
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2867

A proposal of an automatic formatting method for
transforming XML data
Zhe JIN, and Motomichi TOYAMA, Member, IEEE

Abstract—PPX(Pretty Printer for XML) is a query language that
offers a concise description method of formatting the XML data into
HTML. In this paper, we propose a simple specification of formatting
method that is a combination description of automatic layout opera-
tors and variables in the layout expression of the GENERATE clause
of PPX. This method can automatically format irregular XML data
included in a part of XML with layout decision rule that is referred to
DTD. In the experiment, a quick comparison shows that PPX requires
far less description compared to XSLT or XQuery programs doing
same tasks.

Keywords—PPX, Irregular XML data, Layout decision rule,
HTML.

I. INTRODUCTION

AS well known, there exists a large amount of data
described with XML, which is also used for the exchange

of data, the description, the processing of information, etc..
Since XML is an expressive form of data or the document,
which is necessary for technologies of storage, the retrieval,
conversion, and publication, etc., the research on this area is
quite active.

In this research, the method that converts XML data into
HTML is discussed. A few existing languages, such as XQuery
[1], XSLT 1.0 [2], XSLT 2.0 [3], JAVA and C++ etc. transform
XML data into HTML by describing HTML tag directly in the
program sentences, or convert the searched XML data into
HTML by using XSL-FO [4] or CSS [5]. However, it is to
necessary examine detail of data structure to layout XML data
for using XQuery and XSLT etc. [6], [7], [8].

PPX is a query language for XML database, which has
extensive formatting capability that produces HTML as the
result of a query. This query language aims to focus on the
design of the layout without considering XML data structure
directly, so that the layout work of the XML data can be done
easily.

For example, the following PPX 1 shows that how XML
data in Figure 1 is layouted into HTML by complete specifi-
cation of formatting method in the layout expression 1 of the
GENERATE clause.

PPX 1:
GENERATE html
[$i/title !

Zhe JIN is with the Department of Information and Computer Science, Keio
University, Hiyoshi 3–14–1, Kohoku-ku Yokohama, 223-8522, Japan (e-mail:
tetsu@db.ics.keio.ac.jp).

Motomichi TOYAMA is with the Department of Information and Computer
Science, Keio University, Hiyoshi 3–14–1, Kohoku-ku Yokohama, 223-8522,
Japan (e-mail: toyama@ics.keio.ac.jp).

1discussed at III.A section.

Fig. 1. Format results by PPX 1

[$j/univ ,
[$j/name]!

]!]!
FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

This query converts a flat list structure of searched XML
data into the nest structure of XML data by combining the
variables and the layout specification operators in the layout
expression, and generates HTML. The results are shown in
Figure 1.

Moreover, the following PPX 2 changes only the variables
location based on layout expression of PPX 1 and the results
are shown in Figure 2, which is structure different with Figure
1.

PPX 2:
GENERATE html
[$j/univ !
[$j/name ,
[$i/title]!

]!]!
FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

The complete specification of formatting method of PPX
shows that the extracted XML data structure is converted and
layouted according to the variable location changes, variable
addition, grouping of element node using the layout specifica-
tion operators in the layout expression. In addition, the XML
data can be decorated when HTML is generated by specifying
the decoration operators.

However, the complete specification of formating method

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2868

Fig. 2. Format results by PPX 2

of PPX that uses complete path expression 2 to specify the
element nodes included in a part of XML 3 is not easy. A
part of XML is under irregular element nodes. The irregular
element node is an element node wherever appears by the

specified in DTD of table I. For example, under the univ
element nodes, it has the text node and also some how many
element nodes contain other element nodes in XML shown in
Figure 4. The following PPX 3 specifies the element nodes
that is under univ element nodes based on layout expression
of PPX 2.

PPX 3:
GENERATE html
[$j/univ !
[$j/name ,
[$i/title]!

]!]!
!
[$j/univ/name , $j/univ/add !
[$j/name ,
[$i/title]!
]!]!

FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

In this query, the layout of output table becomes complex,
also the description amount increases. However, if there is
an important part of XML is under the univ element nodes,
the complete specification of formatting method also becomes
redundant.

In this paper, we propose a simple specification of format-
ting method of PPX that is a combination description of auto-
matic layout operators and variables in the layout expression of
the GENERATE clause. This method can automatically format
XML data included in a part of XML with layout decision rule
that is referred to DTD. The XML data included in a part of
XML which is treated as irregular XML data in this paper.
This rule automatically convert table structure of HTML and
naturally express it based on the structure of source XML data.

The following PPX 4 specifies the simple specification of
formatting method by combining the $j/univ variable and the

2discussed at II.A section with incomplete path expression.
3A part of XML between start tag and end tag of all the element nodes in

XML

Fig. 3. Format results by PPX 4

& automatic layout operator embed in the layout expression,
and generates HTML as Figure 3.

PPX 4:
GENERATE html
[&($j/univ) !
[$j/name ,
[$i/title]!

]!]!
FOR $i in db(’paper.xml’)/papers/paper,
FOR $j in $i/authors/author

In this query, the $j/univ variable shows searched XML data
included in a part of XML, which is under univ element nodes
using the incomplete path expression. The & automatic layout
operator shows automatically formatting XML data with the
layout decision rule.

The rest of this paper is organized as following. In Section
II, the basic concepts are discussed. In Section III and Section
IV, the PPX query language and layout decision rule is review.
In Section V, the simple specification of formatting method of
PPX is evaluate. In Section VI, the related work is mention.
Finally, the conclusion is given in section VII.

II. BASIC CONCEPTS

This section introduces the path expressions, the path ex-
pression sets and the irregular XML data of the PPX query
language.

A. Path Expressions

The path expressions [9] include absolute path expression
and relative path expression. If they need not be distinguished,
in the following sections, they are both referred as the path
expression. Here, the path expression is further divided into a
complete path expression and an incomplete path expression.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2869

(1) The complete path expression specifies the path ex-
pression from the root node to the target text node. For
example, the following path expression shows a complete path
expression.

Example 1: /papers/paper/title/text()
In the PPX 4, the complete path expression is connected

with the path expression used in the first FOR clause and
the relative path expression used in the $i/title variable. The
complete path expression searches for the XML data, which
are the value of the title element nodes. The text node is
omitted when it is specified in the layout expression of the
GENERATE clause of PPX.

(2) The incomplete path expression specifies the path ex-
pression from the root node to the target element node. For
example, the following path expression shows an incomplete
path expression.

Example 2: /papers/paper/authors/author/univ
In the PPX 4, the incomplete path expression is connected

with the path expression used in the first FOR clause, the
second FOR clause and the relative path expression used in
the $i/univ variable. The incomplete path expression searches
for the XML data, which are the value of the element nodes
included in a part of XML is under the univ element nodes.
The XML data searched by the incomplete path expression is
the object of an automatic format.

B. Path expression sets

The path expression sets are composed with three kinds of
path expression sets, which are query path expression set P(Q),
XML path expression set P(X), and DTD path expression set
P(D). Each of path expression sets includes the complete path
expression and the incomplete path expression.

(1) P(Q): This is a group of the path expressions existing
in the PPX query.

(2) P(X): This is a group of the path expressions existing
in the layout object part of XML in Figure 4.

(3) P(D): This is a group of the path expressions existing
in the part of DTD (table I) of P(X).

The following explaination is about the irregular XML data
from the relationship among three kinds of path expression
sets.

TABLE I
A FRAGMENT OF DTD

DTD

C. Irregular XML data

Irregular XML data is the XML data included in a part
of XML that exists under irregular element nodes, which is

paper

authorstitleid

author

addemail univ

year

name

papers

paper

authorstitleid

author

addemail univ

year

name

name

first

paper

authorstitleid

author

addemail
univ

year

name

teladdname

last

Fig. 4. An XML instance

the object of an automatic format. The irregular XML data is
further divided into valid XML data and invalid XML data.

Definition 1 (The valid XML data) The path expression P
that in the intersection of P(X) - P(Q) and P(D), when t, which
exists in incomplete path expression sets P(Qi) of P(Q) is the
prefix of path expression P. The group of path expression P is
shown as following:

: is
prefix of .

The valid XML data is the value of path expression sets
P. For example, the value of the XML path expression sets
included in a part of XML that exists under univ element
nodes by the incomplete path expression, which specifies the
univ element node shown in example 2 of section II.A, is
irregular XML data in the XML data of Figure 4. Here, the
value of the XML path expression sets that is compatible to
DTD in Table 1 is valid XML data, and these not to DTD is
invalid XML data.

Definition 2 (The invalid XML data) The path expression
P that in the part of from P(X) - P(Q) - P(D), when t, which
exists in incomplete path expression sets P(Qi) of P(Q) is the
prefix of path expression P. The group of path expression P is
shown as following:

: is
prefix of .

The invalid XML data is the value of path expression sets
P.

III. PPX

The basic structure of PPX query language consists of
GENERATE, FOR, and WHERE clauses etc.

GENERATE <media> <Layout Expression>
FOR <"$"+Variable Name in Path Expression>
WHERE <condition>

In the GENERATE clause, the output media (HTML, XML,
etc.) and the layout expression are specified. By the layout
expression, the output of the media with all kinds of structures
can be realized. In this study, only HTML output medium
in discussed. Due to the usage similarity of FOR, WHERE
clauses etc. in both PPX and XQuery, the explaination of them
is omitted, only the GENERATE clause is explained here.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2870

A. Layout Expressions

In the layout expressions, the complete specification of
formatting method and the simple specification of formatting
method can be specified. The complete specification of for-
matting method that combines of variables and layout spec-
ification operators can be specified. The simple specification
of formatting method that combines of the variables and the
omission operators or the automatic layout operators can be
specified.

1) Operators: The operators are the extensions of layout
specification operators of SuperSQL [10]. They comprise
omissible operators, automatic layout operators and the existed
layout specification operators that include connect operators,
repeat operators, and decorative operators etc.

(1) Connect Operators
There are horizontal (,), vertical (!) and depth (%) con-

nect operators which connect the objects generated as their
operands horizontally, vertically and in the depth direction,
respectively. In the case of generating HTML, the depth
connect operator specifies the hyper link in a hypertext (figure
5).

(2) Repeat Operators
There are horizontal([],), vertical([]!), and depth([]%)

repeat operators. In a pair of brackets, a layout expression
is specified. The multiple instances generated by the inner
layout expression are connected repeatedly into each direction.
When a subexpression of repeat operator is connected to one
or more primary items, the latter are used to group repeating
items. In this way, redundant display of grouping items can
be suppressed (figure 6).

(3) Decorative Operators
Decorative operators are supported to designate decorative

features of outputs, such as font size, table border, width,
image directory, in the form of @ follows a layout expres-
sion, and decorative expressions are in a pair of braces(

), which are separated by comma. Each is
. A decorative operator is described as below.

< >@
(4) Omissible Operators
Omissible operators include the &- operator and the &+

operator. The &- operator expresses XList form that without
tags, and the &+ operator expresses XList form with tags,
for the searched XML data included in a part of XML by an
incomplete path expression.

(5) Automatic Layout Operators
Automatic layout operators include the & operator. The &

operator automatically format irregular XML data included in
a part of XML with layout decision rule that is referred to
DTD.

2) Precedence: Usually, the leftmost connector takes prior-
ity over the other connectors. When it is necessary to change
the precedence, pair of curly braces should be used.

3) Variables: The variables represent the searched XML
data obtained by path expressions. They consist of the variable
name and the relative path expression. It is shown as following.

Variable ::= ”$”+VariableName/RelativePathExpression
In case of the complete specification of formatting method,

we use a complete path expression in which the relative

PPX

Query Parser

List Constructor

Code Generator

Layout Expression

Path
Expression

XML Query System

Hierarchical
List Structure

HTML, XML etc.

Flat List
Structure

XML

Fig. 7. System architecture

path expression specified in the variable is connected with
the path expression specified in the FOR clause. For other
case of the simple specification of formatting method, we
use a incomplete path expression in which the relative path
expression specified in the variable is connected with the path
expression specified in the FOR clause.

B. System architecture

This system consists of the query parser, the list constructor,
and the code generator as shown in Figure 7. The PPX is
divided into the layout expression and the path expression in
the query parser. The path expression searches for XML data.
The searched XML data of flat list structure is reconstructed
by layout expression in the list constructor. Therefore, the
irregular XML data included in a part of XML do not recon-
structe and it remaines its former structure and passes to the list
constructor as one tupple. Finally, the reconstructed XML data
is transformed into HTML with a variety of table structures
in the code generator. The irregular XML data automatically
being transformed into HTML with layout decision rule that
discussed at section IV.

IV. LAYOUT DECISION RULE

The layout decision rule is divided into following four steps.
The flow is shown in Figure 8.

(1) Step 1. (Generation of Path Expression Sets)
The first step, from a part of XML that is object of layout

generate XML path expression sets, and from a part of DTD
that is corresponding to a part of XML, generates tree patterns
with DTD path expression sets (In section IV.A).

(2) Step 2. (Connection Method of Tree Patterns)
The connection method is given respectively to the DTD

path expression sets of each tree patterns by referring to the
information of DTD (In section IV.B).

(3) Step 3. (Matching of Path Expression Sets)
The DTD path expression sets with the connection method

is matched to the XML path expression sets (In section IV.C).
(4) Step 4. (Output Results)
The irregular XML data is converted into HTML by tag-

ging(In section IV.D).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2871

Fig. 5. Connct operators Fig. 6. Repeat operators and grouping

papers

paper

authors
titleid

author

addemail univ

year

name

<!DOCTYPE papers [
 <!element papers (paper+)>
 <!element paper (id , title , authors , year)>
 <!element id (#pcdata)>
 <!element title (#pcdata)>
 <!element authors (author*)>
 <!element year (#pcdata)
 <!element author (name , email , add , univ)>
 <!element name (#pcdata)>
 <!element email (#pcdata)>
 <!element add (#pcdata)>
 <!element univ (#pcdata)>
] >

XML path set

Path set matching

PPX

A part of XML

A part of DTD

paper

Initial connection methods

Tree patterns

Output result

Fig. 8. Overview of layout decision rule

A. Generation of Path Expression Sets

The XML path expression sets generate from each level of
a part of XML that is object of layout by the depth division.
Moreover, the DTD path expression sets generate in a part of
DTD that is corresponding to a part of XML by the depth
division also. However, the DTD path expression sets do not
generate at recurrent part. Afterwards, it resolves based on the
level with the text node, and these DTD path expression sets
compose tree patterns.

For example, at the left of Figure 9, it shows three kinds of
a part of DTD generated by the $j/univ variable that specifies
in the layout expression of PPX 4 in chapter 1, and at the
right of Figure 9, it shows the tree patterns with the DTD
path expression sets respectively. However, at the recurrent
part that under the univ element nodes in Figure 9(3), neither
the path expression sets nor the tree patterns is generated.

B. Connection Method of tree patterns

The tree patterns include frequent tree pattern and non-
frequent tree pattern. Here, the frequent tree pattern is rep-
etition appearance, and the non-frequent tree pattern is not.
For example, a tree pattern 1 is non-frequent tree pattern, and
the tree pattern 2 and 3 are the frequent tree patterns shown
at the right of Figure 9(3).

The frequent tree pattern has the frequent DTD path ex-
pression sets and the non-frequent DTD path expression sets.
The non-frequent tree pattern only has non-frequent DTD path
expression sets. Those tree patterns have different connection
methods by different DTD path expression.

univ

tel

paper+

authorstitleid year

papers

Tree structure of expression of DTD

/univ/papers/paper/id
/univ/papers/paper/title
/univ/papers/paper/authors
/univ/papers/paper/year

/univ/papers/paper/authors/author

/univ/papers/paper/authors/author/name
/univ/papers/paper/authors/author/email
/univ/papers/paper/authors/author/univ

pattern_2

pattern_3

Tree patterns

author+

email univname

/univ/papers/paper

univ

univ

(1)

(2)

(3)

/univ/name
/univ/add
/univ/tel

pattern_1
/univ

pattern_1

/univ

/univ/papers/paper/name
/univ/papers/paper/authors

pattern_1
/univ

name

element node

text node

addname

(a)

(b)

(c)

Fig. 9. Tree patterns with DTD path expression sets

The algorithm that gives the connection method to the tree
patterns is shown in Figure 10 4.

First of all, the DTD path expression sets of the tree patterns
judge the repetition or not. Then, if it is a repeated DTD path
expression set, the vertical repetition is given. On the contrary,
the previous connection method is referred, if it is a not
repeated DTD path expression set. That is, if the connection
method of previous DTD path expression set is horizontal
connection, the vertical connection is given to present DTD
path expression set, and if the connection method of previous
DTD path expression set is vertical connection, the horizontal
connection is given to present DTD path expression set.

It will refer to the repeated operators exists on the outside
in layout expression when can not refer to the previous
connection method. That is, if it is a horizontal repeat operator,
the vertical connection method is given to present DTD path
expression set, and if it is a vertical repeat operator, the
horizontal connection method is given to the present DTD
path expression set. It repeats to the last tree pattern like this.

C. Matching of Path Expression Sets

The tree patterns with the connection methods is matching
to a part of XML. That is, the DTD path expression sets of the

4C1 is horizontal connection. C2 is vertical connection. G1 is horizontal
repeat connection. G2 is vertical repeat connection.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2872

Input: A part of DTD
output: The connection methods of DTD path expression sets

01. while (It is not last level of DTD)
02. If (Frequent DTD path expression)
03. Then (Giving G2)
04. Else if (Non-frequent DTD path expression)
05. if (Previous connection method exist)
06. if (Previous connection method is C1)
07. Then (Giving C2)
08. Else if (Previous connection method is C2)
09. Then (Giving C1)
10. Else if (Previous connection method is G1)
11. Then (Giving C2)
12. Else if (Previous connection method is G2)
13. Then (Giving C1)
14. Elst if (Previous connection method doesn’t exist)
15. if ([]! exist on the outside in layout expression)
16. Then (Giving C1)
17. Else if ([], exist on the outside in layout expression)
18. Then (Giving C2)
19. endwhile

Fig. 10. Algorithm to generate connection methods

tree patterns included in a part of DTD matches to the XML
path expression sets included in a part of XML, and connectes
with the XML data by the connection methods of the tree
patterns. The matching methods include complete matching
and suffix matching.

The complete matching satisfies the following conditions.
(1) Absolute matching. It is necessary to agree from the root

node to the element node of the DTD path expression sets by
the XML path expression sets completely.

(2) Complete including. All the XML path expression sets
should exist in the DTD path expression sets.

(3) All matching. All tree patterns should matche to a part
of XML.

If it does not satisfy any one of those conditions, it is not
complete matching. When a part of XML of which recurrence
appears under the univ element nodes as shown in Figure 9(3),
the suffix matching is used. The HTML generated by complete
matching is connected with other HTML table generated by
suffix matching by hyperlink.

The suffix matching satisfies the following conditions.
(1) Absolute matching. It is necessary to agree from the root

node to the element node of the DTD path expression sets by
the XML path expression sets completely.

(2) Complete including. All rear part of the XML path
expression sets should exist in the DTD path expression sets.

(3) All matching. All tree patterns generated from a part of
DTD should match to rear part of a part of XML.

If either of above conditions does not satisfy, the suffix
matching is not done, and matching is ended.

D. Output Results

The XML path expression sets that match to the DTD path
expression sets and have data are valid XML data, and can be
converted to HTML form by giving HTML tags. Other XML
path expression sets that does not match and have data are
expressed with XList form by giving XList tags in HTML
table.

V. EXPERIMENTAL EVALUATION

In this section, we have implemented the proposed simple
specification of formatting method with layout decision rule

and comparison of the proposed PPX and existing XQuery,
XSLT 1.0, XSLT 2.0, etc. is shown, concerning the descrip-
tion amount and the effectiveness of transformation abilities.
Moreover, discuss the problem of this simple specification
of formatting method encountered when experimenting which
should be resolved.

A. Experimental Environment

According to the algorithm of Figure 10, we implemented
the layout decision rule using Java. We used XML data (table
II) of UW XML repository [11] to generate HTML. The
XML data included in a part of XML that searched by the
incomplete path expression. Table III shows each incomplete
path expression corresponding to different part of XML, which
is the object of an automatic format. The DB2 Version 9 is
used for PPX and XQuery. The XMLSpy [12] is used for
XSLT 1.0 and XSLT 2.0.

TABLE II
THE TEST DATA DETAILS

file name element max-depth avg-depth size

psd7003.xml 21305818 7 5.15147 683MB
dblp.xml 3332130 6 2.90228 127MB
sigmod.xml 11526 6 5.14107 467MB
treebank e.xml 2437666 36 7.87279 82MB

TABLE III
DIFFERENT PART OF XML

incomplete a part of XML

/papers under the PAPERS element nodes
/papers/paper[1] under the first PAPER element node
/papers/paper/authors under the AUTHORS element nodes
/papers/paper/authors/univ under the UNIV element nodes

B. Description Amount

1) PPX: PPX transforms XML data into HTML with a
small description amount as shown in the previous section
and the initial query is possible to recycle. On the other hand,
XQuer, XSLT 1.0, XSLT 2.0 do the same transformation as
PPX but need large description amount.

2) XQuery: For example, the following XQuery does the
same transformation as PPX 1. This XQuery describes HTML
tags directly in the query sentence to transforming XML data
into HTML with the same table structure in figure 1 in section
I.

XQuery:
FOR $i in
db2-fn:xmlcolumn(’paper.xml’)//paper
RETURN
<table border="1">
<tr>
<td>{$i/title/text()}</td>
</tr>
<tr>{
FOR $j in $i//authors
RETURN
<td>{
FOR $l in distinct-values ($j//univ)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2873

RETURN
<table border="1"><tr>
<td>{$l}</td>
<td>
<table border="1">{
FOR $k in $j/author[univ = $l]
RETURN
<tr>
<td>{$k/name/text()}</td>
</tr>
}</table>
</td>
</tr></table>
}</td>
}</tr>
</table>;

However, larger amount of description is required than with
PPX, and the initial query can not be recycle, it needs to be
rewritten.

3) XSLT: For example, the following XSLT 2.0 does the
same transformation as PPX 1. This XSLT describes HTML
tags directly in the style sheet sentence to transforming XML
data into HTML with the same table structure in figure 1 in
section I.

XSLT 2.0:
<xsl:stylesheet version="2.0">
<xsl:output method="html" />
<xsl:template match="/">
<html><table border="1">
<xsl:apply-templates select="*"/>
</table></html>
</xsl:template>
<xsl:template match="papers">
<xsl:for-each-group select="paper"
group-by="title">
<xsl:sort select="title"/>
<tr><td>
<table border="1">
<tr><td>
<xsl:value-of
select="current-group()/title"/>
</td></tr>
</table>
</td></tr>
<tr><td>
<xsl:apply-templates select="authors"/>
</td></tr>
</xsl:for-each-group>
</xsl:template>
<xsl:template match="authors">
<xsl:for-each-group select="author"
group-by="univ">
<xsl:sort select="univ"/>
<table border="1">
<tr><td>
<xsl:for-each select="univ">
<xsl:value-of select="."/>

</xsl:for-each>
</td><td>
<table border="1">
<xsl:for-each select="current-group()">
<tr><td>
<xsl:value-of select="name"/>
</td></tr>
</xsl:for-each>
</table>
</td></tr>
</table>
</xsl:for-each-group>
</xsl:template>
</xsl:stylesheet>

However, the style sheet requires larger amount of descrip-
tion than with XQuery, and it is not possible to recycle the
initial style sheet, is necessary to rewrite it.

C. Transformation Abilities

1) Structural Conversion: The simple specification of for-
matting method of PPX for extracting XML data uses the
FOR clause (WHERE clause). This method can automatically
format XML data into HTML or express the XML data
included in a part of XML by XList form without considering
XML data structure. However, since the conversion of the
XML data is based on source data structure, the degree of
freedom of structural conversion is limited. As the result, it is
necessary to develope a new automatic layout method of based
on various rules with becoming of the degree of freedom of
structural conversion flexibility.

In the case of XQuery, for extracting XML data, a lot of the
FOR clause and the LET clause will be nested in the RETURN
clause, and the condition which child element is in which
element should be specified in detail. This query transforms
the XML data into HTML by describing HTML tags directly
in the program sentences or by using XSL-FO(CSS) with
considering XML data structure.

In this case, XSLT includes XSLT 1.0 and XSLT 2.0. As
for XSLT 1.0, one of the greatest problems is that it can
not execute SELECT DISTINCT directly for node groups.
For this kind of conversion, all nodes whose element names
become group objects are selected and sorted according to
their element names. In addition, it is necessary to distinguish
whether the element name, after using the xsl:if block and
processing, is the same as the element name of the nodes
or not. Besides, it is complex to use the Muenchian method
because it does not support making the group, and consumes
more memory. The XSLT 2.0 uses xsl:for-each-group element
to group nodes based on some standards, and it processes for
every group formed by selection processing.

Moreover, XSLT is intuitively difficult for ordinary user to
describe and to edit, since the understanding of the trans-
formation process based on the rival cancellation between
template rules to convert the conversion originally specified
by the pattern matching is demanded. Also, it transforms the
XML data into HTML by describing HTML tags directly

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2874

in the program sentences or by using XSL-FO(CSS) with
considering XML data structure.

In addition, XQuery and XSLT does not provide easy meth-
ods that can express XList form for the searched XML data
included in a part of XML by an incomplete path expression.

2) Data Representation: XQuery and XSLT can extract,
sort and group spreferable data of users to layouts. PPX
extracts all data included in a part of XML and automatic
formats with the simple specification of formatting method.
This method is more convenient than complete specification
to process the irregular element nodes. However, the XML
data that user prefers can not be layout. Moreover, because it
not sort/group to the XML data, so same data are appearing
many times and source data structure remains in HTML tables.

3) Data Matching: When the DTD path expression sets of
tree patterns do not matches the XML path expression sets
of a part of XML. The XML path expression sets, may have
valid XML data and invaild XML data. Then it is expressed
in XList form. So, whether it is valid XML data or invalid
XML data, it can not be telled by the HTML tables.

VI. RELATED WORK

Three methods to transform XML data into HTML are
categorized in this section.

A. By using HTML tags

Generic programming languages, such as JAVA, PERL,
PHP, and C++ are used to convert searched XML data tags
into HTML tags with DOM or SAX and to display in Web
browser. Besides, this is also possible with languages such as
XQuery, XSLT 1.0, XSLT 2.0, and XDuce [13], etc. provided
the HTML tags in the program sentence.

B. By using XSL-FO(CSS)

The query language, the converting language and the
stylesheet language give formating information such as
the margin, the color, and the font size, etc. for the
searched/extracted XML data in order to display it in Web
browser by using XSL-FO or CSS.

C. By using TFE

The proposed PPX, which can layout XML data into
HTML by using TFE [14] offers an easy description method.
SuperSQL also uses TFE to structurize the output result of the
relational database, and treats the output to HTML, XML and
PDF, but can not be treated as XML data.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a simple specification of format-
ting method of PPX, which is a combination of variables and
automatic layout operators within the layout expression of the
GENERATE clause to layout irregular XML data included in
a part of XML into HTML with layout decision rule. This
rule can be converted into the table structure of HTML that
naturally expresses based in the structure of the source XML
data automatically. In the experiment, the results show that

by PPX the XML data can be formatted correctly without
considering the data structure etc.

We are currently working on developing a new layout
decision rule that takes statistics of concerning the structure
and the content to the XML data included in a part of XML,
which is searched and structurized based on the processing
system of XQuery and XSLT for deciding the best layout
method and automatically formatting XML data. Moreover, we
are developing the method of converting PPX into equivalent
XSLT automatically.

REFERENCES

[1] D. Chambelin, J. Clark, D. Florescu, J. Robie, J. SimLeon, and M.
Stefanescu. XQuery 1.0: An XML query language. W3C Working Draft,
June 2001.

[2] J. Clark, editor. XSL Transformations (XSLT), Version 1.0, W3C Rec-
ommendation 16 November 1999. W3C, 1999.

[3] M. Kay, editor: XSL Transformations (XSLT), Version 2.0, W3C Rec-
ommendation 27 January 2007. W3C, 2007.

[4] Pawson, D: XSL-FO: Making XML Look Good in Print. O’Reilly, United
States, 2002.

[5] Lie. H., Bos, B, Lilley, C., and Jacobs, I. Cascading Style Sheets, Level
2. W3C; see www.w3.org/TR/.

[6] Ramin Firoozye: XML and XSL from servers to cell-phones, a new
Internet content model. Proceedings of XML Europe2000, Paris, france,
2000.

[7] Volker Turau: A Caching System for Web Content Generated from XML
Sources Using XSLT. OOIS 2002 Workshops, LNCS 2426, pp.197-207,
2002.

[8] M. Rys: XQuery in Relational Database Systems. XML 2004 Conference,
Washington DC, Nov 2004.

[9] W3C: XML Path Language (XPath).
http://www.w3.org/TR/.

[10] M. Toyama: SuperSQL: An Extended SQL for Database Publishing and
Presentation. Proc. ACM SIGMOD, 1998, pp.584-586.

[11] UW XML repository: http://www.cs.washington.edu/research/xmldatasets.
[12] www.Altova.com/XMLSpy.
[13] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing

language. ACM Transaction on Internet Technology (TOIT), pp.117-148,
May 2003.

[14] T. Seto, T. Nagafuji, M. Toyama. Generating HTML Sources with
TFE Enhanced SQL, ACM Symposium on Applied Computing(SAC’97),
ACM(1997), pp.96-105.

Zhe JIN received the M.E. degree in computer science from keio university
in 2004. He is a member of IPSJ and IEICE. His research interests include
XML and database.

Motomichi TOYAMA received the B.E., M.E. and Ph.D. degrees in computer
science from keio university in 1979, 1981 and 1984, respectively. His
research interests include database. He is a member of IEEE Computer
Society, ACM, IPSJ and IEICE.

