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Modeling and simulating reaction-diffusion systems

with state-dependent diffusion coefficients
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Abstract—The present models and simulation algorithms of in-
tracellular stochastic kinetics are usually based on the premise
that diffusion is so fast that the concentrations of all the involved
species are homogeneous in space. However, recents experimental
measurements of intracellular diffusion constants indicate that the
assumption of a homogeneous well-stirred cytosol is not necessarily
valid even for small prokaryotic cells.

In this work a mathematical treatment of diffusion that can be
incorporated in a stochastic algorithm simulating the dynamics of a
reaction-diffusion system is presented. The movement of a molecule
A from a region i to a region j of the space is represented as a

first order reaction Ai

k
−→ Aj , where the rate constant k depends

on the diffusion coefficient. The diffusion coefficients are modeled
as function of the local concentration of the solutes, their intrinsic
viscosities, their frictional coefficients and the temperature of the
system. The stochastic time evolution of the system is given by
the occurrence of diffusion events and chemical reaction events. At
each time step an event (reaction or diffusion) is selected from a
probability distribution of waiting times determined by the intrinsic
reaction kinetics and diffusion dynamics. To demonstrate the method
the simulation results of the reaction-diffusion system of chaperone-
assisted protein folding in cytoplasm are shown.

Keywords—reaction-diffusion systems, diffusion coefficient,
stochastic simulation algorithm

I. INTRODUCTION

As the name indicates, reaction-diffusion models consist

of two components. The first is a set of biochemical reac-

tions which produce, transform or remove chemical species.

The second component is a mathematical description of the

diffusion process. At molecular level, diffusion is due to

the motion of the molecules in a medium. If solutions of

different concentrations are brought into contact with each

other, the solute molecules tend to flow from regions of higher

concentration to regions of lower concentration, and there is

ultimately an equalization of concentration. The driving force

leading to diffusion is the Gibbs energy difference between

regions of different concetration.

The great majority of mesoscopic reaction-diffusion models

in intracellular kinetics is usually performed on the premise

that diffusion is so fast that all concentrations are maintained

homogeneous in space. However, recent experimental data on

intracellular diffusion constants, indicate that this supposition

is not necessarily valid even for small prokaryotic cells [1].

If the system is composed by a sufficiently large number of

molecules, the concentration, i. e. the number of molecules

per unit volume, becomes a continuum and differentiable

variable of space and time. In this limit a reaction diffusion

system can be modeled by using differential equations. In an
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unstructured solvent, ideally behaving solutes (i. e. solutes

for which solute-solute interaction are negligible) obey the

Fick’s law of diffusion. However in biological system even

for purely diffusive transport phenomena the classical Fickian

diffusion is at best a first approximation [2], [3]. Spatial effects

are present in many biological systems, so that the spatially

homogeneous assumption will not always hold. Examples of

spatial effects include mRNA movement within the cytoplasm

[4], Ash 1 mRNA localization in budding yeast [5], morphogen

gradients across egg-polarity genes in Drosophyla oocyte [5],

and the synapse-specificity of long-term facilitation in Aplysia

[6]. The intracellular medium is not a homogeneous mixture

of chemical species, but a highly structured environment

partitioned into compartments in which the distribution of the

biomolecules could be non-homogeneous. The description of

diffusion processes in this environment has to start from a

model of the diffusion coefficient containing its dependency

on the local concentrations of the solutes and solvent.

Before proceeding further, it is useful to review the concepts

of diffusive fluxes and Fick’s law. The key concepts in the

mathematical description of diffusion are summarised in the

definition of flux of solute moving from one region to another

of the space. Let consider a small surface S of area dA

oriented perpendicularly to one of the coordinate axes, let say

the x-axis. The flux of solute in the x direction, J , is defined

as the number of molecules which pass through the surface

per unit area per unit time. Therefore, the number of solute

molecules crossing the surface in time dt is JdAdt. The net

flux depends on the number of molecules in small regions to

either side of the surface: if there are more molecules on the

left, then there will be a left-to-right flux which in size as

the difference of concentration to either side of the surface

increases. Moving the surface S from one point in space to

another, it could be found that this local difference changes.

Therefore the flux is a vectorial quantity depending on the

position in space, i. e. J = J(x, y, z). The simplest description

of the concentration dependence of the flux is the Fick’s first

law, namely the flux is proportional to the local derivative

of the concentration c of solute with respect to the spatial

variables: J = −D∂c/∂x in one dimension, or ~J = −D∇c in

three dimensions. The quantity D in the Fick’s law is known

as diffusion coefficient. If the medium is isotropic, D is a

constant scalar independent of the concentration of the solute.

In this paper a new model of diffusion coefficient for a

non-homogeneous non-well-stirred reaction-diffusion system

is presented. In this model the diffusion coefficient explic-

itly depends on the local concentration of solute, frictional

coefficient and temperature. In turn, the rate of diffusion

of the biochemical species are expressed in terms of this
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concentration-dependent diffusion coefficients. In this study

purely diffusive transport phenomena of non-charged parti-

cles, and, in particular, the case in which the diffusion is

driven by a chemical potential gradient in x direction only

(the generalization to the three-dimensional case poses no

problems) are considered. The derivation, introduced in this

work, consists of five main steps: 1. calculation of the local

virtual force F per molecules as the spatial derivative of

the chemical potential 2. calculation of the particles mean

drift velocity in terms of F and local frictional coefficient

f ; 3. estimation of the flux J as the product of the mean

drift velocity and the local concentration; 4. definition of

diffusion coefficients as function of local activity and frictional

coefficients and concentration, and 5. calculation of diffusion

rates as the negative first spatial derivative of the flux J .

The determination of the activity coefficients has required the

estimation of the second virial coefficient, that is calculated

by using the Lennard-Jones potential to describe the inter-

molecular interactions. The frictional coefficient is assumed

to be linearly dependent on the local concentration of solute.

The diffusion events are modeled as reaction events and

the spatial domain of the reaction chamber is divided into

cubic subvolumes of size l, that from now on will be called

indifferently cells, meshes or boxes. The movement of a

molecule A from box i to box j is represented by the reaction

Ai
k
−→ Aj , where Ai denotes the molecule A in the box i

and Aj denotes the molecule A in the box j. The reaction-

diffusion system is thus modeled as a purely reaction system

in which the diffusion events are first order reactions whose

rate coefficients ks are expressed in terms of state-dependent

diffusion coefficients.

The space domain of the system is divided into a number Ns

of subvolumes. The time evolution of the system is computed

by a Gillespie-like algorithm [7] that at each simulation step

selects in each subvolume the fastest reaction, compares the

velocities of the Ns selected reactions and finally executes

the reaction that is by far the fastest. To make the Gillespie

approach applicable in each subvolumes, the size of the mesh

has to be chosen sufficiently small so that the homogeneity and

well-stirred assumption on the distribution of the molecules

inside are good approximations, and sufficiently large to have

a number of eventual reaction events significantly greater than

one.

The paper is organized as follows: Section II illustrates

the mathematical model of the diffusion as a time dependent

process. In the subsection of this section the new model of

diffusion coefficient depending on the state variables of the

system, the models of virial coefficient, intrinsic viscosity and

frictional coefficient are described. In Section III the method

to estimate the suitable size of the subvolumes in which the

entire reaction space has to be subdivided is explained. Section

IV describes the algorithm implementing the simulation of

the model of reaction-diffusion systems. Section V shows the

results obtained by applying the new porposed algorithm on

chaperone-assisted protein folding to investigate the influence

of spatial effect on this process.

II. THE MODEL OF DIFFUSION

The Gibbs energy difference between regions of different

concentration, i. e. the gradient of the chemical potential

µ, causes diffusive transport of molecules. Let consider a

solution containing N different solutes. The chemical potential

µi of any particular chemical species i is defined as the

partial derivative of the Gibbs energy G with respect to the

concentration of the species i, with temperature and pressure

held constant. Species are in equilibrium if their chemical

potentials are equal.

µi ≡
∂G

∂ci

= µ0
i + RT ln ai (1)

where ci is the concentration of the species i, µ0
i is the standard

chemical potential of the species i (i .e. the Gibbs energy of

1 mol of i at a pressure of 1 bar), R = 8.314 J · K−1 · mol−1

is the ideal gas constant, and T the absolute temperature. The

quantity ai is called chemical activity of component i, and it

is given by

ai =
γici

c0
(2)

where γi is the activity coefficient, c0 being a reference

concentration, which, for example, could be set equal to

the initial concentration. The activity coefficients express a

deviation of a solution from the ideal thermodynamic behavior

and in general they may depend on the concentration of all

the solutes in the system. For an ideal solution, the limit of γi

which is recovered experimentally at high dilutions is γi = 1.

If the concentration of species i varies from point to point in

space, then so does the chemical potential. For simplicity, here

the case in which there is only a chemical potential gradient in

the x direction only is taken into account. Chemical potential

is the free energy per mole of substance, free energy is the

negative of the work W which a system can perform, and

work is connected to force F acting on the molecules by

dW = Fdx. Therefore an inhomogeneous chemical potential

is related to a virtual force per molecule of

Fi = −
1

NA

dµi

dx
= −

kBTc0

γici

∑

j

∂ai

∂cj

∂cj

∂x
(3)

where NA = 6.022 × 1023 mol−1 is the Avogadro’s number,

kB = 1.381×10−23 J · K−1 is the Boltzmann’s constant, and

the sum is taken over all species in the system other than the

solvent. This force is balanced by the drag force experienced

by the solute (Fdrag,i) as it moves through the solvent. Drag

forces are proportional to the speed. If the speed of the solute

is not too high in such a way that the solvent does not exhibit

turbulence, the drag force can be written as follows

Fdrag,i = fivi (4)

where fi ∝ ci is the frictional coefficient, and vi is the mean

drift speed.

Moreover, if the solvent is not turbulent, the flux, defined

as the number of moles of solute which pass through a small

surface per unit time per unit area, can be approximated as in

the following
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Ji = civi (5)

i. e. the number of molecules per unit volume multiplied by

the linear distance travelled per unit time.

Since the virtual force on the solute is balanced by the drag

force (i. e. Fdrag,i = −Fi), the following expression for the

mean drift velocity is obtained

vi =
Fi

fi

so that Eq. (5) becomes

Ji = −
kBT

γifi

∑

j

∂ai

∂cj

∂cj

∂x
≡ −

∑

j

Dij

∂cj

∂x
(6)

where

Dij =
kBTc0

γifi

∂ai

∂cj

(7)

are the diffusion coefficients. The Eq. (7) states that, in general,

the flux of one species depends on the gradients of all the

others, and not only on its own gradient. However, here it is

supposed that the chemical activity ai depends only weakly

on the concentrations of the other solutes, i. e. it is assumed

that Dij ≈ 0 for i 6= j and the Fick’s laws still holds. Let Di

denote Dii. It is still generally the case that Di depends on ci

in sufficiently concentrated solutions since γi (and thus ai) has

a non trivial dependence on ci [8]. It is only in one very special

case, namely that of an ideal solution with γi = 1, where the

diffusion coefficient, Di = kBT/fi, is constant. In order to

find an analytic expression of the diffusion coefficients Di in

terms of the concentration ci, let us consider that the rate of

change of concentration of the substance i due to diffusion is

given by

Di = −
∂Ji

∂x
(8)

Substituting Eq. (7) into Eq. (6), and then substituting the

obtained expression for Ji into Eq. (8), gives

Di = −
∂

∂x

(

−Di(ci)
∂ci

∂x

)

(9)

so that

Di =

(

∂Di(ci)

∂x

)

∂ci

∂x
+ Di(ci)

∂2ci

∂x2
=

=
∂Di(ci)

∂cj

∂cj

∂x

∂ci

∂x
+ Di(ci)

∂2ci

∂x2
(10)

Let ci,k denote the concentration of a substance i at coor-

dinate xk, and l = xk − xk−1 the distance between adjacent

mesh points. The derivative of ci with respect to x calculate

in xk− 1

2

is

∂ci

∂x

∣

∣

∣

x
k−

1

2

≈
ci,k − ci,k−1

l
(11)

By using Eq. (11) into Eq. (6) the diffusive flux of species i

midway between the mesh points Ji,k− 1

2

is obtained:

Ji,k− 1

2

= −Di,k− 1

2

ci,k − ci,k−1

l
(12)

where Di,k− 1

2

is the diffusion coefficient midway between the

mesh points.

The rate of diffusion of substance i at the mesh point k is

Dik = −
Ji,k+ 1

2

− Ji,k− 1

2

l

and thence

Dik =
Di,k− 1

2

l2
(ci,k−1 − ci,k)−

Di,k+ 1

2

l2
(ci,k+1 − ci,k) (13)

To determine completely the right-hand side of Eq. (13) is

now necessary to find an expression for the activity coefficient

γi and the frictional coefficient fi, contained in the formula

(7) for the diffusion coefficient. In fact, by substituting Eq. (2)

into Eq. (7) an expression of the diffusion coefficient in terms

of activity coefficients γi is obtained

Dii =
kBT

fi

(

1 +
ci

γi

∂γi

∂ci

)

(14)

Let focus now on the calculation of the activity coefficients,

while a way to estimate the frictional coefficients will be

presented in Section II-A. By using the subscript ’1’ to denote

the solvent and ’2’ to denote the solute, it can be written that

µ2 = µ0
2 + RT ln

(

γ2c2

c0

)

(15)

where γ2 is the activity coefficient of the solute and c2 is the

concentration of the solute. Differentiating with respect to c2

gives

∂µ2

∂c2
= RT

( 1

c2
+

1

γ2

∂γ2

∂c2

)

(16)

The chemical potential of the solvent is related to the

osmotic pressure (Π) by

µ1 = µ0
1 −ΠV1 (17)

where V1 is the partial molar volume of the solvent and µ0
1 its

standard chemical potential. Assuming V1 to be constant and

differentiating µ1 with respect to c2 yield

∂µ1

∂c2
= −V1

∂Π

∂c2
(18)

Now, from the Gibbs-Duhem relation [9], the derivative of

the chemical potential of the solute with respect to the solute

concentration is

∂µ2

∂c2
= −

M(1− c2v)

V1c2

∂µ1

∂c2
=

M(1− c2v)

c2

∂Π

∂c2
(19)

where M is molecular weight of the solute and v is the partial

molar volume of the solute divided by its molecular weight.

The concentration dependence of osmotic pressure is usually

written as
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Π

c2
=

RT

M

[

1 + BMc2 + O(c2
2)

]

(20)

where B is the second virial coefficient (see Section II-B),

and thence the derivative of Π with respect to the solute

concentration is

∂Π

∂c2
=

RT

M
+ 2RTBc2 + O(c2

2) (21)

Introducing Eq. (21) into Eq. (19) gives

∂µ2

∂c2
= RT (1− c2v)

( 1

c2
+ 2BM

)

(22)

From Eq. (16) and Eq. (22) it can be obtained that

1

γ2

∂γ2

∂c2
=

1

c2

[

(1− c2v)(1 + 2BMc2)− 1
]

so that

∫ γ′

2

1

dγ2

γ2
=

∫ c′
2

c0

1

c2

[

(1− c2v)(1 + 2BMc2)− 1
]

dc2

On the grounds that c2v ≪ 1 [10], solving the integral yields

γ′

2 = exp[2BM(c′2 − c0)] (23)

The molecular weight Mi,k of the species i in the mesh k can

be expressed as the ratio between the mass mi,k of the species

i in that mesh and the Avogadro’s number Mi,k = mi,k/NA.

If pi is the mass of a molecule of species i and ci,kl is the

number of molecules of species i in the mesh k, then the

molecular weight of the solute of species i in the mesh k is

given by

Mi,k =
pi l

NA

ci,k (24)

Substituting this expression in Eq. (23) gives for the activity

coefficient of the solute of species i in the mesh k (γi,k), the

following equation

γi,k = exp
(

2B
pi l

NA

c2
i,k

)

(25)

A. Intrinsic viscosity and frictional coefficient

The diffusion coefficient depends on the ease with which

the solute molecules can move. It is a measure of how readily

a solute molecule can push aside its neighboring molecules

of solvent. An important aspect of the theory of diffusion

is how the magnitude of the frictional coefficient fi of a

solute of species i and, hence, of the diffusion coefficient Di,

depend on the properties of the solute and solvent molecules.

Examination of well-established experimental data shows that

diffusion coefficients tend to decrease as the molecular size of

the solute increases. The reason is that a larger solute molecule

has to push aside more solvent molecules during its progress

and will therefore move slowly than a smaller molecule. A

precise theory of the frictional coefficients for the diffusion

phenomena in biological context cannot be simply derived

from the elementary assumptions and model of the kinetic

theory of gases and liquids. The Stokes’s theory considers a

simple situation in which the solute molecules are so much

larger than the solvent molecules that the latter can be regarded

as a continuum (i. e. not having molecular character). For

such a system Stokes deduced that the frictional coefficient

of the solute molecules is fi = 6πr
(H)
i η, where r

(H)
i is

the hydrodynamical radius of the molecule and η is the

viscosity of the solvent. For proteins diffusing in the cytosol,

the estimate of frictional coefficient through the Stokes’s law

is hard, for several reasons. First of all, the assumption of

very large spherical molecules in a continuous solvent is not

a realistic approximation for proteins moving through the

cytosol: proteins may be not spherical and the solvent is not

a continuum. Furthermore, in the protein-protein interaction,

in the cytosol, water molecules should be included explicitly,

thus complicating the estimation of the hydrodynamical radius.

Finally, the viscosity of the solvent η within the cellular

environment cannot be approximated either as the viscosity

of liquid or the viscosity of gas. In both cases, the theory

predicts a strong dependence on the temperature of the system,

that has not been found in the cell system, where the most

significant factor in determining the behavior of frictional

coefficient is the concentration of solute molecules. To model

the effects of non-ideality on the friction coefficient it is

assumed that it linearly depends on the concentration of the

solute as in sedimentation processes [11]. The equation (26)

give the frictional coefficient fi,k of species i at mesh k. In

this equation kf is an empirical constant, whose value can be

derived from the knowledge of the ratio R = kf/[η].

fi,k = kfci,k (26)

Accordingly to the Mark-Houwink equation [9], [η] = kMα

is the intrinsic viscosity coefficient, α is related to the shape of

the molecules of the solvent, and M is the molecular weight of

the solute. If the molecules are spherical, the intrinsic viscosity

is independent of the size of the molecules, so that α = 0.

All globular proteins, regardless of their size, have essentially

the same [η]. If a protein is elongated, its molecules are more

effective in increasing the viscosity and [η] is larger. Values of

1.3 or higher are frequently obtained for molecules that exist

in solution as extended chains. Long-chain molecules that are

coiled in solution give intermediate values of α, frequently in

the range from 0.6 to 0.75 [12]. For globular macromolecule,

R has a value in the range of 1.4 - 1.7, with lower values for

more asymmetric particles [13].

Although Eq. (26) is a simplified linear model of the

frictional forces, it works quite well in many case studies

and can be easily extended to treat more complex frictional

effects. At the moment of writing the authors are developing

a new linear model of frictional forces including the effects of

macromolecular crowding on the protein diffusion. The study

of macromolecular crowding effects on protein properties has

a long history and currently is re-drawing the attention of

the scientific community (see for example [14], [15], [16],

[17], [18]) due to current interests on protein aggregation as

a potential cause for neurodegenerative diseases.
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B. Calculated second virial coefficient

The mechanical statistical definition of the second virial

coefficient is given by the following expression

B = −2πNA

∫

∞

0

r2 exp
[

−
u(r)

kBT

]

dr (27)

where u(r), which is given in Eq. (28), is the interaction

free energy between two molecules, r is the intermolecular

center-center distance, kB is the Boltzman constant, and T

the temperature. In this work, it is assumed that u(r) is the

Lennard-Jones pair (12,6)-potential (Eq. 28), that captures the

attractive nature of the Van der Waals interactions and the very

short-range Born repulsion due to the overlap of the electron

clouds.

u(r) = 4
[(1

r

)12

−
(1

r

)6]

(28)

By expanding the term exp
(

4
kBT

1
r6

)

into an infinite series,

the Eq. (27) becomes

B = −2πNA

∞
∑

j=0

1

j!
(T ∗)j

∫

∞

0

r2−6j exp
[

− T ∗
1

r2

]

dr

where T ∗ ≡ 4/(kBT ) and thus

B = −
πNA

6

∞
∑

j=0

1

!j
4j(kBT )−

1

4
+ 1

2
j Γ

(

−
1

4
+

1

2
j
)

(29)

The estimate of B is given by truncating the infinite series of

Γ functions to j = 4, since, results not shown here prove that

taking into account the additional terms, obtained for j > 4,

does not significantly influence the simulation results.

III. DIVISION OF THE SYSTEM’S VOLUME INTO

SUBVOLUMES

The reaction chamber volume V is divided into subvol-

umes of volume ∆ and side length l, on the basis of the

kinetic and dynamical properties of the diffusion particles.

The subvolumes has been chosen sufficiently small, so that

the probability distributions of the reactants can be treated as

uniform inside each subvolume. This means that the rate by

which two molecules in a subvolume reacts does not depend

on their initial locations.

Let consider diffusion as a time dependent process, in which

some distribution of concentration is established at some

moment, and then allowed to disperse without replenishment.

The Fick’s law and its analogues for the transport of other

physical properties relate to the flux under the influence of

a constant gradient. They therefore describe time-independent

processes. They refer, for example, to the flow of particles

along a constant concentration gradient which is sustained

by injecting particles in one region, and drawing them off

in another. From the second Fick’s law, the mean distance

through which particle of solute has spread after time t is

lf = 2

√

D t

π
(30)

where D is the diffusion coefficient of the particle.

Let te be the the mean free time with respect to non-reactive

(elastic) collisions and tr the mean free time with respect to

reactive collisions. The net distance covered by the particle

during its lifetime is

L = 2

√

D tr

π
= 2

√

πl2f tr

4teπ
= lf

√

tr

te
(31)

In order to have a homogeneous mixing inside boxes, the

length l of the box side has to fulfill the following inequality.

l≪ L (32)

It is worthy of note the fact that if this inequalities is fulfilled,

the particles in each box obeys the Einstein formula for the

probability of fluctuations around the steady state. Note also

that the rate by which two molecules in a subvolume react

does not depend on their initial location if the inequality (32)

is fulfilled.

In terms of the diffusion coefficient D, Eq. (31) and (32)

can be re-written as

l≪ 2
√

Dtr (33)

Now, in order to estimate the upper bound of l the dif-

fusion coefficient D and the reaction time tr have to be

determined. The diffusion coefficient differs from species to

species, and, in general, depends on the local concentration

of solute. Since the local concentration of solute changes in

time as consequence of the occurrence of the chemical reaction

events and the diffusion events themselves, this would entail

a dynamical change of l through the Eq. (33). This could

make the algorithm of simulation more complex, so that, it is

profitable to fix the value of l at the initialization time at

l ≈
√

〈D〉tr (34)

where

〈D〉 =
1

Rdiff + Rreact

M(diff)

∑

i=1

D0
i (35)

and D0
i is the diffusion coefficient of the species i-th at time

t = 0, and Mdiff is the number of species that diffuse. In the

next section the model of the diffusion coefficient as function

of local concentration and the waiting time of reaction tr is

explained.

A. The waiting time of reaction

Let Ri be the i-th reaction channel expressed as

Ri : li1Sp(i,1) + li2Sp(i,2) + · · ·+ liLi
Sp(i,Li)

ri−→ . . .

where lij is the stoichiometric coefficient of reactant Sp(i,j),

p(i, j) is the index that selects the species S that participate

to Ri, Li is the number of reactants in Ri, and ri is the rate

constant. If the fundamental hypothesis of stochastic chemical

kinetics [7] holds within a box, both diffusion and reaction
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events waiting times are distributed according to a negative

exponential distribution, so that a typical time step has size

tr ≈
1

R

( R
∑

ν=1

aν

)−1

=
1

R

( Rdiff
∑

i=1

a
(diff)
i +

Rreact
∑

i=1

a
(react)
i

)

(36)

where R is the number of events. It is given by R =
Rdiff + Rreact, where Rdiff is the number of diffusions and

Rreact is the number of reaction events [19]. The diffusion and

reaction propensities are given by the following expressions,

respectively

a
(diff)
i = r

(diff)
i

∏M
(diff)

i

j=1 (#Sp(i,j))
lij

∏L
(diff)

i

j=1 lij !
(37)

a
(react)
i = r

(react)
i

∏M
(react)

i

j=1 (#Sp(i,j))
lij

∏L
(react)

i

j=1 lij !
(38)

where M
(diff)
i and M

(react)
i are the number of chemical

species that diffuse and the number of those the undergo to

reactions, respectively. In general M 6= M
(diff)
i + M

(react)
i ,

since some species are involved both in diffusions and reac-

tions. In Eq. (37), r
(diff)
i is the kinetic rate associated to the

jumps between neighboring subvolumes, whereas in Eq. (38),

r
(react)
i is the stochastic rate constants of the i-th reaction.

From Eq. (13), the rate coefficient of the first order reaction

representing a diffusion is recognized to be as follows.

r
(diff)
i =

Dii

l2
(39)

IV. THE ALGORITHM AND DATA STRUCTURE

In this section the new stochastic simulation algorithm

developed by the authors is illustrated. It incorporates into

a Gillespie-like approach the spatial effects of diffusive phe-

nomena accordingly to the diffusion model presented in the

previous sections.

For the reader’s convenience, a brief description of the

Gillespie Direct and First Reaction methods is here reported.

Let suppose that in the system there are R reactions and M

chemical species. at any instant of time the system is decribed

by the state vector ~X(t) = {X1(t), . . . , XM (t)} Gillespies

algorithm asks two questions:

1) Which reaction occurs next?

2) When does it occur?

Both of these questions must be answered probabilistically

by specifying the probability density P (µ, τ) that the next

reaction is µ and it occurs at time τ . It can be shown [7] that

P (µ, τ) = aµ exp
(

− τ

R
∑

j=1

aj

)

dτ (40)

This equation leads directly to the answers of the two afore

mentioned questions. First, what is the probability distribution

for reactions? Integrating P (µ, τ)) over all τ from 0 to ∞
results in

Pr(Reaction = µ) =
aµ

∑R

j=1 ajaj

(41)

where aj the propensity of reaction j as in Eqs. (37) and (38).

Second, what is the probability distribution for times?

Summing P (µ, τ) over all τ results in

P (τ)dτ =
(

R
∑

j=1

ajaj

)

exp
(

− τ

R
∑

j=1

aj

)

dτ (42)

These two distributions lead to Gillespies direct algorithm:

1) Set initial numbers of molecules in ~X(t), set t← 0, and

the absolute simulation time T .

2) Calculate the propensity function, aµ, for all j, j =
1, . . . , R.

3) Choose j according to the distribution in Eq. (41).

4) Choose τ according to an exponential with parameter
∑R

j=1 aj (as in Eq. (42)).

5) Change the number of molecules to reflect execution of

reaction µ. Set t← t + τ .

6) Go to Step 2 and repeat the procedure until t ≤ T .

The algorithm is direct in the sense that it generates µ and τ

directly. Gillespie also developed the First Reaction Method

(FRM) which generates a putative time τj for each reaction to

occur - a time the reaction would occur if no other reaction

occurred first - then lets µ be the reaction whose putative

time is first, and lets τ be the putative time τj . Formally, the

algorithm for the First Reaction Method is as follows:

1) Set initial numbers of molecules in ~X(t), set t← 0, and

the absolute simulation time T .

2) Calculate the propensity function, aµ, for all j, j =
1, . . . , R..

3) For each µ, generate a putative time, τj , according to an

exponential distribution with parameter aj .

4) Let µ be the reaction whose putative time, τj , is least.

5. Let τ be τj .

5) Change the number of molecules to reflect execution of

reaction µ. Set t← t + τ .

6) Go to Step 2 and repeat the procedure until t ≤ T .

At first glance, these two algorithms may seem very different,

but they are provably equivalent [7] that is, the probability

distributions used to choose µ and τ are the same. With

regard to the complexity of the procedure, this algorithm uses

R random numbers per iteration (where R is the number of

reactions), takes time proportional to r to update the a’s, and

takes time proportional to R to identify the smallest τj .

The design of the algorithm is inspired to the one proposed

by Elf et al. [20] in the so-called Next sub-volume method.

This method selects the next reaction and the time at which it

will occur by using the Gillespie First Reaction method [7].

Each cell and the corresponding reaction time and reaction

type is stored in a global priority queue that is sorted with

increasing writing reaction time. From this queue at each time

step, the fastest reaction (i. e. the reaction with the smallest

waiting time) is picked and executed. Once the reaction has

been executed the state of the cell, as well as the state of
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the neighboring cells that eventually have been affected by

the occurrence of this reaction are updated. This approach is

efficient as it does not update the state of all the cells, but only

the one of the cells in which the occurrence of a reaction has

produced changes in the inner amount of molecules. However,

the method is centralised and sequential and does not scale

to very large systems. Moreover, it cannot be easily adapted

to turn parallel or distributed computing procedures to profit.

Since the number of reactions involved in the system could be

of the order of millions, the property of scalability is required

to make large simulations feasible. The algorithm proposed

by the authors overcomes the scalability’s limitations of the

Next sub-volume method by renouncing to the use of a global

priority queue.

For each cell a set of dependency relations with neighbor

cells is drawn; in a cell an event (reaction of diffusion) can

be executed only if it is quicker than the diffusion events

of the neighbor cells, since the diffusion events in and out

of the cell could change the reactant concentrations, and,

consequently the reaction propensities and the waiting times

of the events in the neighbor cells. The algorithm has still

the same average computational complexity of Elf’s methods.

Nevertheless, by removing the global priority queue and

introducing a dependency relations graph, the algorithm gains

the scalability property. The new algorithm consists of the

following steps.

1) Set initial numbers of molecules in ~X(t), set t ← 0,

and the absolute simulation time T . Divide the reaction

chamber volume V into boxes of size l as in Eq. (34).

2) In each cell, calculate the time and the type of the next

event with the FRM are and store them in a private

priority queue, ordered with increasing waiting time.

3) Each cell “communicates” with its neighbors, in a hier-

archical way on the basis of the dependency relations,

to decide which one holds the event with the smallest

waiting time, say τs. that will be executed next. Execute

the event and update the state of the cell and the one of

the neighbor cells, in the case in which the event is a

diffusion, are updated.

4) Update the time variable: t← t + τs.

5) Go to Step 2 and repeat the steps until t ≤ T .

V. CASE STUDY: CHAPERONE-ASSISTED FOLDING

Although a protein chain can fold in its correct conformation

without outside help, protein folding in a living cell is often as-

sisted by special proteins called molecular chaperones. These

proteins bind to partly folded polypeptide chains and help

them progress along the most energetically favorable folding

pathways. Chaperones are vital in the crowded conditions

of the cytoplasm, since they prevent the temporarly exposed

hydrophobic regions in newly synthesized protein chains from

associating with each other to form proteins aggregates.

In the healthy cells, if a protein does not assume the correct

3D shape, or a cellular stress induces a right-folded protein to

assume a wrong folding, the chaperones re-shape it correctly.

In the case in which the protein is not correctly refolded, and

the ubitiquitin-proteasome system, designed to its digestion,

does not correctly work, as in many neurodegenerative disor-

ders, the faulty proteins accumulate and damage the cell.

Protein folding, chaperone binding, and misfolded protein

accumulation - all of these processes take place inhomoge-

neously in the space. The spatial distribution of chaperones

in the cytoplams may not be uniform, and consequently

the distribution of correct and faulty proteins may be not

uniform. In turn, the time evolution of spatial distribution

of chaperones may affect the time evolution of the spatial

distribution of faulty proteins. The reaction-diffusion systems

of the case study consisting of the four reactions is shown in

Table I, where chaperone represents the molecular chaperone,

nascent protein presents the protein chain release from the

ribosome, right protein denotes the correctly folded protein,

misfolded 1 is a faulty protein generated by the first inter-

action with the chaperone (Reaction 2), and misfolded 2 is

the misfolded protein generated by the interaction between

misfolded 1 and chaperone (Reaction 4).

Accordingly to the measurements reported in [16] the

following values of diffusion coefficients have been used

to simulate the system : D0
protein = D0

right protein =
D0

misfolded 1 = D0
misfolded 2 = 10 µm2sec−1, and

D0
chaperone = 1 µm2sec−1. As simulation space, a square

grid 9× 9µm2, thus consisiting of 81 cells (each cell has size

l = 1 nm) is considered. A 2D diffusion model is simulated

and a spatially homogeneous distribution of nascent protein

and an initial null concentration of right protein in ev-

ery cell are assumed. The density (expressed in number of

molecules per µm3) and the spatial distribution of chaperone,

misfolded 1, and misfolded 2 in the first instants of sim-

ulation are shown in the first plots (at time t ≈ 10−5 sec), in

Fig. 1 (A), Fig. 1 (B), Fig. 1 (C), and Fig. 1 (D) respectively.

At time t = 1.1054 × 10−5 sec - immediately after the

begging of the simulation, the correctly folded proteins are

located in the regions where the concentrations of chaperones

is high (see Fig. 1 (A) and (B)). The misfolded proteins

produced by Reaction 2 and Reaction 4 in the first instants

of the simulation are close to the chaperones (Fig. 1 (C) and

(B), Fig. 2 (C) and (D), and Fig. 3 (C) and (D)). at time

t = 0.000483 sec, the chaperones and the correctly folded

proteins start to leave their initial positions to migrate toward

the central area of the system (Fig. 4 (A)). The concentration

of misfolded proteins (of type 1 and 2) increses and their

distributions spread in the space (Fig. 4 (C) and (D)). From

t = 0.003211 sec to t = 0.005080 sec, the concentration of

the chaperones is non-null in all the simulation space with a

peak in the right upper corner (Fig. 7 (A) and Fig. 8 (A)).

The distribution of right folded proteins is similar (Fig. 7 (B)

and 8 9B). The concentration of misofled proteins produced

by Reaction 2 is almost null in all the space except along

the borders (Fig. 7 (C) and Fig. 8 (C)). Nevertheless, the

concentration of misfolded proteins produced by Reaction 4 is

significantly different from zero and fairly homogeneous (Fig 7

(D) and Fig. 8 (D)). At t = 0.007749 sec, the chaperones shift

to the upper norder of the simulation space (Fig. 9 (A)); the

correctly folded proteins concentration has a maximum in the

right upper corner (Fig. 9 (B)); the concentration of misfolded

proteins by Reaction 2 is almost everywhere except that on
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Reaction 1:nascent protein + chaperone
100µM

−1
sec

−1

−−−−−−−−−−−→ chaperone + right protein

Reaction 2:nascent protein + chaperone
100µM

−1
sec

−1

−−−−−−−−−−−→ chaperone + misfolded 1

Reaction 3:misfolded 1 + chaperone
100µM

−1
sec

−1

−−−−−−−−−−−→ chaperone + rprotein

Reaction 4:misfolded 1 + chaperone
100µM

−1
sec

−1

−−−−−−−−−−−→ chaperone + misfolded 2

TABLE I
CHAPERONE-ASSISTED PROTEIN FOLDING. REACTION 1 DESCRIBES THE FOLDING OF THE NASCENT PROTEIN INTO A CORRECTLY WORKING PROTEIN

(RIGHT PROTEIN). REACTION 2 DESCRIBES THE UNCORRECT FOLDING OF THE NASCENT PROTEIN INTO A MISFOLDED PROTEIN (MISFOLDED 1).
REACTION 3 DESCRIBES THE INTERACTION BETWEEN THE CHAPERONE AND THE MISFOLDED PROTEIN, THAT, CONSEQUENTLY, IS TRANSFORMED INTO

A CORRECTLY FOLDED PROTEIN. FINALLY, REACTION 4 DESCRIBES THE INTERACTION BETWEEN THE CHAPERONE AND THE MISFOLDED PROTEINS,
THAT IS NOT CONVERTED INTO A CORRECTLY WORKING PROTEIN.

the borders, whereas the distribution of misfolded produced in

Reaction 4 is almost everywhere null , but it has a peak in the

right upper corner (Fig. 9 (D)). Finally, at time t = 0.014273
secis non-null over all the space. It increases linearly from

the upper border (Fig. 10 (A)). The concentration of correctly

folded proteins increases from the lower left corner to the

right upper corner (Fig. 10 (B)). Unlike the distribution of

misfolded proteins deriving from Reaction 2, the distribution

of misfolded proteins deriving from reaction 4 is different from

zero everywhere (Fig. 10 (C) and increases from the left lower

corner to the right upper corner (Fig. 10 (D)).

A. Spatial correlation between chaperones and proteins

The spatial correlation between the proteins and chaperones

has been monitored in terms of the quantity Cp,c, which is

defined by

Cp,c =
〈(Φp − 〈Φp〉)(Φc − 〈Φc〉)

〈Φp〉〈Φc〉
(43)

where Φp = Φp(x, y, z) and Φc = Φc(x, y, z) are func-

tion of spatial coordinates and denote the concentrations of

nascent proteins and chaperones, respectively. The symbol

〈·〉 denotes the mean value of “·”. The subscript p ranges

over the following species right protein, misfolded 1, and

misfolded 2, whereas the subscript c denotes chaperone.

The positive value of Cp,c means that the species p and

c on average tend to be close each other in space. The

average correlation between chaperones and correctly folded

proteins, chaperones abd misfolded proteins derived from

Reaction 2 and chaperones and misfolded proteins derived

from reaction 4 decrease with increasing time (Fig. 11 (A),

(B), and (C), respectively). The distribution of the intensity of

these correlations in the simulation space is shown in Figs.

13 - Figs. 22. These results show that, at the beginning of

the simulation, both the correctly folded and the misfolded

proteins are likely to appear near the chaperones, that is they

are released by the chaperones, and then they diffuse away

from them, as it was obtained also in [16]. The figures 12

(A), (B), and (C) show that the total concentrations of correctly

proteins, misfolded proteins (1) and (2), respectively, have a

time behavior symmetric to the time behavior of their average

correlations with the concentration of chaperones. In fact, the

maximum of the correlation between chaperones and both

correctly and misfolded proteins correspond to the onset of

increase in protein concentration. The figures 11 (B) and 12

(B) show that the concentration of misfolded proteins produced

in reaction 2 reaches the maximum when their correlation with

the chaperones has a minimum. This behavior is due to the

fact that the misfolded proteins of type 1 are released from the

chaperones and then they quickly diffuse away from them. The

chaperones also diffuse away from their initial positions but

less quickly, so that they reach later the misfolded proteins of

type 1. Once the chaperones reached the misfolded proteins,

the occurrence of Reaction 4 causes the decreasing of the

concentration of misfolded protein of type 1.

B. Validity of the model

In this model describing the effects of an irregular distribu-

tion of chaperones on the kinetics of the chaperone-assisted

protein folding, the internal structure and mechanism of the

chaperone, as well as the size and the internal dynamics of the

protein folding are not treated. No external source of energy is

exerted upon the system in the present simulations: the diffu-

sive transport is caused by spatial differences of concentrations

of solute. Moreover, chaperones assist not only the efficient

folding of newly-translated proteins as these proteins are being

synthesized on the ribosome, but they can also maintain pre-

existing proteins in a stable conformation. Chaperones can also

promote the disaggregation of preformed protein aggregates.

The general mechanism by which chaperones carry out their

function usually involves multiple rounds of regulated binding

and release of an unstable conformer of target polypeptides.

These reaction are not included in this simple model.

Apart from the above limitations, the model captures the

essential features of the kinetics of the chaperone-assisted

protein folding (see [16], [21], [22], [23], [24], [25], [26],

[27]). Both the correct and misfolded proteins appear near

to the chaperones, as the proteins are released from the

chaperones. The correlation between chaperones and correctly

folded proteins, as well as the correlation between chaperones

and misfolded proteins deriving from Reaction 4, vanish at

t ≈ 0.01. This suggest that, after that time, the proteins

released from the chaperones quickly diffuse away from them

and aggregates at the site where the cheperones are less

abundant. The diffusion of the chaperones toward those sites

causes the decrement and the subsequent stabilization of the

amount of misfolded proteins.
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Fig. 1. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 1.1054 × 10−05 sec.
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Fig. 2. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 6.333 × 10−05 sec.
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Fig. 3. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 0.000197 sec.
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Fig. 4. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 0.000483 sec.
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Fig. 5. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 0.001046 sec.
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Fig. 6. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 0.001956 sec.
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Fig. 7. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 0.003212 sec.
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Fig. 8. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 0.005080 sec.
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Fig. 9. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 0.007747 sec.
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Fig. 10. Distribution of the concentration of chaperones (A), correctly folded proteins (B), misfolded proteins deriving from the Reaction 2 (C), and misfolded
proteins deriving from Reaction 4 (D). The figures are snapshots of the system at time t = 0.014273 sec.
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Fig. 11. Time behavior of the average correlation between chaperones and
correctly folded proteins (A), chaperones and misfolded proteins produce in
Reaction 2 (B), and chaperones and misfolded proteins produced in Reaction
4 (C).
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Fig. 12. Time behavior of the total concentration of correctly folded proteins
(A), misfolded proteins produce in Reaction 2 (B), and misfolded proteins
produced in Reaction 4 (C).
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Fig. 13. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 1.1054 × 10−05 sec.
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Fig. 14. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 6.333 × 10−05 sec.
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Fig. 15. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 0.000197 sec.
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Fig. 16. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 0.000483 × 10−05 sec.
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Fig. 17. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 0.001046 sec.
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Fig. 18. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 0.001956 sec.
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Fig. 19. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 0.003212 sec.
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Fig. 20. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 0.005080 sec.
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Fig. 21. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 0.007747 sec.
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Fig. 22. Matrices of correlation (Eq, (43)) between chaperones and correctly
folded proteins concentrations (A), chaperones and misfolded proteins conc-
centrations deriving from the Reaction 2 (B), and chaperones and misfolded
proteins concentration deriving from Reaction 4 (C). The figures are snapshots
of the system at time t = 0.014273 sec.
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Fig. 23. A sample view of the distribution of chaperones (bluepoints )and
nascent proteins (red points), right-folded proteins (yellow points), misfolded
proteins of type 1 (green points) and misfolde proiteins of type 2 (magenta
points).

Fig. 24. Another sample view of the distribution of chaperones (bluepoints
)and nascent proteins (red points), right-folded proteins (yellow points),
misfolded proteins of type 1 (green points) and misfolde proiteins of type
2 (magenta points).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The authors presented a model for the diffusion of non-

charged molecules, in which the diffusion coefficients are not

constant with respect to the time and space. Constant diffusion

coefficients are rather more the exception than the rule in living

cells and, more generally in biological tissues. The authors

implemented the procedure in the framework of stochastic

simulation of reaction-diffusion systems and presented the

results of the method on the case study of chaperone-assisted

protein folding. The software tool is equipped with a 3D

visualizer that shows the spatial distribution of the diffusion

molecules at every step of simulations (see Figs. 23 and 24,

showing the distributions from two points of view).

Unlike the previous works as [8], [19], [28], this model

provides a theoretical derivation of the molecular origins of

the parameters, determining the time-behavior of the diffu-

sive phenomena. Moreover, it provides results in agreement

with experimental qualitative and quantitative data. Future

work will consist in a further refinement of the procedure

to make it closer to the chemistry and physics of biological

transport phenomena. Some future directions will consist of a

more accurate calculation of the second virial coefficient for

biomolecules, especially for proteins. The use of the Lennard-

Jones potential is a good approximation of the molecular

interaction, but it is a drawback in describing protein-protein

interaction is that water molecules must be included explicitly

[29], complicating the computational task. The condition of

solvated molecules is reflected also to the expression of the

concentration-dependence of frictional coefficient, that will

need to be accordingly modified.

Furthermore, more generally, as already mentioned, the cel-

lular environment is a crowded solution. Namely, the cellular

environments are packed with other biomolecules and this

crowdedness may affect the stability and aggregation rates of

proteins inside cells [17], [18], [30], [31], [32]. Unlike in typ-

ical biochemical experiments in which the proteins of interest

are purified and diluted, the living cell is crowded with a wide

variety of other proteins and macromolecules which generally

occupy 20-30% of the total cell volume. This percentage is

called excluded volume. The effects imposed by the excluded

volume, that is caused by the volume excluded by the “inert”

macromolecules, are called macromolecular crowding effects

and those macromolecules are called crowding agents. The

authors are currently extending the present study to develope

a model whose simulations are of support to the investigation

of excluded volume effectson the protein diffusion and folding.

Finally, this algorithm can be incorporated with the time

extension of Gillespie algorithm, that the authors developed,

in the context of process algebra languages, to treat rate

coefficients depending on time [33], [34]. The algorithm which

simulates this diffusion model provides more accurate and re-

alistic results with respect to the algorithm simulating classical

Fickian diffusion and can be used to calculate and predict

the time-behavior of proteins and biomolecules diffusing in a

highly structured and inhomogeneous medium. Very recently,

the authors in [35] have designed a parallelization of the

simulation of a reaction-diffusion systems to make it more

efficient and fast.
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