
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

473

Abstract—In this paper, we generalize several techniques in

developing Fault Tolerant Software. We introduce property
“Correctness” in evaluating N-version Systems and compare it to
some commonly used properties such as reliability or availability.
We also find out the relation between this property and the number of
versions of system. Our experiments to verify the correctness and the
applicability of the relation are also presented.

Keywords—Correctness, Fault Tolerant Software, N-version
Systems

I. INTRODUCTION
ODAY, most industries are highly dependent on
computers for their day-to-day functioning. Safe and

reliable software operations are significant requirement for
many types of systems. For instance, in air traffic control,
nuclear safety, high-speed rail, electronic banking, automated
manufacturing... The cost and consequence s of these
systems failing can range into catastrophic, with serious injury
occurring or lives lost. Software becomes more complex and
more significant to the overall system performance and
dependability. Unfortunately, software could not be developed
without errors. Even if the best people, practices and tools
were used, it would be very risky to assume the software
developed is error-free. Software does not physically
deteriorate, it has only logical faults that are difficult to
visualize, classify, detect and correct. To protect against these
faults, we cannot simply add redundancy as typically done for
hardware faults, because doing so will duplicate the problem.
So, to provide protection against these faults, we turn to
software fault tolerance. There are many techniques available

Manuscript received January 15, 2006. This work was supported in part by

the Ministry of Education and Training of Vietnam under grant No. B2005-
28-180 and Ministry of Science and Technology of Vietnam under grant No.
KHCB2.034.06.

Pham Ba Quang received the M.S (1998) and B.S (2001) degrees in
Computer Science from Hanoi University of Technology. He now works for
Bac A Bank, Hanoi, Vietnam. (phambaquang@yahoo.com).

Nguyen Tien Dat: received the M.S (June 2006) degrees in Computer
Science from Hanoi University of Technology. Now he is PhD student of
University of Iowa, Iowa, USA (tinguyen@cs.uiowa.edu)

Huynh Quyet Thang: received B.S degree (1990) from Varna University,
Bulgaria and Dr Degree (1995) in Bulgaria. He is Head of Software
Engineering Department, Hanoi University of Technology (thanghq@it-
hut.edu.vn).

today for implementing software fault tolerance. These
techniques are divided into two categories: single version and
multi-version techniques. This paper reviews some techniques
in developing fault tolerant software. Our aim is to survey and
present one new property in evaluating N-version Systems.
We also investigate the relation between this property and the
number of versions of system. Part 2 presents some single-
version and multi-version techniques for implementing fault
tolerant software. In part 3 and part 4 we introduce more
details about Correctness and find out the relation between
this property and the number of versions of multi-version
system. Part 5 presents our experiments to verify the accuracy
and the applicability of the founded relations. The final part is
some conclusions and our future work.

II. TECHNIQUES IN SOFTWARE FAULT TOLERANCE
In this section we present some fault tolerance techniques

for implementing software fault tolerance.

A. Single-Version Software Fault Tolerance Techniques
Single-version fault tolerance is based on the use of

redundancy applied to a single version of a piece of software
to detect and recover from faults. Among others, single-
version software fault tolerance techniques include
considerations on program structure and actions, error
detection, exception handling, checkpoint and restart, process
pairs, and data diversity [6].

Normally, we use multi-version techniques instead of
single-version techniques because multi-version techniques
have higher “fault tolerant ability” than single-version
techniques.

B. Multi-Version Software Fault Tolerance Techniques
The multiple version software techniques are to provide

diversity in the design and implementation of the software.
The goal of design diversity is to make the components as
diverse and independent as possible. The overriding principle
is implemented using redundant software components called
variants. The designer assumes that coincident components
failure is rate and results are different enough to enable error
detection and to distinguish a correct result or “best” answer.

Multi-version fault tolerance is based on the use of two or
more versions (or “variants”) executed either in sequence or in
parallel. The versions are used as alternatives (with a separate

Investigate the Relation between the
Correctness and the Number of Versions of

Fault Tolerant Software System
Pham Ba Quang, Nguyen Tien Dat, Huynh Quyet Thang

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

474

means of error detection), in pairs (to implement detection by
replication checks) or in larger groups (to enable masking
through voting). The rationale for the use of multiple versions
is the expectation that components built differently (i.e.,
different designers, different algorithms, different design
tools, etc) should fail differently [1, 2]. Therefore, if one
version fails on a particular input, at least one of the alternate
versions should be able to provide an appropriate output.
Multi-version software fault tolerance techniques include
Recovery Blocks (RcB), N-version Programming (NVP), N
Self-checking Programming (NSP), Consensus Recovery
Blocks (CRB) and t/(n-1)-Variant Programming (t/(n-1)VP)
[7,9]. Among them, RcB and NVP techniques are the original
design diverse software fault tolerance techniques. The other
techniques are the extension (NSP or t/(n-1)VP) or the
combination (CRB) of them. Therefore we will focus on two
basic techniques: RcB and NVP.

1) Recovery Blocks

The basic RcB scheme is one of the two original designs
diverse software fault tolerance techniques. RcB uses an AT
to accomplish fault tolerance. We know that most program
functions can be performed in more than one way, using
different algorithms and designs. These differently
implemented function variants have varying degrees of
efficiency in terms of memory management and utilization,
execution time, reliability, and other criteria. RcB incorporates
these variants such that the most efficient module is located
first in the series, and is termed the primary alternate or
primary try block. The less efficient variant(s) are placed
serially after the primary try block and are referred to as
(secondary) alternates or alternate try blocks. Thus, the
resulting rank of the variants reflects the graceful degradation
in the performance of the variants.

2) N-version Programming (NVP)
N-Version programming [2] is a multi-version technique in

which all the versions are designed to satisfy the same
specification and the decision mechanism (DM) examines the

results and selects the “bets” result, if one exists. There are
many alternative DM available for use with NVP. Since all the
versions are built to satisfy the same specification, the use of
N-version programming requires considerable development
effort but the complexity (i.e., development difficulty) is not
necessarily much greater than the inherent complexity of
building a single version. Design of the voter can be
complicated. Much research has gone into development of
methodologies that increase the likelihood of achieving
effective diversity in the final product. The NVP processes
can run concurrently on different computers or sequentially on
single computer.

III. THE RELATION BETWEEN “CORRECTNESS” AND THE
NUMBER OF VERSIONS IN N-VERSION SYSTEM

The property “Correctness” is very important in evaluating
Fault Tolerant Software. The higher it is, the safer the system
is. It may be more important than the availability or the
reliability because if we know it, we can make sure how many
results are truly right, and only use a number of results that is
less than accuracy. And of cause we see that the higher
accuracy is, the higher the availability and the reliability are.
But there is a question that: for a specific system, how many
versions are needed to archive the desired ability to return
right results. To answer this question, we have to find the
relation between “Correctness” and the number of versions in
N-version system. In Multi-version techniques we have two
fundamental techniques: RcB and NVP. So we only need to
find the relations in two techniques, the relations in other
techniques can be referred from these relations.

A. The relation in RcB technique
RcB technique will return rights result if one version

returns a right output and the Acceptance Test (AT) Module
makes a right decision.

Assume that we have n versions with the reliabilities r1, r2,
…,rn respectively. The reliability of AT Module is B and

Fig. 1 Recovery Blocks Model

Fig. 2 N-version Programming Model

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

475

Correctness of system is Sn. We will find the relation between
Sn and n by inductive method.

n=1: the system will return right result if the only one
version returns right output and the AT Module makes right
decision. Therefore S1 = r1B

n=2: the system will have one of these cases:
Case 1: the first version returns right output (1 right for

short) and the AT Module makes right decision (B right for
short). The probability of this case is r1B

Case 2: the second version is called because 1 right B
wrong or 1 wrong B right. If 2 right and B right, the system
will returns right results.

Therefore:

BrB))r-(1 B)-(1r(S
))1()1((

2111

21112

×××+×+=
=×××−+−×+×= BrBrBrBrS

n = 3: The system will have one of these cases
Case 1: the first two versions returns a right output and this

result is accepted, the probability of this case is S2
Case 2: the third version is called because of one of

following reasons:

1 right, B wrong, 2 right, B wrong:
1 wrong, B right, 2 right, B wrong:
1 right, B wrong, 2 wrong, B right:
1 wrong, B right, 2 wrong, B right:
So we have:

BrBrBrBrBrS
B
BrBrBrBrSS

×××−+−×××−+−×+=
×××××+×××+

+−××−+−××−×+=

322112

32121

212123

])1()1([])1()1([
rB])r-(1B)r-(1B)r-(1 B)-(1r(

)1()1()1()1([(

Continue do in the same way we finally have:

BrB])r-(1 B)-(1r[(
.......])1()1([(

n1-n1-n

111

×××××+
++×−+−×+= − BrBrSS nn

If all versions have the same reliability r, we have:

BrBrBrSS

BrS
n

nn ×××−+−×+=

×=
−

−
1

1

1

])1()1([

We will prove by inductive method that:

BrSn
BrBrBrBrBrS n

n

×==
×−+−×−×−+−×−××=

1:1
]})1()1([1/{}])1()1([1{

With n=1 the formula is true.
Suppose the formula is true with n, we will prove that it is

also true with (n+1)
We have:

]})1()1([1/{}])1()1([1{

])1()1([

]}r)-(1B)1(r[1/{}B]r)-(1B)-(1[r -1{r

])1()1([(

1

n
1

BrBrBrBrBr

BrBrBr

BB

BrBrBrSS

n

n

n
nn

×−+−×−×−+−×−××=

×××−+−×+

+×+−×−×+×××=

×××−×−×+=

+

+

(

Proved)
When n is great, increasing n will not affect this ability so

much. Therefore when developing a fault tolerant software,
we have to consider Correctness and the cost to construct all
versions.

Some special cases:

When B = 1:
It is easily seen that Sn 1 when n ∞. So when B = 1

we can have a system with the arbitrary ability to return right
results without considering the reliability of versions, all we
need is the large enough number of versions.

When r = 1:

Similarly, we have Sn 1 when n ∞. So when r = 1 we
also can have a system with the arbitrary ability to return right
results without considering the reliability of the AT Module,
all we need is the large enough number of versions.

The relation in NVP technique
In NVP technique, the design of voters affects Correctness

very much. They are generally divided into two main
categories: type A (agreement-based) voters which produce an
output from redundant inputs if there is agreement between a
particular number of voter inputs (e.g., majority and plurality
voting), and type B voters that always produce an output
regardless of the agreement, or otherwise, between redundant
inputs.

Type B voters either amalgamate the inputs or simply select
one of them based on a particular metric (e.g., weighted
average voter and mid-value selector respectively) [5,7,8].
Because of this efficient effect, we will find the relation in two
types of voters. We choose two main techniques to survey:
Majority (Type A) and Weighted Average (Type B).

The relation in NVP techniques with Majority Voter (NVP-
M)

In Majority Voter, version outputs are compared for
equality. If more than half of the version outputs agree this
common output becomes the output of the N-version system.
The definition of “agree” is really case-dependent and requires
significantly different methods to apply (see [5] for more
information).

In NVP-M, we will have a right result if more than half of
versions return right outputs and the Voter selects one of
them. Suppose that all versions have the same reliability r, the
reliability of Voter is B and Correctness of system is Sn. The
number of versions is n (n odd, n = 2k+1). If in one case, we
have j versions return right outputs, and (n-j) remaining
versions return wrong outputs, so the probability of this case
is:

Pn(j) = Cj
n
 rj (1-r)n-j

It is easily seen that Correctness is the sum of probabilities
of cases that have more than (k+1) versions return right
outputs and the Voter also makes right decision. Therefore we
have:

 jkj
k

kj

j
kk rrCBS −+

+

+=
++ −×××= ∑ 12

12

1
1212)1(

We can see that Correctness in NVP-M technique is
covariant with n. And we also see that with the same value of
r and B, Correctness in RcB technique is higher than the
ability in NVP-M technique.

Some special cases:

)1()1(21 BrBr −××−×
)1()1(21 BrBr −×××−

BrBr ×−×−×)1()1(21
BrBr ×−××−)1()1(21

n
n rS)1(1 −−=

n
n BS)1(1 −−=

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

476

When B = 1: jkj
k

kj

j
kk rrCS −+

+

+=
++ −××= ∑ 12

12

1
1212)1(

So we can conclude that when B = 1, we can have a system
with the arbitrary ability to return right results without
considering the reliability of versions, all we need is the large
enough number of versions.

When r = 1: Sn = B. It means that Correctness equals to the
reliability of the Voter, not depend on the number of versions.

The relation in NVP technique with Weighted Average
Voter

In this technique, all outputs are combined to produce a
new, possibly distinct output. Suppose n versions of software
with outputs in x produce the outputs x1, x2, …, xn. Let w1, w2,
…, wn be non-negative real numbers satisfying:
Σwi = 1
Define a new element of x by: x = Σwixi
Then x is the output produced by an N-version fault tolerant

system. There are some methods to determine wi, see [4] for
more information. We can see that with Weighted Average
Voter, the result x is surely true if all outputs are true. If there
are some outputs wrong, the result x may still be true. We say
x may be true because it may happen like that: there are only
two wrong outputs xi and xj, all remaining outputs are right
and equal to x*. If wi = wj and xi = x* + Δ and xj = x* – Δ t
then the result x still equals to x* and it is true. Because we
can’t calculate the probability of these cases, we can’t make
any relation between Correctness and the number of versions
in NVP techniques with Weighted Average Voter.

IV. EXPERIMENT
We have executed two experiments: the first one is to verify

the Correctness and the second one is to verify the
applicability of the founded relation.

A. The first experiment
1) Experimental Apparatus

Input Generator: This module will create the file DI.TXT
that contains 10,000 random integer numbers.

Error Maker: This module is to create errors for versions.
The errors have to be random. We create errors with assuming
that our hardware has errors that change bits from 1 to 0.

Versions: Versions sort the correlative input files using
different algorithms. There are six sorting algorithms:
Insertion Sort, Bubble Sort, Selection Sort, Quick Sort, Heap
Sort and Merge Sort. In NVP-M technique we need odd
versions, so we have six versions with six algorithms and
three remaining versions use three algorithms: Quick Sort,
Heap Sort and Merge Sort (we have totally nine versions).

Voter: (This module appears only in NVP-M technique)
The voter chooses a result from nine outputs of nine versions.
If there are more than five identical outputs, it will return a
result.

Acceptance Test: (This module appears only in RcB
technique) This module takes an output of one version and
XOR all numbers in it. If the result equals to the result of

XOR all numbers in file DI.TXT, this output will be accepted
and become the final result. If it doesn’t equal, it will be
rejected and the next version will be called. After all versions
are executed unsuccessfully, the system will be determined as
failure.

2) The result of Experiment
After executing the system 1000 times, we have the

following result as shown on table 1 and table 2.

TABLE I.
RESULTS OF EXPERIMENTING WITH SORTING ALGORITHMS

Element Number of
execution Right output Reliability

Version 1 1000 756 0.756

Version 2 1000 774 0.774

Version 3 1000 768 0.768
Version 4 1000 749 0.749
Version 5 1000 764 0.764

Version 6 1000 765 0.765

Version 7 1000 779 0.779

Version 8 1000 762 0.762

Version 9 1000 756 0.756

Voter 1000 1000 1.000
Acceptance

Test 10964 10950 0.999

TABLE II.
RESULTS OF CALCULATIION “CORRECTNESS”

Correctness
Technique

The average
reliability of

Versions
Experimental

result Theoretic result

RcB 0.764 0.999 0.99899
NVP 0.764 0.964 0.96118

The result of experiment shows that our theoretic calculate
is true.

Figure 3. Experimental System with RcB technique

Fig. 4 Experimental System with NVP-M technique

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

477

B. The second experiment
1) Experimental Apparatus

In the second experiment we apply fault tolerant models to
our e-class system – BKEC (Bach Khoa e-class). BKEC is a
system to control e-classes and developed by Software
Engineering Department, Hanoi University of Technology. It
contains all basic functions of an e-class controller such as
desktop sharing, multimedia, chat and voice chat, file transfer,
remote control … The following chart represents to the
functional decomposition diagram (FDD) of BKEC system. In
BKEC system, transferring exam question from teacher’s
computer to learners’ computers need to be highly reliability
and highly safe. Because transferring files via LAN or Internet
always contains risk, fault tolerant mechanism is what needed
to satisfy these requirements.

a) File transfer module with RcB technique
Figure 6 shows the model of module with RcB technique.

To start a transfer session we begin with the 1st version. The
1st version compresses exam questions, transfers compressed
file to learner’s computer and compressed file will be
decompressed in learner’s computer. To check if the received
file is unchanged or not, we send checking information with
compressed file. To create checking information, we split
compressed file in to 4-byte parts and XOR all parts to receive
4-byte result. 4-byte result will be checking information and
be sent with compressed file. In learner’s computer, we do the
same process to have 4-byte result, compare it with checking
information. If they are equal, the compressed file will pass
Acceptance Test module. If they aren’t equal means the
compressed file doesn’t pass AT module, the learner’s
computer will send a feedback to teacher’s computer to inform
that the file transfer didn’t complete and need to resend files
with another version. So the exchanged information between
two computers will be as following: Information from
teacher’s computer to learners’ computers: (1) compressed
exam question + the ID of version used to compress +

checking information; (2) Information from learners’
computers to teacher’s computer: the ID of version received +
feedback to inform the file transfer process is complete or not.

b) File transfer module with NVP-M technique
Figure 7 shows the model of module with NVP-M

technique. After executing all versions to have n compressed
files, we transfer all of them to receiver’s computer. In
receiver’s computer, we decompress all compressed files with
corresponded decompressions, and n decompressed files will
go through the Majority Voter to return final file. The final
file, if existing, will be the final result of file transfer process.

2) The result of Experiment

We implemented BKEC system with constructed model and
evaluated its performance through two experiments: with and
without making errors. The requirement is the ability to return
right result of system must be higher than 0.999.

Experiment without making errors: In the normal
conditions of our laboratory, when we executed the system to
send files 1000 times, no fault happened. We concluded that
we need only one version to satisfy the requirements.

We implemented BKEC system with constructed model and
evaluated its performance through two experiments: with and
without making errors. The requirement is the ability to return
right result of system must be higher than 0.999.

Experiment without making errors: In the normal
conditions of our laboratory, when we executed the system to
send files 1000 times, no fault happened. We concluded that
we need only one version to satisfy the requirements.

Experiment with making errors: Figures 8 and 9 show the
models of system with error maker module. This module is to
simulate some types of errors happening in file transfer
process such as data errors or process errors. The purpose of

this module is to evaluate the system’s performance when
errors happen. If the ability to return right result of system is
higher than 0.999, it means that our relations are correct and
highly applicable.

Fig. 5 The FDD of BKEC system

Fig. 6 BKEC system with RcB technique

Fig. 7 BKEC system with NVP-M technique

Fig. 8 NVP technique with error maker module

Fig. 9 RcB technique with error maker module

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

478

We use five lossless data compression techniques (Zip,
Flate, Huffman, BZip and LZW, see www.wikipedia.org for
more information about these techniques) to create five
versions.

According to (1) when n = 5 and B = 1:
S5 = 1–(1-r)5 ≥ 0.999 0.001≥(1-r)5 0.251 ≥ 1-r r ≥

0.749
According to (2) when n = 5 and B = 1:
S5 = 10r3(1-r)2 + 5r4(1-r) + r5 ≥ 0.999 r ≥ 0.953

TABLE III.
EXPERIMENT RESULTS OF BKEC SYSTEM

Element Number of
execution Right output Reliability

Version 1 1000 957 0.957

Version 2 1000 954 0.954

Version 3 1000 952 0.952
Version 4 1000 951 0.951
Version 5 1000 954 0.954

TABLE IV.
CALCULATIION OF BKEC SYSTEM “CORRECTNESS”

Correctness
Technique

The average
reliability of
Versions

Experimental
result Theoretic result

RcB 0.9536 1.000 0.9999997
NVP 0.9536 0.999 0.9990692

We control the execution of error maker module in some
ways to satisfy that the reliabilities of versions are approximate
0.953. Note that the reliability of a version is 0.953 means if
you execute this version 1000 times, it will return 47 wrong
results. In fact it is unacceptable if you have a piece of software
with that wrong rate. But if our system still have Correctness
higher than 0.999, it means that our relations are accurate and
highly applicable. The results are shown on the table 3 and
table 4. The results of experiments show that Correctness of
system meets the requirements.

V. CONCLUSION AND FUTURE WORK

A. Conclusion
In this paper, we generalize several commonly used

techniques in developing Fault Tolerant Software. We also
introduce one new property in evaluating N-version Systems:
“Correctness” and the relation between this property and the
number of versions of system. Our experiments to verify the
Correctness and the applicability of the relation are also
presented. From our theoretic calculation and experimental
results we have some conclusions:

• Correctness of fault tolerant software is covariant with
the number of versions, but not linear.

• In RcB and NVP-M techniques, when the reliability of
AT Module or Voter equals to 1, we can have a system
with the arbitrary ability to return right results without
considering the reliability of versions, all we need is
the large enough number of versions.

• In RcB technique, when the reliabilities of all versions
equal to 1, we also can have a system with the arbitrary
ability to return right results without considering the
reliability of the AT Module, all we need is the large
enough number of versions.

• In NVP techniques with Weighted Average Voter, we
can’t make any relation between Correctness and the
number of versions. This ability depends on the way to
determine the weights of versions.

B. Future work
We are in progress to find out the relation between the

number of versions and two properties: reliability and
availability. Once finding out these relations, we will finish our
mission to determine the proper number of versions for a multi
version fault tolerant system. Because you can see that with our
calculating above, Correctness of system will increase when
the number of versions increases. But in fact when increasing
the number of versions, the system will be more complex and
the reliability and the availability of system may decrease. So
with a specific system, we need a proper number of versions
that best satisfies the requirements of the reliability, the
availability and Correctness.

REFERENCES
[1] Algirdas Avizienis and L. Chen, On the Implementation of N-Version

Programming for Software Fault Tolerance During Execution,
Proceedings of the IEEE COMPSAC’77, November 1977, pp. 149 –
155.

[2] lgirdas Avizienis, The Methodology of N-Version Programming, in R.
Lieu, editor, Software Fault Tolerance, John Wiley & Sons, 1995.

[3] EEE Std 982.2-1988, IEEE Guide for the Use of IEEE Standard
Dictionary of Measures to Produce Reliable Software, 1998.

[4] G. Latif-Shabgahi, A. J. Hirst, and S. Bennett “A novel family of
weighted average voters for fault-tolerant computer control systems” ,
2004

[5] Lorczak, P.R., Caglayan, A.K., and Eckhardt, D.E., “A Theoretical
Investigation of Generalized Voters”, Digest of papers FTCS’19: IEEE
19th Ann. Int. Symp. on Fault- Tolerant Computing Systems, Chicago,
IL, pp. 444-451, 1989.

[6] Michael R. Lyu, editor, Software Fault Tolerance, John Wiley & Sons,
1995.

[7] NASA Organization, “Software Fault Tolerance: A tutorial”, 2000
[8] Brian Randell, System Structure for Software Fault Tolerance, IEEE

Transactions on Software Engineering, Vol. SE-1, No. 2, June 1975, pp.
220 –232.

[9] Brian Randell and Jie Xu, The Evolution of the Recovery Block
Concept, in Software Fault Tolerance, Michael R. Lyu, editor, Wiley,
1995, pp. 1 – 21.

