) ISPK: (a) there are no independent variables; (b) three
composite variables, i.e. a Loss ratio L(t) whose components
are TSEAD, L0, L1, an inventory of weapon W (t) which is
composed of L(t), B0 and a similar variable P (t) replaces
Pavg can be introduced. The symbol (t) indicates these vari-
ables are time-related. There exists two global interactions, i.e.

one is between B0, L(t), the other is among N,P (t),W (t); (c)
there are two local interactions, one is among P0, P1, TSEAD,
and the other is among TSEAD, L0, L1,;

3) FSPK:(a) exterior-FSPK:

T = N
W (t)P (t) (rough)

N =
∫ T

0
W (s)P (s)ds (detailed)

(16)

(b)interior-FSPK:

(a) P (t) =

⎧⎨
⎩

P0+P1

2 + C1, (rough)

P1 + (P0 − P1)(t− TSEAD)0+, (detailed)

(b) W (t) =W (t− 1)(1− L(t)),W (0) = B0

(c) L(t) =

⎧⎨
⎩

L0+L1

2 + C2, (rough)

L1 + (L0 − L1)(t− TSEAD)0+, (detailed)

(17)

where (t− TSEAD)0+ =

⎧⎨
⎩

1, t ≥ TSEAD

0, t < TSEAD

Note that the cumulation loss of Red weapon, that is the
inventory of weapon is a certain function of time T , while
independent to P . For the rough SPK, the kernel can be
selected nonlinear polynomial kernel for both W and P .
However, it’s more complex to incorporate the detailed SPK,
because the piecewise functions and statistical function should
be considered. Obviously, the efficiency and loss rate are
piecewise function. Being more careful consideration, two
possible time T1 and T2 are defined as follows, depending on
whether the time T turns out to be greater than the TSEAD.

N =

∫ T1

0

P0B0(1− L0)
sds (18)

N =

∫ TSEAD

0

P0B0(1−L0)
sds+

∫ T2

TSEAD

P1B0(1−L1)
sds

(19)
Then T = T1 if T1 < TSEAD and T = T2 otherwise, and T =
min{T1, T2}. Inspired by the results solved from (18)-(19),
two complex nonlinear functions can be defined as follows:

Φ1 = ln

(
N ln (1− L0)

B0P0
+ 1

)/
ln (1− L0) (20)

Φ2 = ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− L1)
TSEAD +⎡

⎣
(
N − B0P0

ln(1−L0)

(
(1− L0)

TSEAD − 1
))

× ln (1− L1) /B0P1

⎤
⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

/ ln (1− L1)

(21)
Then the SV kernels can be defined as

K1(x, y) =< Φ1(x),Φ1(y) > (22)

K2(x, y) =< Φ2(x),Φ2(y) > (23)

which completes the incorporation of SPK. Fig. 8 shows the
comparison results among MSVR with rough SPK (MSVR-
R), MSVR with detailed SPK (MSVR-D) and the conventional
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SVR based on Gaussian kernel(SVR-RBF). It’s obvious that
MSVR greatly outperforms conventional SVR without incor-
porating any SPK for fitting precision. Note that the more the
structural prior knowledge, the more precise the prediction,
whereas the more the training and predicting time.
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Fig. 8. Radar Chart of Comparison Results for Air-to-ground Simultion

VI. CONCLUSION

This paper proposes a new method for incorporating struc-
tural prior knowledge into SVR. It’s known that there is a
significant problem in conventional SVR, that is the ubiqui-
tous SPKs are neglected in the SVR. It results in the lack
of comprehensibility and interpretability in the structure of
regression model and consequently hinders the applicability
of SVR in complex problems, even if they are reasonable
accurate “on average” sometimes. Therefore, this paper is
concerned with suggesting ways to improve the quality of SVR
by striking a synthesis between conventional SV algorithm and
more structural prior knowledge, i.e. motivated support vector
regression (MSVR). Subsequently, the specifications of SPK
are summarized and an exploratory tool for describing the
SPK, that is a Description Matrix of SPK, is proposed as the
enabling technologies. Furthermore, a method for composing
more complex SV kernel based on R.K is introduced. It
possesses many advantages, e.g. ability of considering inputs
separately, set weights depending on the analysts’ needs, etc.
Finally, some synthetic problems and an actual miliary simu-
lation are used to valid the performance of MSVR compared
with the conventional SVR based on polynomial kernel and
Gaussian kernel. The numerical results indicate the MSVR
can indeed improve the quality of conventional SVR in fitting
precision and efficiency. It shows great potential for MSVR to
the complex military applications.

The problem that examined in this paper was in some
respects narrow. significantly more thinking will be necessary
to extend the ideas to other classes of problems, for example,
how to incorporate the NPK and SPK at the same time; how
to use the computerized aid (including the tools used in data
mining) to discover more physical insights that could then be

used to MSVR. Such topics would be appropriate subjects of
further research.
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